
AC 2007-1593: LIVE PROBLEM SOLVING VIA COMPUTER IN THE
CLASSROOM TO AVOID "DEATH BY POWERPOINT"

Michael Cutlip, University of Connecticut

Mordechai Shacham, Ben-Gurion University of the Negev

Michael Elly, Intel Corp.

© American Society for Engineering Education, 2007

P
age 12.1023.1

Live Problem Solving via Computer in the Classroom

to Avoid "Death by PowerPoint"

Introduction

Extensive use of the computer for primarily presentations in class, such as the review of
PowerPoint™ notes for example, may have many undesired effects: 1) The attendance in the
class session may drop as students have access to copies of the presentation in the course web
site. 2) The class may become mind-numbing for students who have studied the material, and the
pace may be too fast for students who did not. 3) The students may not appreciate the knowledge
of the instructor as he/she only "repeats what is already written on the slides". Felder and Brent[3]
have described the undesired effects of the computer use in class as "Death by PowerPoint" and
cautioned against the excessive use of pre-prepared PowerPoint visuals for teaching.

Fortunately, there are uses of the computer in teaching in addition to PowerPoint presentations
that can be very beneficial in the classroom. A good example is the use of a personal computer
for live demonstrations in the classroom for numerical problem solving. One successful scenario
is to first discuss the principles and assumptions for a particular problem, and then to develop the
mathematical model of the problem on the chalkboard (or a tablet PC). The model can then be
entered into the computer in front of the class (or be preprogrammed), and the problem can then
be immediately solved using a mathematical software package. Graphical and tabular
presentation of the results can serve as the basis to critical analysis and discussion of these
results. Questions can then be asked in class regarding the model and expected results when
parameters are changed or the model further refined. The resulting model can then be solved in
class with the results serving as a basis for further discussion.

In this paper three examples are presented. In these examples a pre-prepared definition of a
practical problem is presented and explained. The algorithm and the equations required for the
solution are developed in a live demonstration by on a chalkboard or a tablet PC. The problem is
then solved using the software packages Polymath© (copyrighted by Polymath Software,
http://www.polymath-software.com), MATLAB™ (trademark of MathWorks, Inc.,
http://www.mathworks.com) or Excel™ (trademark of Microsoft Corporation,
http://www.microsoft.com). During the live demonstration, the results are discussed and
parametric studies are carried out.

Example 1 – Solving a Two Point Boundary Value Problem with the Newton-Raphson

Method (Shooting Method
5
)

Mathematical Model of the Problem and Explanation of the Need for Iterative Solution

This problem (Cutlip and Shacham[1]) involves the calculation of the concentration profiles and
molar fluxes in simultaneous multi-component diffusion of gases. Gases A and B are diffusing
through stagnant gas C. There is multicomponent molecular diffusion between two points where
the compositions and distance apart are known. The model of the problem and the special
numerical data are shown in Table 1. The problem is specified in a format that is also appropriate
as Polymath input file for the solution. The Polymath input coding with the comments (marked
by #) provide a compete definition and clear documentation of the model.

P
age 12.1023.2

Application of the Stefan Maxwell equations to this particular problem yields three differential
equations representing the concentrations of components A, B and C (lines 1 through 3 in Table
1). The parameters NA and NB (the molar fluxes of components A and B respectively) are
unknown. They can be calculated using the boundary conditions at point 2 (z = 0.001m) where
CA = 0 and CB = 0.002701. Estimates of NA and NB can be obtained from application of the Fick's
law assuming simple binary diffusion. An estimate for NA can be obtained, for example, from

()
()

()
()

5
4

4

12

12 10396.2
0001.0
10229.20

10075.1
||

|| −
−

− ×=
−

×−
×−=

−

−
−=

zz

CC
DN AA

ACA

An estimate for NB can be similarly calculated, yielding NB = -3.363× 10-4. These estimates for
NA and NB were introduced into the problem definition of Table 1. Integrating the system of
differential equations using these parameter values yields the results shown in Table 2. Observe
that the value of CA at the final point (z = 0.001) is -1.692E-05 rather than 0 and the value CB is
0.002284 rather than the specified value of 0.002701. Thus, there is a need to develop a method
for adjusting the values of NA and NB so as to obtain the correct boundary values of the variables.

In this section the Polymath model of Table 1 is prepared in advance and used to explain the
physical nature of the problem. The live demonstration includes the calculation of the initial
estimates for NA and the integration of the model equations using Polymath.

Description of the Application of the Newton-Raphson Method for the Solution of Two Point

Boundary Value Problems

 Let us define x as the vector of unknown parameters (in this particular case x = (NA NB)T) and f
as a vector of functions representing the difference between the desired and calculated
concentration values as point 2 , thus










×−

−
=

3-
2

2

012.701|

0|

B

A

C

C
f (1)

The Newton-Raphson (NR) method can be written

Κ2,1,0)(
1

1 =
∂

∂
−=

−

+ kkkk xf
x

f
xx (2)

where k is the iteration number, x0 is the initial estimate and ∂f/∂x is the matrix of partial
derivatives at x = xk. The matrix of partial derivatives can be calculated using forward
differences, thus

() ()

2,1;2,1 ==
−+

=
∂

∂
ji

ff

x

f

j

kijki

j

i

δ

xδx
 (3)

where δj is a vector containing the value of δj at the jth position and zeroes elsewhere. The
iterations of the NR method are stopped when () dk ε≤xf and where εd is the desired error

tolerance.

P
age 12.1023.3

The equations in this section are shown and explained in a live demonstration. In order to carry
out the iterative solution process a programming language (such as MATLAB) should be used.

Translating the Model into a MATLAB Function and Implementing the NR Method to Find the

Values of NA and NB

An option within Polymath 6.1 can be used to automatically convert the model of the problem
into a MATLAB function. The Polymath generated function is shown in Table 3. Note that
Polymath reorders the equations and changes the syntax of the model according to the
requirements of MATLAB. The "main program" that runs the Polymath generated function
(shown in Table 4) is available as a template in the "Help" section of Polymath. Only the
function name has to be added (see line 1) and the initial values of the variables had to be copied
from the Polymath generated model (see lines 3 and 4). Execution of the complete MATLAB
program as specified in Tables 4 and 3 does yield the same results obtained by Polymath (Table
2), thus verifying that the MATLAB representation of the model is correct.

The MATLAB implementation of the NR method using forward differences to calculate the
matrix of partial derivatives is shown in Table 5. The modification of the programs shown in
Tables 3 and 4 for iterative refinement of the NA and NB values involves replacement of lines 8
and 9 in Table 4 by the 24 lines of code shown in Table 5, addition of NA and NB to the function
parameter list (line 1 in Table 3) and removing the specification of the values of the same
variables (lines 5 and 6 in Table 3) from the function. The modified MATLAB program yields
the sequence of NA, NB, f1 and f2 values shown in Table 6. Note that five NR iterations are
required for convergence with error tolerance of εd = 10-10. The converged solution values are NA
= 2.1149e-5 and NB = -4.1425e-4. Using these solution values, the difference between the
calculated and desired values of CA and CB at point 2 are <10-10.

In this part of the solution the MATLAB implementation of the NR method is prepared in

advance. The export of the model to MATLAB, the assembly of the complete program and the
iterative solution can be carried out as live classroom demonstrations.

Example 2 – Solving Systems of Linear Equations Arising from Finite Difference

Approximation of PDEs Using Both the Jacoby and Gauss-Seidel Methods

Description of the Jacoby and Gauss-Seidel Methods

Let us consider a linear system of equations Ax = b where x is the n-vector of unknowns, A is an
nn× matrix of coefficients and b is an n vector of constants. Assuming that aii ≠ 0 i = 1, 2, …,

n, the system of equations can be written

 1

1

−

≠
= 
















+−= ∑ ii

n

ij
j

ijiji abxax , i = 1, 2, …, n (4)

Using this formulation of the system of equations, a sequence of approximate solutions x1, x2, …
can be calculated using the Jacobi method (Dahlquist et al.[2], p. 189)

P
age 12.1023.4

1

1
1,,

−

≠
=

−

















+−= ∑ ii

n

ij
j

ikjijki abxax , i = 1, 2, …, n; k = 1, 2, … (5)

where k is the iteration number and x0 is the initial estimate. The iterations are stopped when

dkk ε≤− −1xx .

In the Gauss-Seidel method, new values of the unknowns are used as soon as they are computed.
Thus

1
1

1 1
1,1,,

−
−

= +=

−− 









+−−= ∑ ∑ ii

i

j

i

n

ij

kjijkjijki abxaxax i = 1, 2, …, n; k = 1, 2, … (6)

The equations of this section are presented and explained in a live demonstration.

Finite Difference Representation of a Steady-State, Two-Dimensional Heat Transfer Problem

A two-dimensional problem is used to demonstrate the application of the Jacobi and Gauss-
Seidel methods. Such a problem requires the solution of the Laplace equation.

02

2

2

2

=
∂

∂
+

∂

∂

y

T

x

T
 (7)

Dividing the two dimensional space into squares with edge lengths of ∆x = ∆y = 1 enables a
finite difference representation of Eq. (7)

 04 ,,1,11,1, =−+++ −+−+ jijijijiji TTTTT (8)

In this problem (Geankoplis[4] , p. 340), the steady state temperature profile in a hollow
rectangular chamber (see Figure 1) has to be determined. The inside dimensions of the chamber

24× m and the outside dimensions 88× m. The inside walls are held at 600 K and the outside at
300 K.

Since the chamber is symmetrical, equations in the form of Eq. 8 have to be written only for one
fourth of the chamber. The equations, as arranged in the form appropriate for the use of the
Jacobi method, are shown in lines 1 through 10 of the 2nd column in Table 7. Note that variable
names have been replaced by temperature values at the boundaries and relationships based on
symmetry allow replacement of three of the unknown temperatures (T0,2 = T2,2; T3,6 = T3,4 and
T4,6 = T4,4). Variable names ending with the letter "i" indicate initial estimates for the
temperature and the initial estimates suggested by Geankoplis are introduced in lines 11 through
20. In lines 21 through 30, the elements needed to calculate the norm of the error in the first
iteration are computed. Solving this set of equations with Polymath yields the results of the first
iteration of the Jacobi method. P

age 12.1023.5

Polymath 6.1 can be used to export the problem definition to Excel with a single key-press. A
slight modification of the Polymath exported problem enables carrying out additional iterations
just by copying the column which contains the formulas for calculating Ti,j and erri,j and pasting
them into additional columns as shown in Table 8. Note that every column represents one
iteration.

Solution of the problem using the Gauss-Seidel method the equations is shown in the third
column of Table 7. Observe that the only difference between the Jacobi and the Gauss-Seidel
methods is that the newly calculated unknown values are immediately being used in the former
method. For example, the calculation of T22 (in line 2) the Jacobi method uses T12i while the
Gauss-Seidel method uses T12 which was calculated in the previous line. The equations of the
Gauss-Seidel method can be exported to Excel similarly to what was done for the equations of
the Jacobi method. The iterations can be carried out and the results compared in one worksheet.

In this case, the equations shown in Table 7 are prepared in advance. The export to Excel,
rearrangement and extension of the worksheet along with the iterative solution are carried out as
a live demonstration.

Example 3 – Ill-Conditioning in Multiple Linear Regression – Detection and Harmful

Effects

Regression Model for Heat of Cement Hardening

Woods et al.

[7] investigated the integral heat of hardening of cement as a function of
composition. Some of the reported results are shown in Table 9. The independent variables
represent weight percent of the clinker compounds: x1 - tricalcium aluminate (3CaO ·Al2O3), x2 -
tricalcium silicate (3CaO ·SiO2), x3 - tetracalcium alumino-ferrite (4CaO·Al2O3·Fe2O3), and x4 -
β-dicalcium silicate (3CaO ·SiO2). The dependent variable y is the total heat evolved (in calories
per gram cement) in a 180-day period. Two multiple linear regression models, one with zero y
intercept (no free parameter) and one with non-zero intercept, are to be compared.

The regression model for this problem is

4433221100
ˆˆˆˆˆ xxxxxy βββββ ++++= (9)

where 43210
ˆˆ,ˆ,ˆ,ˆ βββββ and are the model parameter estimates and x0 is a vector whose

components are unity (included in the model only in case of non-zero y intercept).

The model parameter estimates can be calculated using the least squares method by solving the
"normal" equation

() yXβXX TT =ˆ (10)

where A = XT
X is the normal matrix, X = [x0 x1 x2 x3 x4] and T]ˆˆˆˆˆ[ˆ

43210 βββββ=β .

The indicators (see, for example, Shacham et al. [6]) that can be used to check the
appropriateness, accuracy and stability (conditioning) of the model are the residual plots,

P
age 12.1023.6

variances, linear correlation coefficients, confidence intervals in addition to the eigenvalues and
condition numbers of the normal matrices. The harmful effects of ill-conditioning can be
demonstrated by carrying out the regression after removing a data point.

In this section the data and the problem definition are prepared in advance while the equations
are developed in a live demonstration.

Analysis of the Two Regression Models

The parameters of the various models and the quality of fit indicators can be calculated with
Polymath and MATLAB in a live demonstration. Partial results of this analysis are presented in
Figure 2 and Table 10. The random distribution of the residuals in Figure 2 shows that the linear
model represents the data adequately. However, the results in Table 10 show that the regression
model with the non-zero intercept is very unstable (ill-conditioned). The instability is reflected in
the values of the 95% confidence intervals all of which are larger than the respective parameter
values and the seven order of magnitude difference between the maximal and minimal
eigevalues of the normal matrix (condition number =3.64e7). In contrast, the zero-intercept
model is stable with much smaller values of the confidence intervals and the condition number.

The harmful effects of the instability can be demonstrated by carrying out the regression when
the last data point is removed from the set. In this case the parameter values obtained for the non-

zero intercept model are: 12.0ˆ328.0ˆ;80.0ˆ;78.1ˆ;2.36ˆ
43210 ===== βββββ and . These values

are completely different than the parameter values in Table 10. For the case of 4β̂ , even the sign
is different. The results for the zero intercept model match the results of Table 10 up to two
decimal digits.

Conclusions

A new approach for incorporating the computer in classroom teaching has been demonstrated. In
the courses where this approach has been implemented the following educational benefits have
been observed:

• The use of real-life problems for demonstration increases considerably the student
motivation to study mathematical modeling and numerical methods as they understand
better the need for learning these subjects.

• The development of the key algorithms and equations on the chalkboard (or the tablet
PC) enables more extensive clarification of unclear points and gives the student more
time to absorb and understand the new material.

• Students are very impressed with the live demonstrations that include solution of
complex problems with a few key-presses using the various software packages. The
conversion of a complex algorithm to a working program and the presentation of
graphical and tabular results in a few minutes seems "amazing" to many of them.
Consequently, their interest in the course and their appreciation of the instructor's
expertise increase considerably.

• The proposed approach helped to retain or bring back the students to the classroom, and it
provides many educational benefits in addition to avoiding "death by PowerPoint".

P
age 12.1023.7

 Bibliography

1. Cutlip, M. B. and M. Shacham, Problem Solving in Chemical and Biochemical Engineering with Polymath,

Excel and MATLAB, 2nd Ed, Prentice-Hall, Upper Saddle River, New-Jersey (2007)
2. Dahlquist, G., Björck, Å., and Anderson, N., Numerical Methods, Prentice-Hall, Englewood Cliffs, New-

Jersey (1974)
3. Felder, R. M. and Brent, R., "Death by PowerPoint", Chemical Engineering Education, 39 (1), 28-29

(2005)
4. Geankoplis, C. J., Transport Processes and Separation Process Principles, 4th Ed, Prentice-Hall, Upper

Saddle River, New-Jersey (2003)
5. Press, W. H., Flannery, B. F., Teukolsky, S. A., & Vetterling, W. T., Numerical Recipes in FORTRAN: The

Art of Scientific Computing , 2nd Ed, Cambridge University Press, Cambridge [England] (1992)
6. Shacham, M., N. Brauner and M. B. Cutlip, "Replacing the Graph Paper by Interactive Software in

Modeling and Analysis of Experimental Data", Comput. Appl. Eng. Educ.,4(3), 241-251(1996)
7. Woods, H., Steinour, H. H. and H.R. Starke, "Effect of Composition of Portland Cement on Heat Evolved

during Hardening", Ind. Eng. Chem., 24(11), 1207 (1932)

P
age 12.1023.8

Table 1. Polymath Input File for the Multi-Component Diffusion Problem

Line Equation # Comment

1 d(CA)/d(z) = (xA * NB - xB * NA) / DAB + (xA * NC - xC * NA) / DAC # Concentration of A (g-mol/L)
2 d(CB)/d(z) = (xB * NA - xA * NB) / DAB + (xB * NC - xC * NB) / DBC # Concentration of B (g-mol/L)
3 d(CC)/d(z) = (xC * NA - xA * NC) / DAC + (xC * NB - xB * NC) / DBC # Concentration of C (g-mol/L)
4 NB = -0.0003363 # Molal flux of component B (kg-mol/m^2*s)
5 NA = 2.396e-5 # Molal flux of component A (kg-mol/m^2*s)
6 DAB = 1.47e-4 # Diffusivity of A through B (m^2/s)
7 NC = 0 # Molal flux of stagnant component C (kg-mol/m^2*s)
8 DAC = 1.075e-4# Diffusivity of A through C (m^2/s)
9 DBC = 1.245e-4 # Diffusivity of B through C (m^2/s)

10 CT = 0.2 / (82.057e-3 * 328) # Gas concentration g-mol/L
11 xA = CA / CT # Mole fraction of A
12 xB = CB / CT # Mole fraction of B
13 xC = CC / CT # Mole fraction of C
14 z(0) = 0 # Length coordinate at point 1
15 CB(0) = 0 # Concentration of B at point 1
16 CA(0) = 0.0002229 # Concentration of A at point 1
17 CC(0) = 0.007208 # Concentration of C at point 1
18 z(f) = 0.001 # Length coordinate at point 2 where at solution CA2 = 0 and CB2 = 0.002701

Table 2. Concentration Values Obtained Using the Estimates: NA = -2.396× 10-5
and NB = -3.363× 10-4

Variable Initial value Minimal value Maximal value Final value

z 0 0 0.001 0.001
CA 0.0002229 -1.69E-05 0.0002229 -1.69E-05
CB 0 0 0.002284 0.002284
CC 0.007208 0.0051638 0.007208 0.0051638

Table 3. MATLAB Function for the Multi-Component Diffusion Problem.

Line Equation % Comment

1 function dYfuncvecdz = ODEfun(z,Yfuncvec);
2 CA = Yfuncvec(1);
3 CB = Yfuncvec(2);
4 CC = Yfuncvec(3);
5 NB = -.0003363; % Molal flux of component B (kg-mol/m^2*s)
6 NA = .00002396; % Molal flux of component A (kg-mol/m^2*s)
7 DAB = .000147; % Diffusivity of A through B (m^2/s)
8 NC = 0; % Molal flux of stagnant component A (kg-mol/m^2*s)
9 DAC = .0001075; % Diffusivity of A through C (m^2/s)

10 DBC = .0001245; % Diffusivity of B through C (m^2/s)
11 CT = .2 / (.082057 * 328);% Gas concentration g-mol/L
12 xA = CA / CT; % Mole fraction of A
13 xB = CB / CT; % Mole fraction of B
14 xC = CC / CT; % Mole fraction of C
15 dCAdz = (xA * NB - (xB * NA)) / DAB + (xA * NC - (xC * NA)) / DAC; % Concentration of A (g-mol/L)
16 dCBdz = (xB * NA - (xA * NB)) / DAB + (xB * NC - (xC * NB)) / DBC; % Concentration of B (g-mol/L)
17 dCCdz = (xC * NA - (xA * NC)) / DAC + (xC * NB - (xB * NC)) / DBC; % Concentration of C (g-mol/L)
18 dYfuncvecdz = [dCAdz; dCBdz; dCCdz];

P
age 12.1023.9

Table 4. MATLAB "Main Program" for the Multi-Component Diffusion Problem

Line Command % Comment

1 function MultDiffusB

2 clear, clc, format short g, format compact
3 tspan = [0 0.001]; % Range for the independent variable

4 y0 = [0.0002229; 0; 0.007208]; % Initial values for the dependent variables function

5 disp(' Variable values at the initial point ');
6 disp([' t = ' num2str(tspan(1))]);
7 disp(' y dy/dt ');
8 disp([y0 ODEfun(tspan(1),y0)]);
9 [t,y]=ode45(@ODEfun,tspan,y0);

10 for i=1:size(y,2)
11 disp([' Solution for dependent variable y' int2str(i)]);
12 disp([' t y' int2str(i)]);
13 disp([t y(:,i)]);
14 plot(t,y(:,i));
15 title([' Plot of dependent variable y' int2str(i)]);
16 xlabel(' Independent variable (t)');
17 ylabel([' Dependent variable y' int2str(i)]);
18 pause
19 end

Table 5. MATLAB Implementation of the NR Method for the Multi-Component Diffusion
Problem

Line Command

1 NAB(:,1)=[2.396e-5; 3.363e-4];
2 disp([y0 ODEfun(tspan(1),y0,NAB(1,1),NAB(2,1))]);
3 err=1;
4 it=0;
5 while (err>1e-10) & (it<20)
6 it=it+1;
7 itno(it)=it;
8 [t,y]=ode45(@ODEfun,tspan,y0,[],NAB(1,it),NAB(2,it));
9 f(:,it)=[y(end,1); y(end,2)-2.701e-3];

10 err=sqrt(f(:,it)'*f(:,it));
11 for j=1:2
12 delj=abs(NAB(j,it))*0.01;
13 NAB(j,it)=NAB(j,it)+delj;
14 [t,yp]=ode45(@ODEfun,tspan,y0,[],NAB(1,it),NAB(2,it));
15 fp=[yp(end,1); yp(end,2)-2.701e-3];
16 for k=1:2
17 DF(k,j)=(fp(k)-f(k,it))/delj;
18 end
19 NAB(j,it)=NAB(j,it)-delj;
20 end
21 NAB(:,it+1)=NAB(:,it)-inv(DF)*f(:,it);
22 end
23 disp(' Iter. No. NA NB f1 f2 ');
24 disp([itno' NAB(1,1:it)' NAB(2,1:it)' f(1,:)' f(2,:)']);

P
age 12.1023.10

Table 6. Shooting Method Iterations for NA and NB

Iter. No. NA NB f1 f2

0 2.3960E-05 3.3630E-04 3.35E-05 -5.99E-03
1 2.2076E-05 -1.7614E-04 7.53E-06 -1.40E-03
2 2.1252E-05 -3.8575E-04 8.52E-07 -1.49E-04
3 2.1150E-05 -4.1375E-04 1.77E-08 -2.56E-06
4 2.1149E-05 -4.1424E-04 7.05E-11 -6.41E-09
5 2.1149E-05 -4.1425E-04 1.67E-13 -1.43E-11

Table 7. Polymath Inputs for Carrying Out the First Jacobi and Gauss-Seidel Iterations for the
Steady State Heat Conduction Problem

Line Jacobi Gauss-Seidel

1 T12 = (300 + T22i + 600 + T22i) / 4 T12 = (300 + T22i + 600 + T22i) / 4
2 T22 = (300 + T12i + 600 + T32i) / 4 T22 = (300 + T12 + 600 + T32i) / 4
3 T32 = (300 + T22i + T33i + T42i) / 4 T32 = (300 + T22 + T33i + T42i) / 4
4 T42 = (300 + T32i + T43i + 300) / 4 T42 = (300 + T32 + T43i + 300) / 4
5 T33 = (T32i + 600 + T34i + T43) / 4 T33 = (T32 + 600 + T34i + T43i) / 4
6 T43 = (T42i + T33i + T44i + 300) / 4 T43 = (T42 + T33 + T44i + 300) / 4
7 T34 = (T33i + 600 + T35i + T44i) / 4 T34 = (T33 + 600 + T35i + T44i) / 4
8 T44 = (T43i + T34i + T45i + 300) / 4 T44 = (T43 + T34 + T45i + 300) / 4
9 T35 = (T34i + 600 + T34i + T45i) / 4 T35 = (T34 + 600 + T34 + T45i) / 4

10 T45 = (T44i + T35 + T44i + 300) / 4 T45 = (T44 + T35 + T44 + 300) / 4
11 T12i = 450 T12i = 450
12 T22i = 400 T22i = 400
13 T32i = 400 T32i = 400
14 T42i = 325 T42i = 325
15 T33i = 400 T33i = 400
16 T43i = 350 T43i = 350
17 T34i = 450 T34i = 450
18 T44i = 375 T44i = 375
19 T35i = 500 T35i = 500
20 T45i = 400 T45i = 400
21 err12=(T12-T12i)^2 err12=(T12-T12i)^2
22 err22=(T22-T22i)^2 err22=(T22-T22i)^2
23 err32=(T32-T32i)^2 err32=(T32-T32i)^2
24 err42=(T42-T42i)^2 err42=(T42-T42i)^2
25 err33=(T33-T33i)^2 err33=(T33-T33i)^2
26 err43=(T43-T43i)^2 err43=(T43-T43i)^2
27 err34=(T34-T34i)^2 err34=(T34-T34i)^2
28 err44=(T44-T44i)^2 err44=(T44-T44i)^2
29 err35=(T35-T35i)^2 err35=(T35-T35i)^2
30 err45=(T45-T45i)^2 err45=(T45-T45i)^2

P
age 12.1023.11

Table 8. Jacobi Method Iterations for the Steady State Heat Conduction Problem

Iter. No. 0 1 2 3 4 5

T12 450 425 443.75 435.1563 440.625 438.5986
T22 400 437.5 420.3125 431.25 427.1973 430.3192
T32 400 356.25 381.25 373.6328 380.6519 378.8734
T42 325 337.5 326.5625 336.7188 333.9844 337.1704
T33 400 450 447.6563 454.6387 454.3121 456.8563
T43 350 350 365.625 362.3047 368.0298 367.1471
T34 450 468.75 475 475.5859 479.6265 479.554
T44 375 375 375 380.7617 380.2917 383.485
T35 500 475 479.6875 483.1055 483.6121 486.3842
T45 400 381.25 382.4219 383.2764 386.2839 386.7419

err12 625 351.5625 73.85254 29.90723 4.106164
err22 1406.25 295.4102 119.6289 16.42466 9.746561
err32 1914.063 625 58.02155 49.26696 3.162749
err42 156.25 119.6289 103.1494 7.476807 10.15082
err33 2500 5.493164 48.75422 0.106627 6.473016
err43 0 244.1406 11.02448 32.77674 0.779196
err34 351.5625 39.0625 0.343323 16.32586 0.005253
err44 0 0 33.1974 0.220872 10.19706
err35 625 21.97266 11.68251 0.256635 7.684763
err45 351.5625 1.373291 0.730157 9.0451 0.20981

||xk-xk-1|| 89.04879 41.27522 21.45657 12.72036 7.24675

Table 9. Data for the Multiple Linear Regression Example (Woods et al.1 above 7])

No. x1 x2 x3 x4 y

1 7 26 6 60 78.7
2 1 29 15 52 74.3
3 11 56 8 20 104.3
4 11 31 8 47 87.6
5 7 52 6 33 95.9

6 11 55 9 22 109.2
7 3 71 17 6 102.7
8 1 31 22 44 72.5
9 2 54 18 22 93.1

10 21 47 4 26 115.9
11 1 40 23 34 83.8
12 11 66 9 12 113.3
13 10 68 8 12 109.4

P
age 12.1023.12

Table 10. Results of the Multiple Linear Regression Example

 Non-zero Intercept Zero Intercept

Variable Value 95% confidence Value 95% confidence

0β̂ 60.899 161.62 - -

1β̂ 1.563 1.72 2.189 0.42

2β̂ 0.527 1.67 1.154 0.11

3β̂ 0.113 1.74 0.753 0.36

4β̂ -0.127 1.64 0.489 0.09

R2 0.98 0.98

Variance 5.99 5.82
Max. eigenvalue 40402.00 40402.00
Min. eigenvalue 0.0011 101.35
Condition number 3.64E+07 398.64

P
age 12.1023.13

Figure 1 - Cross section of hollow chamber with square grid pattern for Example 2 (from
Geankoplis[4])

-5

-4

-3

-2

-1

0

1

2

3

4

70 80 90 100 110 120

Heat of Hardening

R
e
s
id

u
a
l

Figure 2 - Residual Plot for the "Heat of Hardening" Example 3

P
age 12.1023.14

