
AC 2007-1593: LIVE PROBLEM SOLVING VIA COMPUTER IN THE
CLASSROOM TO AVOID "DEATH BY POWERPOINT"

Michael Cutlip, University of Connecticut

Mordechai Shacham, Ben-Gurion University of the Negev

Michael Elly, Intel Corp.

© American Society for Engineering Education, 2007

P
age 12.1023.1



Live Problem Solving via Computer in the Classroom 

to Avoid "Death by PowerPoint" 
 
Introduction 

 
Extensive use of the computer for primarily presentations in class, such as the review of 
PowerPoint™ notes for example, may have many undesired effects: 1) The attendance in the 
class session may drop as students have access to copies of the presentation in the course web 
site. 2) The class may become mind-numbing for students who have studied the material, and the 
pace may be too fast for students who did not. 3) The students may not appreciate the knowledge 
of the instructor as he/she only "repeats what is already written on the slides". Felder and Brent[3] 
have described the undesired effects of the computer use in class as "Death by PowerPoint" and 
cautioned against the excessive use of pre-prepared PowerPoint visuals for teaching.  
 
Fortunately, there are uses of the computer in teaching in addition to PowerPoint presentations 
that can be very beneficial in the classroom. A good example is the use of a personal computer 
for live demonstrations in the classroom for numerical problem solving.  One successful scenario 
is to first discuss the principles and assumptions for a particular problem, and then to develop the 
mathematical model of the problem on the chalkboard (or a tablet PC). The model can then be 
entered into the computer in front of the class (or be preprogrammed), and the problem can then 
be immediately solved using a mathematical software package. Graphical and tabular 
presentation of the results can serve as the basis to critical analysis and discussion of these 
results.  Questions can then be asked in class regarding the model and expected results when 
parameters are changed or the model further refined.  The resulting model can then be solved in 
class with the results serving as a basis for further discussion.  
 
In this paper three examples are presented. In these examples a pre-prepared definition of a 
practical problem is presented and explained. The algorithm and the equations required for the 
solution are developed in a live demonstration by on a chalkboard or a tablet PC. The problem is 
then solved using the software packages Polymath© (copyrighted by Polymath Software, 
http://www.polymath-software.com ), MATLAB™ (trademark of MathWorks, Inc., 
http://www.mathworks.com) or Excel™ (trademark of Microsoft Corporation, 
http://www.microsoft.com). During the live demonstration, the results are discussed and 
parametric studies are carried out.   
 
Example 1 – Solving a Two Point Boundary Value Problem with the Newton-Raphson 

Method (Shooting Method
5
) 

Mathematical Model of the Problem and Explanation of the Need for Iterative Solution 

This problem (Cutlip and Shacham[1]) involves the calculation of the concentration profiles and 
molar fluxes in simultaneous multi-component diffusion of gases. Gases A and B are diffusing 
through stagnant gas C. There is multicomponent molecular diffusion between two points where 
the compositions and distance apart are known. The model of the problem and the special 
numerical data are shown in Table 1. The problem is specified in a format that is also appropriate 
as Polymath input file for the solution. The Polymath input coding with the comments (marked 
by #) provide a compete definition and clear documentation of the model.  
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Application of the Stefan Maxwell equations to this particular problem yields three differential 
equations representing the concentrations of components A, B and C (lines 1 through 3 in Table 
1). The parameters NA and NB (the molar fluxes of components A and B respectively) are 
unknown. They can be calculated using the boundary conditions at point 2 (z = 0.001m) where 
CA = 0 and CB = 0.002701. Estimates of NA and NB can be obtained from application of the Fick's 
law assuming simple binary diffusion. An estimate for NA can be obtained, for example, from 
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An estimate for NB can be similarly calculated, yielding NB = -3.363× 10-4. These estimates for 
NA and NB were introduced into the problem definition of Table 1. Integrating the system of 
differential equations using these parameter values yields the results shown in Table 2. Observe 
that the value of CA at the final point (z = 0.001) is -1.692E-05 rather than 0 and the value CB is 
0.002284 rather than the specified value of 0.002701. Thus, there is a need to develop a method 
for adjusting the values of NA and NB so as to obtain the correct boundary values of the variables. 

In this section the Polymath model of Table 1 is prepared in advance and used to explain the 
physical nature of the problem. The live demonstration includes the calculation of the initial 
estimates for NA and the integration of the model equations using Polymath. 

Description of the Application of the Newton-Raphson Method for the Solution of Two Point 

Boundary Value Problems 

 Let us define x as the vector of unknown parameters (in this particular case x = (NA NB)T ) and f 
as a vector of functions representing the difference between the desired and calculated 
concentration values as point 2 , thus  










×−

−
=

3-
2

2

012.701|

0|

B

A

C

C
f                                                                       (1)  

The Newton-Raphson (NR) method can be written  
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where k is the iteration number, x0 is the initial estimate and ∂f/∂x is the matrix of partial 
derivatives at x = xk. The matrix of partial derivatives can be calculated using forward 
differences, thus  

 
( ) ( )

2,1;2,1 ==
−+

=
∂

∂
ji

ff

x

f

j

kijki

j

i

δ

xδx
                                       (3)           

where δj is a vector containing the value of δj at the jth position and zeroes elsewhere. The 
iterations of the NR method are stopped when ( ) dk ε≤xf and where εd is the desired error 

tolerance.  
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The equations in this section are shown and explained in a live demonstration. In order to carry 
out the iterative solution process a programming language (such as MATLAB) should be used.  

Translating the Model into a MATLAB Function and Implementing the NR Method to Find the 

Values of NA and NB  

An option within Polymath 6.1 can be used to automatically convert the model of the problem 
into a MATLAB function. The Polymath generated function is shown in Table 3. Note that 
Polymath reorders the equations and changes the syntax of the model according to the 
requirements of MATLAB. The "main program" that runs the Polymath generated function 
(shown in Table 4) is available as a template in the "Help" section of Polymath. Only the 
function name has to be added (see line 1) and the initial values of the variables had to be copied 
from the Polymath generated model (see lines 3 and 4). Execution of the complete MATLAB 
program as specified in Tables 4 and 3 does yield the same results obtained by Polymath (Table 
2), thus verifying that the MATLAB representation of the model is correct. 

The MATLAB implementation of the NR method using forward differences to calculate the 
matrix of partial derivatives is shown in Table 5.  The modification of the programs shown in 
Tables 3 and 4 for iterative refinement of the NA and NB values involves replacement of lines 8 
and 9 in Table 4 by the 24 lines of code shown in Table 5, addition of NA and NB to the function 
parameter list (line 1 in Table 3) and removing the specification of the values of the same 
variables (lines 5 and 6 in Table 3) from the function. The modified MATLAB program yields 
the sequence of NA, NB, f1 and f2 values shown in Table 6. Note that five NR iterations are 
required for convergence with error tolerance of εd = 10-10. The converged solution values are NA 
= 2.1149e-5 and NB = -4.1425e-4. Using these solution values, the difference between the 
calculated and desired values of CA and CB at point 2 are <10-10.  

In this part of the solution the MATLAB implementation of the NR method is prepared in 

advance. The export of the model to MATLAB, the assembly of the complete program and the 
iterative solution can be carried out as live classroom demonstrations. 

Example 2 – Solving Systems of Linear Equations Arising from Finite Difference 

Approximation of PDEs Using Both the Jacoby and Gauss-Seidel Methods 

Description of the Jacoby and Gauss-Seidel Methods 

Let us consider a linear system of equations Ax = b where x is the n-vector of unknowns, A is an 
nn×  matrix of coefficients and b is an n vector of constants.  Assuming that aii ≠ 0 i = 1, 2, …, 

n, the system of equations can be written 
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Using this formulation of the system of equations, a sequence of approximate solutions x1, x2, … 
can be calculated using the Jacobi method (Dahlquist et al.[2], p. 189) 
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where k is the iteration number and x0 is the initial estimate. The iterations are stopped when 

dkk ε≤− −1xx .  

In the Gauss-Seidel method, new values of the unknowns are used as soon as they are computed. 
Thus 
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The equations of this section are presented and explained in a live demonstration. 

Finite Difference Representation of a Steady-State, Two-Dimensional Heat Transfer Problem 

A two-dimensional problem is used to demonstrate the application of the Jacobi and Gauss-
Seidel methods. Such a problem requires the solution of the Laplace equation. 
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Dividing the two dimensional space into squares with edge lengths of ∆x = ∆y = 1 enables a 
finite difference representation of Eq. (7) 

 04 ,,1,11,1, =−+++ −+−+ jijijijiji TTTTT                                                                   (8) 

In this problem (Geankoplis[4] , p. 340), the steady state temperature profile in a hollow 
rectangular chamber (see Figure 1) has to be determined. The inside dimensions of the chamber 

24× m and the outside dimensions 88× m. The inside walls are held at 600 K and the outside at 
300 K.  

Since the chamber is symmetrical, equations in the form of Eq. 8 have to be written only for one 
fourth of the chamber. The equations, as arranged in the form appropriate for the use of the 
Jacobi method, are shown in lines 1 through 10 of the 2nd column in Table 7. Note that variable 
names have been replaced by temperature values at the boundaries and relationships based on 
symmetry allow replacement of three of the unknown temperatures (T0,2 = T2,2; T3,6 = T3,4 and 
T4,6 = T4,4 ). Variable names ending with the letter "i" indicate initial estimates for the 
temperature and the initial estimates suggested by Geankoplis are introduced in lines 11 through 
20. In lines 21 through 30, the elements needed to calculate the norm of the error in the first 
iteration are computed. Solving this set of equations with Polymath yields the results of the first 
iteration of the Jacobi method. P
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Polymath 6.1 can be used to export the problem definition to Excel with a single key-press.  A 
slight modification of the Polymath exported problem enables carrying out additional iterations 
just by copying the column which contains the formulas for calculating Ti,j and erri,j and pasting 
them into additional columns as shown in Table 8. Note that every column represents one 
iteration. 

Solution of the problem using the Gauss-Seidel method the equations is shown in the third 
column of Table 7.  Observe that the only difference between the Jacobi and the Gauss-Seidel 
methods is that the newly calculated unknown values are immediately being used in the former 
method. For example, the calculation of T22 (in line 2) the Jacobi method uses T12i while the 
Gauss-Seidel method uses T12 which was calculated in the previous line. The equations of the 
Gauss-Seidel method can be exported to Excel similarly to what was done for the equations of 
the Jacobi method. The iterations can be carried out and the results compared in one worksheet. 

In this case, the equations shown in Table 7 are prepared in advance. The export to Excel, 
rearrangement and extension of the worksheet along with the iterative solution are carried out as 
a live demonstration. 

Example 3 – Ill-Conditioning in Multiple Linear Regression – Detection and Harmful 

Effects 

Regression Model for Heat of Cement Hardening 

 
Woods et al.

[7] investigated the  integral heat of hardening of cement as a function of 
composition.  Some of the reported results are shown in Table 9.  The independent variables 
represent weight percent of the clinker compounds: x1 - tricalcium aluminate (3CaO ·Al2O3), x2 - 
tricalcium silicate (3CaO ·SiO2), x3 - tetracalcium alumino-ferrite (4CaO·Al2O3·Fe2O3), and x4 -  
β-dicalcium silicate (3CaO ·SiO2).  The dependent variable y is the total heat evolved (in calories 
per gram cement) in a 180-day period. Two multiple linear regression models, one with zero y 
intercept (no free parameter) and one with non-zero intercept, are to be compared. 

The regression model for this problem is  

4433221100
ˆˆˆˆˆ xxxxxy βββββ ++++=                                         (9) 

where 43210
ˆˆ,ˆ,ˆ,ˆ βββββ and  are the model parameter estimates and x0 is a vector whose 

components are unity (included in the model only in case of non-zero y intercept). 

The model parameter estimates can be calculated using the least squares method by solving the 
"normal" equation 

( ) yXβXX TT =ˆ                                                         (10) 

where A = XT
X is the normal matrix, X = [x0 x1 x2 x3 x4] and T]ˆˆˆˆˆ[ˆ

43210 βββββ=β . 

The indicators (see, for example, Shacham et al. [6]) that can be used to check the 
appropriateness, accuracy and stability (conditioning) of the model are the residual plots, 
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variances, linear correlation coefficients, confidence intervals in addition to the eigenvalues and 
condition numbers of the normal matrices. The harmful effects of ill-conditioning can be 
demonstrated by carrying out the regression after removing a data point.  

In this section the data and the problem definition are prepared in advance while the equations 
are developed in a live demonstration. 

Analysis of the Two Regression Models 

The parameters of the various models and the quality of fit indicators can be calculated with 
Polymath and MATLAB in a live demonstration.  Partial results of this analysis are presented in 
Figure 2 and Table 10. The random distribution of the residuals in Figure 2 shows that the linear 
model represents the data adequately. However, the results in Table 10 show that the regression 
model with the non-zero intercept is very unstable (ill-conditioned). The instability is reflected in 
the values of the 95% confidence intervals all of which are larger than the respective parameter 
values and the seven order of magnitude difference between the maximal and minimal 
eigevalues of the normal matrix ( condition number =3.64e7). In contrast, the zero-intercept 
model is stable with much smaller values of the confidence intervals and the condition number. 

The harmful effects of the instability can be demonstrated by carrying out the regression when 
the last data point is removed from the set. In this case the parameter values obtained for the non-

zero intercept model are: 12.0ˆ328.0ˆ;80.0ˆ;78.1ˆ;2.36ˆ
43210 ===== βββββ and . These values 

are completely different than the parameter values in Table 10. For the case of 4β̂ , even the sign 
is different. The results for the zero intercept model match the results of Table 10 up to two 
decimal digits. 

Conclusions 
 
A new approach for incorporating the computer in classroom teaching has been demonstrated. In 
the courses where this approach has been implemented the following educational benefits have 
been observed: 

• The use of real-life problems for demonstration increases considerably the student 
motivation to study mathematical modeling and numerical methods as they understand 
better the need for learning these subjects. 

• The development of the key algorithms and equations on the chalkboard (or the tablet 
PC) enables more extensive clarification of unclear points and gives the student more 
time to absorb and understand the new material. 

• Students are very impressed with the live demonstrations that include solution of 
complex problems with a few key-presses using the various software packages. The 
conversion of a complex algorithm to a working program and the presentation of 
graphical and tabular results in a few minutes seems "amazing" to many of them. 
Consequently, their interest in the course and their appreciation of the instructor's 
expertise increase considerably.   

• The proposed approach helped to retain or bring back the students to the classroom, and it 
provides many educational benefits in addition to avoiding "death by PowerPoint". 
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Table 1. Polymath Input File for the Multi-Component Diffusion Problem 

Line Equation # Comment 

1 d(CA)/d(z) = (xA * NB - xB * NA) / DAB + (xA * NC - xC * NA) / DAC # Concentration of A (g-mol/L) 
2 d(CB)/d(z) = (xB * NA - xA * NB) / DAB + (xB * NC - xC * NB) / DBC # Concentration of B (g-mol/L) 
3 d(CC)/d(z) = (xC * NA - xA * NC) / DAC + (xC * NB - xB * NC) / DBC # Concentration of C (g-mol/L) 
4 NB = -0.0003363 # Molal flux of component B (kg-mol/m^2*s) 
5 NA = 2.396e-5 # Molal flux of component A (kg-mol/m^2*s) 
6 DAB = 1.47e-4  # Diffusivity of A through B (m^2/s) 
7 NC = 0  # Molal flux of stagnant component C (kg-mol/m^2*s) 
8 DAC = 1.075e-4# Diffusivity of A through C (m^2/s) 
9 DBC = 1.245e-4 # Diffusivity of B through C (m^2/s) 

10 CT = 0.2 / (82.057e-3 * 328) # Gas concentration g-mol/L 
11 xA = CA / CT # Mole fraction of A 
12 xB = CB / CT # Mole fraction of B 
13 xC = CC / CT # Mole fraction of C 
14 z(0) = 0 # Length coordinate at point 1 
15 CB(0) = 0 # Concentration of B at point 1 
16 CA(0) = 0.0002229 # Concentration of A at point 1 
17 CC(0) = 0.007208 # Concentration of C at point 1 
18 z(f) = 0.001 # Length coordinate at point 2 where at solution CA2 = 0 and CB2 = 0.002701 

 

Table 2. Concentration Values Obtained Using the Estimates:  NA = -2.396× 10-5 
and NB = -3.363× 10-4 

Variable Initial value Minimal value Maximal value Final value 

z 0 0 0.001 0.001 
CA 0.0002229 -1.69E-05 0.0002229 -1.69E-05 
CB 0 0 0.002284 0.002284 
CC 0.007208 0.0051638 0.007208 0.0051638 

 

Table 3. MATLAB Function for the Multi-Component Diffusion Problem. 

Line Equation % Comment 

1 function dYfuncvecdz = ODEfun(z,Yfuncvec); 
2 CA = Yfuncvec(1);  
3 CB = Yfuncvec(2);  
4 CC = Yfuncvec(3);  
5 NB = -.0003363; % Molal flux of component B (kg-mol/m^2*s)  
6 NA = .00002396; % Molal flux of component A (kg-mol/m^2*s)  
7 DAB = .000147; % Diffusivity of A through B (m^2/s)  
8 NC = 0; % Molal flux of stagnant component A (kg-mol/m^2*s)  
9 DAC = .0001075; % Diffusivity of A through C (m^2/s)  

10 DBC = .0001245; % Diffusivity of B through C (m^2/s)  
11 CT = .2 / (.082057 * 328);% Gas concentration g-mol/L  
12 xA = CA / CT; % Mole fraction of A  
13 xB = CB / CT; % Mole fraction of B  
14 xC = CC / CT; % Mole fraction of C  
15 dCAdz = (xA * NB - (xB * NA)) / DAB + (xA * NC - (xC * NA)) / DAC; % Concentration of A (g-mol/L)  
16 dCBdz = (xB * NA - (xA * NB)) / DAB + (xB * NC - (xC * NB)) / DBC; % Concentration of B (g-mol/L)  
17 dCCdz = (xC * NA - (xA * NC)) / DAC + (xC * NB - (xB * NC)) / DBC; % Concentration of C (g-mol/L)  
18 dYfuncvecdz = [dCAdz; dCBdz; dCCdz];  
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Table 4. MATLAB "Main Program" for the Multi-Component Diffusion Problem 

Line Command % Comment 

1 function MultDiffusB 

2 clear, clc, format short g, format compact 
3 tspan = [0 0.001]; % Range for the independent variable  

4 y0 = [0.0002229; 0; 0.007208]; % Initial values for the dependent variables function  

5 disp(' Variable values at the initial point '); 
6 disp([' t    = ' num2str(tspan(1))]); 
7 disp('           y                  dy/dt         '); 
8 disp([y0 ODEfun(tspan(1),y0)]); 
9 [t,y]=ode45(@ODEfun,tspan,y0); 

10 for i=1:size(y,2) 
11     disp([' Solution for dependent variable y' int2str(i)]); 
12     disp(['              t                  y' int2str(i)]); 
13     disp([t y(:,i)]); 
14     plot(t,y(:,i)); 
15     title([' Plot of dependent variable y' int2str(i)]); 
16     xlabel(' Independent variable (t)'); 
17     ylabel([' Dependent variable y' int2str(i)]); 
18     pause 
19 end 

 

Table 5. MATLAB Implementation of the NR Method for the Multi-Component Diffusion 
Problem 

Line Command  

1 NAB(:,1)=[2.396e-5; 3.363e-4]; 
2 disp([y0 ODEfun(tspan(1),y0,NAB(1,1),NAB(2,1))]); 
3 err=1; 
4 it=0; 
5 while (err>1e-10) & (it<20) 
6     it=it+1; 
7     itno(it)=it; 
8     [t,y]=ode45(@ODEfun,tspan,y0,[],NAB(1,it),NAB(2,it)); 
9     f(:,it)=[y(end,1); y(end,2)-2.701e-3]; 

10     err=sqrt(f(:,it)'*f(:,it)); 
11     for j=1:2 
12         delj=abs(NAB(j,it))*0.01; 
13         NAB(j,it)=NAB(j,it)+delj; 
14         [t,yp]=ode45(@ODEfun,tspan,y0,[],NAB(1,it),NAB(2,it)); 
15         fp=[yp(end,1); yp(end,2)-2.701e-3]; 
16         for k=1:2 
17             DF(k,j)=(fp(k)-f(k,it))/delj; 
18         end 
19         NAB(j,it)=NAB(j,it)-delj; 
20     end 
21     NAB(:,it+1)=NAB(:,it)-inv(DF)*f(:,it); 
22 end 
23 disp('           Iter. No.    NA     NB        f1            f2  '); 
24 disp([itno' NAB(1,1:it)' NAB(2,1:it)' f(1,:)' f(2,:)']); 
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Table 6. Shooting Method Iterations for NA and NB 

Iter. No. NA NB f1 f2 

0 2.3960E-05 3.3630E-04 3.35E-05 -5.99E-03 
1 2.2076E-05 -1.7614E-04 7.53E-06 -1.40E-03 
2 2.1252E-05 -3.8575E-04 8.52E-07 -1.49E-04 
3 2.1150E-05 -4.1375E-04 1.77E-08 -2.56E-06 
4 2.1149E-05 -4.1424E-04 7.05E-11 -6.41E-09 
5 2.1149E-05 -4.1425E-04 1.67E-13 -1.43E-11 

 

Table 7. Polymath Inputs for Carrying Out the First Jacobi and Gauss-Seidel Iterations for the 
Steady State Heat Conduction Problem 

Line Jacobi Gauss-Seidel 

1 T12 = (300 + T22i + 600 + T22i) / 4 T12 = (300 + T22i + 600 + T22i) / 4 
2 T22 = (300 + T12i + 600 + T32i) / 4 T22 = (300 + T12 + 600 + T32i) / 4 
3 T32 = (300 + T22i + T33i + T42i) / 4 T32 = (300 + T22 + T33i + T42i) / 4 
4 T42 = (300 + T32i + T43i + 300) / 4 T42 = (300 + T32 + T43i + 300) / 4 
5 T33 = (T32i + 600 + T34i + T43) / 4 T33 = (T32 + 600 + T34i + T43i) / 4 
6 T43 = (T42i + T33i + T44i + 300) / 4 T43 = (T42 + T33 + T44i + 300) / 4 
7 T34 = (T33i + 600 + T35i + T44i) / 4 T34 = (T33 + 600 + T35i + T44i) / 4 
8 T44 = (T43i + T34i + T45i + 300) / 4 T44 = (T43 + T34 + T45i + 300) / 4 
9 T35 = (T34i + 600 + T34i + T45i) / 4 T35 = (T34 + 600 + T34 + T45i) / 4 

10 T45 = (T44i + T35 + T44i + 300) / 4 T45 = (T44 + T35 + T44 + 300) / 4 
11 T12i = 450 T12i = 450 
12 T22i = 400 T22i = 400 
13 T32i = 400 T32i = 400 
14 T42i = 325 T42i = 325 
15 T33i = 400 T33i = 400 
16 T43i = 350 T43i = 350 
17 T34i = 450 T34i = 450 
18 T44i = 375 T44i = 375 
19 T35i = 500 T35i = 500 
20 T45i = 400 T45i = 400 
21 err12=(T12-T12i)^2 err12=(T12-T12i)^2 
22 err22=(T22-T22i)^2 err22=(T22-T22i)^2 
23 err32=(T32-T32i)^2 err32=(T32-T32i)^2 
24 err42=(T42-T42i)^2 err42=(T42-T42i)^2 
25 err33=(T33-T33i)^2 err33=(T33-T33i)^2 
26 err43=(T43-T43i)^2 err43=(T43-T43i)^2 
27 err34=(T34-T34i)^2 err34=(T34-T34i)^2 
28 err44=(T44-T44i)^2 err44=(T44-T44i)^2 
29 err35=(T35-T35i)^2 err35=(T35-T35i)^2 
30 err45=(T45-T45i)^2 err45=(T45-T45i)^2 
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Table 8. Jacobi Method Iterations for the Steady State Heat Conduction Problem 

 

Iter. No. 0 1 2 3 4 5 

T12 450 425 443.75 435.1563 440.625 438.5986 
T22 400 437.5 420.3125 431.25 427.1973 430.3192 
T32 400 356.25 381.25 373.6328 380.6519 378.8734 
T42 325 337.5 326.5625 336.7188 333.9844 337.1704 
T33 400 450 447.6563 454.6387 454.3121 456.8563 
T43 350 350 365.625 362.3047 368.0298 367.1471 
T34 450 468.75 475 475.5859 479.6265 479.554 
T44 375 375 375 380.7617 380.2917 383.485 
T35 500 475 479.6875 483.1055 483.6121 486.3842 
T45 400 381.25 382.4219 383.2764 386.2839 386.7419 
       
err12  625 351.5625 73.85254 29.90723 4.106164 
err22  1406.25 295.4102 119.6289 16.42466 9.746561 
err32  1914.063 625 58.02155 49.26696 3.162749 
err42  156.25 119.6289 103.1494 7.476807 10.15082 
err33  2500 5.493164 48.75422 0.106627 6.473016 
err43  0 244.1406 11.02448 32.77674 0.779196 
err34  351.5625 39.0625 0.343323 16.32586 0.005253 
err44  0 0 33.1974 0.220872 10.19706 
err35  625 21.97266 11.68251 0.256635 7.684763 
err45  351.5625 1.373291 0.730157 9.0451 0.20981 

||xk-xk-1||   89.04879 41.27522 21.45657 12.72036 7.24675 

 

Table 9.  Data for the Multiple Linear Regression Example (Woods et al.1 above 7]) 
 

No. x1 x2 x3 x4 y 

1 7 26 6 60 78.7 
2 1 29 15 52 74.3 
3 11 56 8 20 104.3 
4 11 31 8 47 87.6 
5 7 52 6 33 95.9 

6 11 55 9 22 109.2 
7 3 71 17 6 102.7 
8 1 31 22 44 72.5 
9 2 54 18 22 93.1 

10 21 47 4 26 115.9 
11 1 40 23 34 83.8 
12 11 66 9 12 113.3 
13 10 68 8 12 109.4 
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Table 10.  Results of the Multiple Linear Regression Example  

 

  Non-zero Intercept Zero Intercept 

Variable Value 95% confidence Value 95% confidence 

0β̂  60.899 161.62 - - 

1β̂  1.563 1.72 2.189 0.42 

2β̂  0.527 1.67 1.154 0.11 

3β̂  0.113 1.74 0.753 0.36 

4β̂  -0.127 1.64 0.489 0.09 

R2 0.98  0.98  

Variance 5.99  5.82  
Max. eigenvalue 40402.00  40402.00  
Min. eigenvalue 0.0011  101.35  
Condition number 3.64E+07   398.64   
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Figure 1 - Cross section of hollow chamber with square grid pattern for Example 2 (from 
Geankoplis[4]) 
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Figure 2 - Residual Plot for the "Heat of Hardening" Example 3 

 
 

P
age 12.1023.14


