
1

Using a Free Open Source Software to Teach
Mathematics

FRANCISCO BOTANA,1 MIGUEL A. ABÁNADES,2 and JESÚS ESCRIBANO.3

1 Departamento de Matemática Aplicada I, Universidad de Vigo, Campus A Xunqueira,
36005 Pontevedra, Spain

2 CES Felipe II, Universidad Complutense de Madrid, 28300 Aranjuez, Spain

3 Facultad de Informática, Universidad Complutense de Madrid, 28040 Madrid, Spain

ABSTRACT: We present the experience of the authors teaching mathematics to
freshmen engineering students with the help of the open source computer algebra
system Sage. We describe some teaching resources and present an ad hoc distribution of
Sage used by the authors.

Keywords: Computer Algebra Systems, Open Source, Sage

1. INTRODUCTION

A computer algebra system (CAS) is a math computer program capable of working
symbolically as well as numerically. It does on a computer the manipulation that has
traditionally been done with pencil and paper. For instance, it immediately process
computational tasks such as obtaining derivatives, integrals or graphs of one and several
variable functions. Early CAS, such as MACSYMA and REDUCE, required
considerable computer power and had a complex syntax. However, hardware and
software advances over recent years completely changed this situation. Modern
programs have progressed enormously beyond simply being manipulators of
complicated symbolic strings and are now complete mathematical environments with
algebraic, numerical, graphical and programming facilities.

CAS can have a significant impact on the way mathematics is taught and applied [1, 2,
3]. In fact, they have already become an important tool for many engineering and
technical professionals. There is hence a growing need to incorporate the use of CAS
into the education of all kinds of engineers [4].

This process is being delayed by software accessibility problems, for teachers and
students, due to the commercial character of the main available CAS. It is our belief that
an effective implementation of the use of CAS in math education will be enhanced
through the use of open source systems. This is particularly important in emerging
countries where most pressing needs within and outside the education system, make it
unthinkable to devote significant parts of the budget for mathematical software. Even in
the developed world, current and likely future education budget constraints make it
doubtful that some universities will be able to continue the payment of some software
licenses.

2

In this paper, we show how one can use an open source CAS to create teaching
scenarios similar to those developed by other authors using alternative systems (e.g. [5,
6, 7, 8, 9, 10]).

Open source software development, with its philosophy resembling a bazaar of different
agendas and approaches, was thought at the beginning to be only good for small
applications. Its success, clearly exemplified by the magnitude of the operating system
GNU/Linux, came as a surprise to even the most optimistic programmers, who thought
that big applications would always need a reverent cathedral building approach [11].
Nowadays, open source applications have impacted all computing areas and are no
longer considered marginal.

If we take open as a synonym for accessible, we cannot find fields where this concept is
more relevant than education, where universal access should be the leading principle,
and mathematics, where public scrutiny is at its very core. In this paper we give notice
of a relatively new free open source CAS illustrating its use in education.

In a research context, the closed nature of commercial CAS, whose code is not generally
available for examination, raises reliability concerns. In a higher educational context,
trusting the software is not so much the issue as it is teaching mathematics upon the
same foundations as mathematics is built upon: openness.

The selected system, Sage [12], is an open source general purpose CAS whose
philosophical foundation can be summarized as applying the system of open exchange
and peer review characteristic of scientific discourse to the development of
mathematical software.

2. SOME FEATURES OF SAGE

Sage was initiated in 2004 by William Stein (http://wstein.org) as a project to develop a
free open source CAS that any teacher, researcher or student could use freely (in a wide
sense, including access to the code) and, at the same time, a CAS scientifically rigorous,
in the sense that all the algorithms and methods could be checked and improved by
anyone. Sage is in constant development. What started as an interface connecting some
already existing open source applications (Maxima, Singular, GNUplot,…), after
developing a substantial amount of code specifically for Sage (by more than 180
developers) has become a core library bundling the functionality of the different
components into one consistent experience [13]. At the moment, besides the main
system, there exist around 100 packages used in Sage [14].

In its web page http://sagemath.org, one can read that the mission of Sage is “Creating a
viable free open source alternative to Magma, Maple, Mathematica and Matlab”. Is
Sage performance similar to that of other standard CAS? This is a difficult question to
answer. All these systems are huge applications, with hundreds of commands and
modules, and, depending on what you are interested in, the performance of each system
can be different. A general technical study comparing the different CAS is a work to be
done, but it is out of the scope of this paper. However, we can mention that some
studies have been done, mainly in number theory, determining that Sage is really fast
performing some difficult calculations [15, 16].

3

Another main characteristic of Sage is the use of Python as base language. Python is an
object oriented language, easy to learn and widely used. Most CAS provide their own
programming language, while Sage developers have chosen an existing one. Hence, a
user that learns how to use Sage, will also be learning this quite popular scripting
language. And, if you already know Python, learning basic Sage programming will be
an easy process. Of course, to learn mathematics is not necessary to know Python. But,
for a student, to have a rigorous mathematical education together with programming
skills in a widely used language such as Python is very important in order to obtain a
solid professional career.

Sage has a command line interface, but the easiest way to interact with Sage is through
its graphical interface: notebook. Once you launch the “notebook()” command, you can
access the graphical interface using any standard web browser. In fact, you can use Sage
like a web server, locally or, with a simple configuration, like a remote web server. This
is very useful to access your work from any place or to share your work with, for
example, students. If you do not want to install your own Sage server, you can use a
public one, like http://www.sagenb.org, where you can try Sage without installing
anything. All your work is saved in what is called a “Sage worksheet”.

Installing Sage is easy, but we must consider some details. As mentioned before, we can
install Sage locally or we can use a Sage server. Sage installation on GNU/Linux, Unix
or Mac is immediate. To work with Sage in a Windows system one has to install a
virtual machine like VirtualBox. It must be highlighted that the company Microsoft is
funding the Sage-Windows portability [17]. But the simplest (for a student oriented use)
way to use Sage is through a Sage server: just connect to a server and use it!

Despite the large number of users, the www.sagenb.org server shows a surprisingly high
connection speed. This makes it completely reliable as the main tool during a lab class
session, for instance. And there are other servers available for public use as well [18],
but if a generalized use of Sage is going to be done in a class or institution, we
recommend to install and configure your own Sage server to have absolute control over
the system.

From its original design, it is easy to integrate external modules or applications in a
Sage worksheet. Since a worksheet is basically a web page you can integrate, for
example, a Java applet. This allows the use of external resources written in Java. For
example, you can launch the dynamic geometry software GeoGebra [19] within your
Sage worksheet. Sage has also specific interfaces to interact with well known
applications, like TeX/LaTeX, Singular,… even with commercial CAS like
Mathematica, Maple or Matlab [20]. Hence, if you have been working with these CAS
for a long time, and you have written materials in these formats, the transition to Sage
using these interfaces is an easy task. For instance, suppose you have written a long
algorithm, MyLimit, in Mathematica for computing, say, the limit of a scalar field. This
code can be reused from inside Sage if you have Mathematica in your computer. Or, if
you do not remember how to factorize in an algebraic extension with Sage, you can use
Mathematica as shown by the following computation

mathematica('Factor[35x^2-y^2-210x+315,Extension->Sqrt[35]]')

-((105-35*x+Sqrt[35]*y)*(-105+35*x+Sqrt[35]*y))/35

4

3. TEACHING APPLICATIONS

The following are some teaching applications of Sage illustrating some of the different
characteristics pointed out above.

3.1. Sage as an all-purpose Toolbox for Advanced Calculus

The use of CAS in engineering education has not resulted (yet) in the revolution that
some predicted in the early 1980’s (see [21]). Being CAS ultimately symbolic
calculators, an impact of their use in university level education similar to that of hand-
held calculators in high schools was expected. Lack of wide access of students to CAS
has been pointed out as one of the main reasons for this not being the case [22]. The
open source and web based nature of Sage can help solve the accessibility problem.

In this section we focus on the use of Sage as an advanced calculator with some
illustrative examples developed under the leading idea that interactive learning allows
students to discover the principles by themselves, making technology an efficient
learning resource. The use of real-world technologies during their learning process is
also a perfect mean to acquire the technical attitudes and skills required to tackle a
problem successfully, so important later in a professional career.

Much like standard hand-held calculators, the use of CAS allows to free students from
tedious routine computations by hand. This opens the door for a deeper learning
process in which the emphasis is put on mathematical content. Instead of practicing
artificially complex integration techniques on the few trivial examples that work, it is
possible to further explore the meaning of integration and its numerical approximation.
And the same applies for much of the standard calculus and algebra curricula. Students
can be invited to interactively experiment with more realistic problems, problems whose
solution is not unique and given by one exact formula. In summary, students learn what
real Mathematics are about.

These ideas have been traditionally followed (when followed) as a separate part of a
math course: in special sessions in separate labs and in special days of the semester.
Now that the use of portable devices (netbooks, tablets, smartphones,…) by the students
is generalized, the internet accessible Sage notebook makes it possible to really
incorporate its use as part of any math class. Although there are efficient online tools
that can be used as symbolic calculators (Wolfram|Alpha, for instance), the notebook
applications can be tailored to specific learning needs for students and interests of
teachers.

In Sage, it is easy to develop interactive templates for particular exercises using the
interact command. We call these templates interacts (see [23] for a list of them). This
makes the use of Sage more friendly, something that is important especially to first year
college students. The authors have developed a live DVD of Sage that has been
distributed to first year students of the forestry engineering school of the University of
Vigo, Spain. This distribution includes thirty Sage interacts that have been used as
complementary material in a course covering the standard calculus sequence for
engineering students.

5

In this course, students are invited to bring their laptops to class from day one. They are
provided with a copy of the live DVD (or USB live for those who do not have the
appropriate reader). Students who use Windows (95% in the two semesters that this
distribution has been used) are invited to install a partition on their hard drive for better
performance. Those who have no computer in the classroom are offered an account for
a Sage server with restricted access, where all teaching material is available for use
outside the classroom. We have observed that about half of the students usually take
their laptops to classroom, and they have no problem sharing them with other students.
This way, digitally skilled students help the less-skilled ones and the learning of the user
interface is very fast.

Students use the interacts to solve the proposed assignments (which can be handed back
as Sage worksheets), and in general, as a symbolic calculator to solve problems. We
found no noteworthy problems regarding the effective use of the interacts, beyond
system installation problems on older computers and the initial need for learning some
basic syntactic rules.

As noted above, using these interacts students save time by avoiding tedious and
uninteresting mechanical computations, as reported by most students. The student can
hence concentrate on concepts rather than on computational skills as recommended by
some authors [24].

These Sage interactive worksheets are the Sage equivalent to some webMathematica
interactive resources used by the authors in previous years. The migration to Sage was
in part forced by budgetary limitations. All the material (in Galician, a co-official
language in Spain) relative to these resources is freely available at [25].

In Figure 1 an interact that provides the graph of a gradient vector field is shown. It is
worth mention that this 3D graph can be interactively rotated.

Fig. 1: Gradient field of a multivariate function.

Let us emphasize that Sage, when using the interacts or as a web application, lets the
user access its code, allowing its modification and personalization. We consider this
non-authoritarian learning experience one of the main advantages of Sage versus other
systems.

6

3.2. Sage as an Efficient Symbolic Complement for Applets

In this section we sketch one important feature of the Sage notebook: the easy
integration of applets in Sage worksheets. We illustrate this useful characteristic with
two examples dealing both with classical Calculus topics, namely Lagrange multipliers
and vector fields.

In the first example we put together in a Sage worksheet an applet that numerically
computes extrema of a function and a Sage interact providing the exact computation
following the symbolic approach.

In [26] an applet for approximate computing of Lagrange multipliers for functions of
two variables is offered. Reading the text form of the web page we can find the URL of
each applet file and then use it embedded in the worksheet, simply by using the
following html code:

html(’<applet code="LagrangeMultipliersTwoVariables" archive="http:
//ocw.mit.edu/ans7870/18/18.02/f07/tools/lagrangeMultipliersTwoVari
ables.jar, http://ocw.mit.edu/ans7870/18/18.02/f07/tools/mk_lib.jar
, http://ocw.mit.edu/ans7870/18/18.02/f07/tools/parser_math.jar, ht
tp://ocw.mit.edu/ans7870/18/18.02/f07/tools/jcbwt363.jar" width=760
height=450></applet>’)

Adding a simple code for the symbolic computation of the extrema candidates, the
worksheet (Figure 2) facilitates both an interactive graphic and an interactive symbolic
approach to learning about this topic. Nevertheless, again, the mathematical code behind
the symbolic part remains accessible for examination or modification.

Fig. 2: Lagrange worksheet showing the applet and part of the symbolic solutions.

The interested reader can download the worksheet, called “Lagrange-multipliers-applet-
interact”, developed by the authors, in [27], and experiment with it. Note that although
the applet is fully functional, a user must be logged in to obtain a symbolic result.

7

While the applet in the example above provides a nice illustration to accompany the
Sage interact that symbolically computes the extrema of a function, there is no direct
communication between the applet and the Sage interact. In the second example, we
show how in some situations, Sage and the applet can share information, allowing for
further applications.

In Figure 3 a Sage interact with a geometric applet is shown. The three functions
entered in the interact automatically define the curve and the vector field shown in the
applet. The applet, generated by Cinderella [28], shows the animated vector field, its
value f for the draggable point A and the tangent vector to the curve at the point A (when
A is on the curve).

Fig. 3: Sage interact with a Cinderella applet.

This interact is more a proof-of-concept than a finished teaching resource. Our aim here
is to illustrate the connection possibilities between the Sage notebook and a well
established interactive geometry program. The interested reader can download the
worksheet, called “Cinderella Interact”, in [29].

3.3. Sage as a Dynamic Geometric Experimentation Environment

The name of Dynamic Geometry Systems (DGS) is given to the family of computer
applications that allow exact on-screen drawing of (generally) planar geometric
diagrams and their interactive manipulation by mouse dragging certain basic elements.
Besides Cinderella, special mention deserves the system GeoGebra, whose open source
model and effective community development has resulted in a spectacular worldwide
distribution that basically makes it a de facto standard in the field.

Although most DGS come equipped with some property checker, their numeric nature
makes the answers unreliable. The idea behind this example is the interconnection of
Sage and GeoGebra to compensate the computational limitations of the latter.

The prototype presented here consists of a Sage worksheet in which two different tasks
are performed over GeoGebra constructions. More precisely, automatic deduction
techniques based on Groebner bases are used to either compute the equation of a
geometric locus in the case of a locus construction or to determine the truth of a general
geometric statement included in the GeoGebra construction as a Boolean variable. The
Sage worksheet includes a GeoGebra applet that allows the direct construction of a

8

diagram or the upload of a local previously designed GeoGebra construction. Let us
remark that both tasks are performed symbolically, providing certified answers.

Its main technical characteristic, and the one that makes the user experience completely
automatic, is the intensive use of JavaScript to allow the direct communication between
Sage and the GeoGebra applet. This has made possible to circumvent the
question/answer nature of Sage to generate what amounts to a one-click add-on for
GeoGebra.

We illustrate the possible teaching scenarios based on this system with two examples:
the proof of a basic theorem in the form of a GeoGebra construction with a Boolean
variable and the computation of the equation of a classical locus. In both cases the idea
is to complete the sequence construct-experiment-conjecture with a completely reliable
answer. The use of tools like the one presented here also helps an inexperienced student
understand the difference in reliability between a numerical computation and a symbolic
answer based on deep algebraic structures.

We consider the basic theorem that states that the three altitudes of a triangle meet in
one point, its orthocenter. GeoGebra can check that the altitudes have a single common
point, as illustrated in Figure 4. This result can be easily reproduced in terms of a
boolean variable in a GeoGebra construction. Given triangle ABC, it suffices to consider
the intersection point P of the altitudes a and b (through vertices A and B respectively).
The Boolean statement encompassing the theorem is “line(C,P) perpendicular
line(A,B)?”. The answer (true) provided by GeoGebra, based on numerical
computations, is symbolically corroborated by Sage when returning “The GeoGebra
statement is generally True”.

Fig. 4: Numerically checked answer provided by GeoGebra.

Notice that, unlike the answer provided by GeoGebra, the answer provided by Sage is
completely general. Symbolic variables are internally used as generic coordinates for
the three vertices, what makes the answer a general statement about any generic
triangle.

In the second example we consider the construction of the classical conchoid of
Nichomedes. In Figure 5 (up) we can see how GeoGebra plots only part of the curve in
some instances.

9

Fig. 5: Locus graph provided by GeoGebra (up) and graph completed by Sage (down).

Apart from the incomplete GeoGebra graph, the found conchoid is just a graphic object,
while Sage computes its exact algebraic description, the quartic

2 2 2 4 2 2 3625 625 625 1250 3750 3750

27500 11634 3750 10286 339 0

x y x y x y xy y

xy y x y

which is injected in the GeoGebra applet as shown in Figure 5 (down).

These examples show again how the easy integration of Java applets in Sage make it a
suitable symbolic companion for any DGS that allows exporting constructions as
applets, as it is the case with most systems.

The interested reader can download the worksheet, called “GeoGebra-locus-proof”,
developed by the authors, in [30], and experiment with it once logged in to the server.

3.4. Sage as a Remote Math Server. The Flexible Ladder Problem

In sections 3.2 and 3.3 above, it was shown how one can enrich a Sage worksheet by
inserting Java applets. In particular, in section 3.3 a GeoGebra applet was used to solve
automatic deduction tasks. Now we show how one can somehow reverse that approach
and bring Sage to the applet instead of the applet to Sage. More precisely, we show one
example of web-based teaching resource in which a GeoGebra applet is complemented
with access to Sage, allowing the automatic solving of involved geometric problems not
possible in standard dynamic geometry systems. The resource offers the general
framework for a particular geometric question in which the main element can be
changed by the user. For this reason, we refer to it as a template. It is worth mentioning
that the development of this template, besides access to a Sage server, only requires
basic knowledge of JavaScript and HTML.

In the sliding ladder problem the student is asked to find the shape of the curve
described by a point of a ladder when sliding to the floor from its position leaning
against a vertical wall [31]. The template considers a recent generalization of this
problem in which the ladder is allowed to have variable length [32]. The template
proposes the problem of finding the envelope of the family of lines determined by the
different positions of a flexible ladder defined by the segment joining the origin and a
point in the graph of a general function.

10

More precisely, besides a GeoGebra applet in which the flexible sliding ladder is
constructed, the template includes a text area and three text fields accompanied by
instructions. Although we can retrieve and show in a text area the information provided
by the remote Sage server, for security reasons we cannot have direct access to these
data from the web page.

The three text fields are used to “talk” with Sage and the applet. First there is a technical
field in which the user has to paste the Sage session number as provided in the text area.
This is necessary for subsequent requests to the server. In the second text field, the user
has to indicate the function describing the flexible ladder. Once this is done, the user
just has to press a button for Sage to provide the equation of the sought envelope in the
text area. Once the equation is shown in the text area, a process that takes a few
seconds, one finally has to copy/paste it in the last text field for its graph to be displayed
in the GeoGebra applet.

Behind all this seemingly simple process there are of course involved computations
remotely performed by Sage (Singular in particular).

As an example, the envelope for the family of lines (in Figure 6, left) determined by the

function 3 21 3 1 5f x x x is given by the following equation of degree 6:

6 5 4 2 3 3 5 4 3 2 2 3 4135 432 72 4 1620 3942 666 36 7290

3 2 2 3 4 3 2 2 313176 5031 594 27 14310 15606 2646 216

2 29315 378 486 2430 432 135 0

x x y x y x y x x y x y x y x

x y x y xy y x x y xy y

x xy y x y

whose graph is shown in Figure 6 (right) together with the graph defining the flexible
ladder.

Fig. 6: Family of lines determined by a flexible sliding ladder (left) and its envelope
(right).

The key point of this example is to show how it is possible to make available the
computational capabilities of Sage to a GeoGebra applet within a simple web page. This
is done interacting with a Sage session over HTTP through what is known as a simple
Sage server. Notice that this allows a teacher to emulate this template without the effort
of maintaining a Sage server by remotely using a Sage server; ideally one provided by
his/her educational institution. The interested reader can access this template, developed
by the authors, in [33] and experiment with it.

11

3.5. Sage as a Platform to Share

As illustrated by the examples above, one can create a wide variety of teaching
applications using Sage. However, creating a meaningful worksheet can be time
consuming. This process can be drastically simplified by using one of the hundreds of
public worksheets available at the main server [34]. The worksheets, published and
ranked by the users can be downloaded to be used in their original form or to be
modified to better suit our teaching goals.

Good examples of the many teaching materials that can be obtained from this source are
the worksheets Graphs of Elementary Numerical Integrals [35], radian measure [36]
and Fourier [37].

CONCLUSIONS

CAS will inevitably become as standard a tool for doing mathematics for students and
engineers at universities as the hand-held calculator is today in high schools. Students
will use CAS to solve their mathematical everyday problems and teachers will use the
power of CAS to enrich their lectures with more nontrivial mathematical content.

However the process of introducing CAS in the classroom is being slowed by the lack
of universal access to the software, for students and for teachers. We have shown how
the free open source CAS Sage is a real teaching alternative to proprietary CAS. It
eliminates the accessibility problem while providing state of the art computational
capabilities.

ACKNOWLEDGEMENTS

We thank the referees for all their valuable remarks and suggestions. This work has
been supported by the Spanish MINECO under grants MTM2008-04699-C03-03 and
MTM2011-25816-C02-02.

12

REFERENCES

[1] R. Pierce, R. and K. Stacey, Reflections on the Changing Pedagogical use of
Computer Algebra Systems: Assistance for Doing or Learning Mathematics?, J.
Comput. Math. Sci. Teaching, Vol. 20, No. 2, 2001, pp. 143-161.
[2] C. Hoyles and J. B. Lagrange, Mathematics Education and Technology - Rethinking
the Terrain. The 17th ICMI Study. Springer, New York, 2010.
[3] B. Kramarski and C. Hirsch, Using computer algebra systems in mathematical
classrooms. J. Comput. Assist. Learn., Vol. 19, No. 1, 2003, pp. 35-45.
[4] G. Barozzi and R. R. Clements, The potential uses of computer algebra systems in
the mathematical education of engineers, Int. J. Math. Educ. Sci. Tech., Vol. 18, No. 5,
1987, pp. 681-683.
[5] F. Carneiro, C. P. Leão and F. C. F. Teixeira, Teaching differential equations in
different environments: A first approach, Comput. Appl. Eng. Educ., Vol. 18, No. 3,
2010, pp. 555-562.
[6] G. Jovanovic Dolecek, Interactive MATLAB-based demo program for sum of
independent random variables, Comput. Appl. Eng. Educ, doi: 10.1002/cae.20481.
[7] A. Elkamel, F. H. Bellamine and V. R. Subramanian, Computer facilitated
generalized coordinate transformations of partial differential equations with engineering
applications, Comput. Appl. Eng. Educ., Vol. 19, No. 2, 2011, pp. 365-376.
[8] E. A. Cariaga and M. C. Nualart, Teaching and learning iterative methods for
solving linear systems using symbolic and numeric software, Comput. Appl. Eng. Educ.,
Vol. 10, No. 2, 2002, pp. 51-58.
[9] Y. Jiang and C. Wang, On teaching finite element method in plasticity with
Mathematica, Comput. Appl. Eng. Educ., Vol. 16, No. 3, 2008, pp. 233-242.
[10] J. T. Chen, K. S. Chou and S. K. Kao, 2009, One-dimensional wave animation
using Mathematica, Comput. Appl. Eng. Educ., Vol. 17, No. 3, 2009, pp.323-339.
[11] E. S. Raymond, The Cathedral and the Bazaar, Knowl. Technol. Polic., Vol. 12,
No. 3, 1999, pp. 23-49.
[12] W. Stein and D. Joyner, SAGE: System for algebra and geometry experimentation.
SIGSAM Bull., Vol. 39, No. 2, 2005, pp. 61-64.
[13] Press kit, http://www.sagemath.org/library-press.html (last accessed April 2012)
[14] Sage components, http://www.sagemath.org/links-components.html (last accessed
April 2012).
[15] Sage benchmarks, http://www.sagemath.org/tour-benchmarks.html (last accessed
April 2012).
[16] Sage comparisons, http://wiki.sagemath.org/Comparisons (last accessed April
2012).
[17] The Sage mathematical software project,
http://research.microsoft.com/apps/video/dl.aspx?id=103515 (last accessed April 2012).
[18] Sage notebook, http://wiki.sagemath.org/sagenb (last accessed April 2012).
[19] GeoGebra, http://www.geogebra.org (last accessed April 2012).
[20] Sage interfaces, http://www.sagemath.org/doc/reference/sage/interfaces (last
accessed April 2012).
[21] L. A. Stern, Computer calculus, SIGSAM Bull., Vol. 15, No. 3, 1981, pp. 26-27.
[22] D. Lawson, The challenge of computer algebra to engineering mathematics, Eng.
Sci. Educ. J., Vol. 6, No. 6, 1997, pp. 228-232.
[23] Interact – Sage Wiki, http://wiki.sagemath.org/interact/ (last accessed April 2012).
[24] B. Buchberger, Should Students Learn Integration Rules?, SIGSAM Bull.,Vol. 24,
No. 1, 1990, pp. 10-17.

13

[25] PPW2.0 Prácticas de matemáticas Pola Web, http://webs.uvigo.es/fbotana/ppw20
(last accessed April 2012).
[26] Lagrange multipliers applet,
http://ocw.mit.edu/ans7870/18/18.02/f07/tools/LagrangeMultipliersTwoVariables.html
(last accessed April 2012).
[27] Lagrange multipliers interact, http://alpha.sagenb.org/home/pub/168 (last accessed
April 2012).
[28] J. Richter-Gebert and U. Kortenkamp, The Cinderella.2 Manual. Springer, Berlin,
2012.
[29] Cinderella Interact worksheet, http://alpha.sagenb.org/home/pub/368 (last accessed
April 2012).
[30] GeoGebra locus-proof worksheet, http://alpha.sagenb.org/home/pub/169 (last
accessed April 2012).
[31] Ladder problems, http://www.mathematische-basteleien.de/ladder.htm (last
accessed April 2012).
[32] T. M. Apostol and M. A. Mnatsakanian, A New Look at the So-Called Trammel of
Archimedes, Am. Math. Month., Vol. 116, No. 2, 2009, pp. 115-133.
[33] Flexible ladder template, http://nash.sip.ucm.es/Ggb-directPlus/Ggb-directPlus-
template-flexible-ladder.html (last accessed April 2012).
[34] Published Sage worksheets, http://www.sagenb.org/pub/ (last accessed April
2012).
[35] Numerical integrals worksheet, http://www.sagenb.org/home/pub/2650/ (last
accessed April 2012).
[36] Radian measure worksheet, http://www.sagenb.org/home/pub/1469/ (last accessed
April 2012).
[37] Fourier worksheet, http://www.sagenb.org/home/pub/4575/ (last accessed April
2012).

