

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://dx.doi.org/10.1002/cae.21608

http://hdl.handle.net/10251/64929

Wiley: 12 months

Flores Sáez, E.; Barrón Cedeño, LA.; Moreno Boronat, LA.; Rosso, P. (2015). Uncovering
source code reuse in large-scale academic environments. Computer Applications in
Engineering Education. 23(3):383-390. doi:10.1002/cae.21608.

Uncovering Source Code Reuse in Large-Scale

Academic Environments

Enrique Floresa, Alberto Barrón-Cedeñob, Lidia Morenoa, Paolo Rossoa

aUniversitat Politècnica de València, Spain

E-mail: {eflores, lmoreno, prosso}@dsic.upv.es

bTalp Research Center, Universitat Politècnica de Catalunya, Spain

E-mail: albarron@lsi.upc.edu

Abstract

The advent of the Internet has caused an increase in content reuse, including

source code. The purpose of this research is to uncover potential cases of source

code reuse in large-scale environments. A good example is academia, where

massive courses are taught to students who must demonstrate that they have

acquired the knowledge. The need of detecting content reuse in quasi real-time

encourages the development of automatic systems such as the one described in

this paper for source code reuse detection.

Our approach is based on the comparison of programs at character level. It is

able to find potential cases of reuse across a huge number of assignments. It

achieved better results than JPlag, the most used online system to find

similarities among multiple sets of source codes. The most common obfuscation

operations we found were changes in identifier names, comments and

indentation.

Keywords: Source code reuse, plagiarism detection, authoring tools and

methods, interactive learning environments, programming and programming

languages

1. Introduction

The huge amount of resources available on the Web facilitates the access (and

reuse) of diverse content. Automatic detection is necessary to keep track of reuse

and especially unauthorised reuse (e.g. plagiarism). Text reuse is defined as “the

situation in which pre-existing written material is consciously used again during

the creation of a new text or versions” [1]. In recent years, considerable interest

in creating better models for uncovering text reuse has been observed1.

Nevertheless, source code oriented models have been mostly disregarded,

except for a few works ([2]; [3]; [4]; [5]). Source code reuse occurs when a

programmer borrows (part of) a program “...authored by someone else and,

intentionally or unintentionally, fails to acknowledge it adequately, thus

submitting it as her own work” [6].

A recent survey by [7] reveals that source code plagiarism represents 30% of the

instances of plagiarism in academia. Around 63% of college students admit

making their work available to classmates. Programmers may obtain source code

from their own previous coding, from a classmate, or from a co-worker. As a

result, source code reuse detection studies have been mostly applied to closed

groups [8]; [5]; [2]. However, resources are also available on the Web. The Web

has enabled the rise of new teaching environments.

1 See for instance the International Competition on Plagiarism Detection
(Potthast et al., 2013); http://pan.webis.de

Two good examples are Google Code Jam2 and Coursera3. In these examples, a

huge number of students need to solve the same problems to certify their

acquired knowledge. In Google Code Jam, more than 20K contestants participated

in the 2012 edition. In Coursera, online lectures are crowd-taught. In its Computer

Science courses, programming homework is assigned to thousands of students

around the globe (e.g. the 2012 lecture on Natural Language Processing was

reported to have over 50K enrolled students). The growth of online students

requires to include in academic environments the use of systems to control and

improve their learning [9]. Other massive programming competitions that involve

high school and college students are the International Olympiads in Informatics4

and ACM International Collegiate Programming Contest5. As in a traditional

academic context, these massive coding environments disapprove the co-

operation between participants when solving the proposed tasks. The use of

automatic grading tools for programming assignments improves the learning

experience of the students and discourage cheating [10]. Automatic grading

tools combined with a source code reuse detection system should significantly

reduce plagiarism among students.

In this paper we approach the problem of identifying cases of source code reuse

in a large collection. We apply our recently proposed model for source code reuse

detection [11], inspired by previous work on natural language text reuse

detection [12]. We focus on the most used programming languages in the

contest: C++, Java, and Python. All in all, we seek to uncover potential cases of

borrowing among 34.3K programs. To the best of our knowledge, this is the first

2 http://code.google.com/codejam/

3 https://www.coursera.org/

4 http://www.ioinformatics.org/

5 http://icpc.baylor.edu/

time that such a large collection has analysed for reuse. Our experiments show

numerous instances of collaboration.

The rest of the paper is organised as follows. In Section 2, we overview different

approaches to detecting source code reuse. Section 3 describes our model. In

Section 4, we describe the corpora we extracted from the Code Jam 2012

program repository. In Section 5, we report our findings on detecting reuse in this

corpus and compare our model against JPlag. Finally, in Section 6 we draw

conclusions and propose future research.

2. Related Work

Taking advantage of their formality, programming languages allow for a clear

typology of potential modifications when reusing complete programs, methods,

or just routines. In [13] Faidhi and Robinson identified seven levels of

modification applied to reused source code (Table 1 illustrates):

1. Verbatim copy; i.e., copying code snippets without modification.
2. Changes in comments and indentation.
3. Changes in identifiers of variables, methods, and classes.
4. Changes in the position of declarations or addition of extra constants.
5. Methods merging and splitting.
6. Changes in program statements (e.g. switch for if or while instead of for).
7. Deep changes in the program decision logic.

Methods for automatic source code reuse detection are divided into two main

approaches [14], [15], [16]: attribute-counting and structure-based. The general

idea of attribute-counting models is measuring how similar two programs are in

terms of the number of elements contained. For instance: number of

unique/distinct operators and operands; number of execution paths; or average

nesting depth of the program among others. The structure (logic sequence) of

the program is completely ignored. Examples of this approach are [17], [18],

[19].This approach performs well when low-level modifications are applied; i.e.,

Faidhi and Robinson's levels 0 to 3 [16].

We focus more on the second approach: structure-based, which proved to be

more successful than the previous approach [3]. This approach considers the

entire program contents when looking to identify common segments or assessing

an overall level of similarity. The approach mainly consists of converting the

source code into a string of tokens and then making a comparison. Structure-

based approaches are divided into three categories: flow-based; vocabulary-

based; and free vocabulary.

Flow-based approaches represent the structure of the code and only focus on

bifurcation statements [20], [16], [21]. This kind of representation is also applied

in software maintenance [22]. Software maintenance tries to detect redundant

code (code clones) to have clearly separated the functionality from the structure

of the source code. Its interest consists of finding similar source code fragments

that occur more than once [23]. Flow-based is weak against changes in the

bifurcation statements, or the combination/division of methods; such as Faidhi

and Robinson's levels 3 and 4.

Vocabulary-based approaches represent the code using only certain types of

tokens, i.e., reserved words or delimiters. The authors in [4], [8] and [24] show

programs submitted by students on the basis of the longest non-overlapping

common sequences of reserved words; whereas [5] look at the length of such

common sequences. Superficial changes could become more difficult to find for

related sequences between two source codes (for example, changing reserved

words, adding extra constants, changing types, merging or splitting methods;

Faidhi and Robinson's levels 2-5).

 An approach proposed by [2] is shown to be robust against changes in

statements and some changes in decision logic (i.e., Faidhi and Robinson's level 5

and 6). By compiling the programs to generate intermediate code, they remove

some common changes made by students; such as changes in statements, the

addition of useless constants, etc. The resulting code is split into n-grams of

instruction blocks and these are compared with the Okapi BM25 similarity

function [25]. However, this approach is not language-independent, as it needs a

common compilation framework that includes the required languages.

Finally, free vocabulary approaches take into account the entire source code,

including reserved words, identifiers, and comments. The approach [26] for

detecting plagiarism in programming classes involves representing different

segments with hashes, which are compared using the Winnowing algorithm

(originally proposed for natural language text reuse detection by [27]). Whereas

this model is highly efficient, it is weak against editions: modifying one single

character in a string dramatically alters its resulting hash value, causing potential

cases of reuse to go undetected. However, this approach remains extremely

efficient. Our approach belongs to the free vocabulary family and it is described

in depth in the next section.

3. Character n-Grams for Source Code Reuse

Our detection approach is adapted from models for mono- and cross-language

plagiarism detection in natural language texts [28]. The assumption is that

programming languages and natural languages can be considered in the same

way and both can be treated as an array of characters. The model is designed to

compare all the programs in a large pair-wise collection, making it ideal for

searching in scenarios with previously unknown cases of reuse, such as online

teaching and contest scenarios. Figure 1 shows a simple representation of its

architecture, which is divided into three main modules:

1. Pre-processing. Line feeds, tabs, and spaces are removed and characters

case-folded. Symbols duplicated more than six times (e.g. “*******”,

“///////”) were cut down to six characters to reduce the noise these symbols

introduce in the detection.
2. Term selection and weighting. Code is split into character n-grams; i.e.,

contiguous overlapping sequences of n characters. In particular, we use 3-

grams, as we empirically observed that this value produces the best

retrieval results [11]. Weighting is then computed by simple term

frequency (tf) ([29], page 117), making it collection independent. The

resulting terms are then stored in an inverted index ([30], page 109).
3. Similarity estimation. Similarity between codes is estimated using the

cosine measure, ranged in [0,1]:








'

2
',

2
,

'
',,

)',cos(

dt
dt

dt
dt

ddt
dtdt

tftf

tftf
dd

 (1)

where d and d' are two programs in the collection and t represents terms; i.e., the

character 3-grams. Pre-processing tries to counteract the vocabulary changes

that programmers introduce to conceal reuse. For example, changes to case-

sensitive characters in variables, or modifications to the visual structure of the

code (by adding line breaks, tabs and spaces), are commonly made to disguise

reuse. This kind of change corresponds to the second and third levels of [13] (cf.

Section 2).

In the feature extraction module, 3-grams are extracted from the resulting

character string. A vector representation of the source code is obtained by

weighting the resulting 3-grams on the basis of normalised tf. Spatial information

of the 3-grams is lost, thus preventing the system being sensitive to one of the

typical operations to hide reuse: function and operand shifting, first and third

level showed in Section 2.

In the document comparison module, all the programs are compared against

each other pair-wise, by means of the cosine similarity measure. The output of

this module is a similarity ranking that includes every program pair in the

collection. The user can then explore the top pairs to uncover potential cases of

reuse.

Our decisions are supported in our empirical analysis of a small collection of

student assignments following a lecture on multi-agent systems offered in a

Computer Science MSc degree [11]. We proposed some variants considering

parts of the source code to improve the detection of changes made by the

programmer. These changes are focused on detecting levels 0 to 4 indicated by

[13]. We considered the following sections of the original source code for

experimentation: (a) source code with comments; (b) source code without

comments; and (c) reserved words only. The best results were obtained with (a).

We used a character n-gram with different n values, and found three to be the

best option. Therefore, character 3-grams seem to represent a good

characterisation for code in this task, as it is also for natural language texts [31].

We compared our approach, which we will refer to from this point as SoCo-C3G,

against two models: a sliding-window model and the well-known JPlag tool [32].

We tested these models using a collection of 79 C programs from student

assignments. These assignments were produced on a course on secure electronic

commerce. This test collection contains 27 reused source code pairs. P-R curves

in Figure 2 show that the precision of JPlag starts dropping at very low levels of

recall. The maximum F1 values obtained are 0.64 for SoCo-C3G, 0.4 for JPlag, and

0.55 for the sliding-window model. In terms of AUC, SoCo-C3G clearly

outperforms the other two models by achieving a value of 0.70, versus 0.57 and

0.37 of the others. These results show that SoCo-C3G performs better than a

well-known tool such as JPlag. This experiment lead us to consider the same

configuration in the current framework.

As this model does not require lexical and structural knowledge about the

language, it can be applied to any source code regardless of the programming

language used.

4. Corpus

Due to privacy and ethical issues, it is practically impossible to find a freely

available corpus of academic programming assignments (e.g. online

programming courses) for plagiarism analysis. To the best of our knowledge, one

of the few available source code collections that resembles a large-scale corpus

of academic programs is Google Code Jam. Therefore, we focused our research

work on this massive evaluation platform.

In the 2012 edition of the Google Code Jam contest, 20.6K contestants from 149

regions participated, working on one of 73 different programming languages. The

objective in the contest was to reach the final test stage after a number of

rounds. Our analysis focused on the programs submitted in the first round:

Qualification. Four problems were proposed in this stage: (A) Speaking in

Tongues, (B) Dancing with the Googlers, (C) Recycled Numbers, and (D) Hall of

Mirrors. Qualification to further stages requires providing correct solutions to the

proposed problems in the allotted time. A problem can have different levels of

difficulty (i.e., larger input data, larger restrictions). Problems B, C, and D have

small and large versions. Although it is expected that the same program would

solve both problems, the increase in the size of the input data may force re-

coding the program to make it more efficient. Participants do not need to solve all

the tasks to advance to the next round, but must surpass a minimum quality

score.

Problem A had the lowest difficulty of the four. We dismissed it because the data

and source code files were included in the same repositories without a clear

distinction (something that could introduce noise in the calculation of code

similarities). Problems B and C are considered of medium difficulty, whereas

problem D is the most difficult. Moreover, problems B-D have two complexity

levels: small and large6.

Figure 3 shows the number of participating codes in each task compared to the

number of solved codes. For the easiest tasks (i.e., Bs, Bl, and Cs), most submitted

programs were considered adequate; a range of 89%-95% of success.

Conversely, for more complex tasks (i.e., Cl, Ds and Dl) the success rate dropped

significantly to 63%-71%. As expected, the greater the complexity the lower the

success rate. This supports the hypothesis that the intention of many contestants

is to obtain the minimum score to advance to the next round without trying to

solve the most complex tasks.

We focused on the three most used programming languages in the competition:

C++, Java, and Python. The total number of programs submitted in these three

languages is 34.3K (84.7% of the overall amount). Some figures are included in

6 The programs collection is freely available at
https://code.google.com/codejam/contest/1460488/scoreboard?
c=1460488\#vf=1

Table 2. Problems B and C require fewer tokens, whereas the most difficult

problem (D) requires the largest number.

5. Experimental Results and Discussion

This section presents two experiments. The aim of experiment 5.1 is to analyse

the similarity distributions in three languages. The goal of experiment 5.2 is to

detect potential cases of reuse in the competition. In both experiments the

programs are exhaustively compared pair-wise; a demanding processing task. For

instance, only for problem B more than 34.6 million comparisons of source code

pairs were computed.

5.1 Analysis of Similarity Ranges

In this experiment we aim to detect which similarity intervals accumulate among

the source code pairs and observe whether these intervals differ for each

programming language. Systems like the approach described in Section 3 have to

face a large number of source codes that solve the same problem and need to

distinguish between high similar parts of the code. These similarity intervals can

help establish a threshold for distinguishing between potentially reused and non-

reused source code pairs.

Figure 4 shows the similarity distribution of source code pairs for each problem

and programming language. For mid-complexity problems, such as B and C, most

code pairs in Java have a similarity in the range 0.4-0.6. For the most complex,

problem D, most codes are in the 0.2-0.3 similarity range. The solutions to the

easier problems tend to be more similar to each other. Programs written in

Python show the same behaviour. The most similar codes are in the range 0.2-0.4

for problems B and C, while for problem D they are in the range 0.1-0.3. The

same behaviour can be appreciated for C++ but to a smaller degree: for

problems B and C most program pairs are in the range 0.2-0.5, while for problem

D they are between 0.2-0.4.

The trend shows that the accumulation of similar source codes decreases as the

complexity of the problem increases. The highest similarity values occur between

programs written in Java, followed by C++ and Python. Hence, two codes written

in Java may share more common snippets, without necessarily implying reuse.

This information is particularly useful to establish decision thresholds between

reuse and chance matching for the different programming languages.

5.2 Looking for Instances of Source Code Reuse

The aim of this experiment is to check whether cases of source code reuse

occurred in the contest. SoCo-C3G was applied to compute the similarity

between 58.6 million pairs from 34.3K programs distributed by language and

task.

After obtaining the similarity-based ranking for each programming language and

task, we retrieved the top 20 pairs and presented them to a fluent programmer in

the three languages for manual analysis (i.e. 360 instances: 20 pairs x 6 tasks x

3 programming languages). The purpose of such manual analysis was to uncover

cases of reuse.

Table 3 shows the number of potentially reused cases we detected. It includes the

total number of reused cases by task and programming language (top-20 pairs).

It is worth noting that the harder the task, the fewer the cases of reuse: most

reuse cases are in the simpler tasks (Bs, Bl, and Cs). In general, we found that

reuse occurrence was lower in Python than in C++ and Java. There was a major

difference between tasks Cs and Cl (roughly the same task, but with differing

complexity) in Python, which can be explained by the higher computational time

requirements of the more complex version. As mentioned previously, we believe

that contestants had to code a more efficient program to accomplish within the

time limit for submitting Cl (something that was probably not necessary for the

other two languages). We do not discard the possibility that a manual

exploration of pairs beyond the top-20 would uncover more cases of reuse.

We compared the performance of SoCo-C3G on the 6 tasks against JPlag [4]. As

JPlag does not support Python, we compare source codes written in C++ and Java

only. Table 4 shows the number of potentially reused cases detected by JPlag.

SoCo-C3G managed to detect 37 more cases reuse than JPlag.

When source codes are larger (i.e. the harder tasks), both models performed

comparably. Larger codes contain more information (e.g. functions, style of

programming, etc.) which allow for a better characterisation of the codes. When

facing shorter —relatively more similar— codes, JPlag did not manage to

distinguish whether two source codes were reused from each other or not. Figure

5 shows the performance of JPlag and SoCo-C3G in terms of number of reused

source code pairs detected. It is worth noting that our model detected more

cases than JPlag when facing the most difficult (i.e., short) cases to be detected.

We performed a revision of the detected reused pairs in order to classify the

levels of source code modifications discussed in Section 2. Table 5 shows the

resulting distribution. Note that the reused pairs may belong to more than one

level of modification (a frequent occurrence). All the cases include at least one

verbatim-copied fragment (level 0). More than 65% of the pairs contain changes

in identifiers (level 2). Changes in comments and indentation occur less often:

roughly 50% (level 1). In this type of scenario, programmers do not tend to

comment on their source codes. Moreover, they have to respect an indentation in

Python. These reasons cause level 1 to occur less often than level 2.

Higher levels of modification were found less often. On one hand, if they exist,

these cases are the hardest to detect, as the similarity between two fragments

becomes extremely low. On the other hand, whether they imply relevant reuse

instances remains an open question. Differentiating between cases with high-

level modifications and independently generated code was nearly impossible,

even for a human reviewer.

6. Conclusions and Future Work

Our research work aims at producing source code reuse detection models useful

in large-scale programming environments. We analysed the implementations of

six different challenges in the three most widely used languages in the contest

(C++, Java, and Python) extracted from a Google Code Jam contest. The total

number of programs considered was 34.3K; resulting in 58.6 million pair-wise

comparisons.

Our system for source code reuse detection is programming-language

independent. SoCo-C3G is based on computing similarities at character level

(especially character 3-grams); an idea borrowed from the analysis of natural

language text reuse. The similarities were computed with the well-known cosine

measurement.

Our experiments showed an inverse correlation between the complexity of the

contest tasks and the similarity between the programs submitted: the simpler the

program, the larger the number of common snippets and the instances of reuse.

Furthermore, the similarity ranges in the different languages vary: the most

similar code pieces are found within the programs written in Java. This evidence

can be taken into account to establish a threshold for retrieving good reuse

candidates.

For each challenge and programming language we retrieved the 20 most similar

program pairs (360 in total) and gave them to reviewer for manual inspection.

The reviewer found 216 cases of potential reuse (i.e. roughly 60%). Most cases

were found in programs written in Java, closely followed by C++.

SoCo-C3G and JPlag performed in a similar way when detecting reused source

codes in the most complex tasks. However, our model has achieved better

results, especially when the source codes are highly similar and there is a low

variability. SoCo-C3G is programming-language independent, an advantage

respect to tools like JPlag.

Most fragments in the detected cases were reused by verbatim copying. Among

the obfuscated fragments, the most common operations applied by the

programmers implied a change in the identifiers names, comments, and

indentation. Therefore, the development of new source code reuse detection

models, as described in this paper is important in order to detect obfuscation

operations and improve assessment in academic environments.

Our future work aims to explore potential cases of reuse across programming

languages. This is a challenging problem because of the inherent language

differences and the fuzzy frontiers between reuse, inspiration, and coincidental

matching between programs in different languages.

Captions

Table 1. Instances of the seven different levels of alteration applied when reusing

source code (levels as proposed by [13]).

Table 2. Corpus statistics of the Qualification Round of Google Code Jam 2012.

Table 3. Amount of reused pairs among the top-20 pairs using our model.

Brackets include similarity ranges of the top-20 pairs.

Table 4. Amount of reuse cases among the top-20 pairs using JPlag. Brackets

include similarity ranges of the top-20 pairs.

Table 5. Distribution of Faidhi and Robinson modification operations found among

the uncovered cases of reuse (percentages).

Figure 1. System architecture: character n-grams approach for source code reuse.

Figure 2. Precision-recall curves comparing SoCo-C3G, a sliding-window model

and JPlag. In general, SoCo-C3G outperforms the sliding-window and JPlag

models.

Figure 3. Amount of programs per task: submitted versus correct. The right-hand-

side scale applies for problem D, as participation was significantly lower than for

the rest.

Figure 4. Distribution of pair-wise similarity per problem and programming

language.

Figure 5. Difference between SoCo-C3G and JPlag in terms of number of detected

source code pairs.

References

1.P. Clough, "Measuring text re-use in the news industry," Copyright and piracy:
An interdisciplinary critique, L. Bently, J. Davis and J. C. Ginsburg (Editors),
Cambridge University Press, 2010.

2. C. Arwin and S. Tahaghoghi, "Plagiarism detection across programming
languages," Proc. 29th Australasian Computer Science Conf. , vol. 48,
2006, pp. 277-286.

3. M. B. Menai and N. S. Al-Hassoun, "Similarity detection in java
programming assignments," Proc. 5th Int. Conf. on Computer Science and
Education, 2010, pp. 356-361.

4. L. Prechelt, G. Malpohl and M. Philippsen, Finding plagiarisms among a set
of programs with jplag, Journal of Universal Computer Science 8 (2002),
no. 11, 1016-1038.

5. F. Rosales, A. García, S. Rodríguez, J. L. Pedraza, R. Méndez and M. M.
Nieto, Detection of plagiarism in programming assignments, IEEE
Transactions on Education 51 (2008), no. 2, 174-183.

6. G. Cosma and M. Joy, Towards a definition of source-code plagiarism, IEEE
Transactions on Education 51 (2008), no. 2, 195-200.

7. D. Chuda, P. Navrat, B. Kovacova and P. Humay, The issue of (software)
plagiarism: A student view, IEEE Transactions on Education 55 (2012), no.
1, 22-28.

8. M. J. Wise, Yap3, improved detection of similarities in computer program
and other texts, ACM SIGCSE Bulletin 28 (1996), no. 1, 130-134.

9. J. Y. Kuo and F. C. Huang, Code analyzer for an online course management
system, Journal of Systems and Software 83 (2010), no. 12, 2478-2486.

10. D. Spinellis, P. Zaharias and A. Vrechopoulos, Coping with plagiarism and
grading load: Randomized programming assignments and reflective
grading, Computer Applications in Engineering Education 15 (2007), no. 2,
113-123.

11. E. Flores, A. Barrón-Cedeño, P. Rosso and L. Moreno, "Towards the detection
of cross-language source code reuse," Proc. 16th Int. Conf. on Applications
of Natural Language to Information Systems, Springer-Verlag, LNCS(6716),
2011, pp. 250-253.

12. P. McNamee and J. Mayfield, Character n-gram tokenization for european
language text retrieval, Information Retrieval 7 (2004), no. 1/2, 73-97.

13. J. A. W. Faidhi and S. K. Robinson, An empirical approach for detecting
program similarity and plagiarism within a university programming
environment, Computers and Education 11 (1987), no. 1, 11-19.

14. P. Clough, "Plagiarism in natural and programming languages: An overview
of current tools and technologies," Internal Report CS-00-05, University of
Shefield, UK, 2000.

15. G. W. Hislop, Analyzing existing software for software reuse, Journal of
Systems and Software 54 (1998), no. 3, 203-215.

16. G. Whale, Software metrics and plagiarism detection, Journal of Systems
and Software 13 (1990), no. 2, 131-138.

17. M. H. Halstead, Natural laws controlling algorithm structure?, SIGPLAN
Notices 7 (1972), no. 2, 19-26.

18. T. McCabe, A complexity measure, IEEE Trans. Soft. Eng. 2 (1976), no. 4,
308-320.

19. W. Harrison and K. Magel, A complexity measure based on nesting level,
ACM SIGPLAN Notices 16 (1981), no. 3, 63--74.

20. H. T. Jankowitz, Detecting plagiarism in student pascal programs, The
Computer Journal 31 (1988), no. 1, 1-8.

21. J. Feng, B. Cui and K. Xia, "A code comparison algorithm based on ast for
plagiarism detection," Proc. 4th International Conference on Emerging
Intelligent Data and Web Technologies 2013.

22. R. Koschke, "Survey of research on software clones," Duplication,
redundancy, and similarity in software, Dagstuhl Seminar Proceedings,
2007.

23. I. D. Baxter, A. Yahin, L. Moura, M. Sant'Anna and L. Bier, "Clone detection
using abstract syntax trees," Proc. of International Conference on Software
Maintenance, 1998, pp. 368-377.

24. A. M. Bejerano, L. E. García and E. E. Zurek, Detection of source code
similitude in academic environments, Computer Applicattions in
Engineering Education (In press).

25. S. E. Robertson and S. Walker, "Okapi/keenbow at trec-8," Proc. of TREC,
vol. 8, 1999, pp. 151-162.

26. D. Marinescu, A. Baicoianu and S. Dimitriu, "Software for plagiarism
detection in computer source code," Proc. 7th Int. Conf. on Virtual Learning
2012, pp. 373-379.

27. S. Schleimer, D. S. Wilkerson and A. Aiken, "Winnowing, local algorithms for
document fingerprinting," Proc. of the Int. Conf. on Management of Data,
ACM Press, 2003, pp. 76-85.

28. M. Potthast, A. Barrón-Cedeño, B. Stein and P. Rosso, Cross-language
plagiarism detection, Language Resources and Evaluation. Special Issue on
Plagiarism and Authorship Analysis 45 (2011), no. 1, 45-62.

29. C. D. Manning, P. Raghavan and H. Schutze, "Introduction to information
retrieval," Cambridge University Press, 2008.

30. I. H. Witten, A. Moffat and T. C. Bell, Managing gigabytes: Compressing and
indexing documents and images, Morgan Kaufmann, 1999.

31. E. Stamatatos, "Intrinsic plagiarism detection using character n-gram
profiles," Proc. 3rd Int. Workshop on Uncovering Plagiarism, Authorship,
and Social Software Misuse, PAN'09, CEUR Workshop Proceedings, vol.
502, 2009, pp. 38-46.

32. E. Flores, "Reutilización de código fuente entre lenguajes de
programación," Dept. of Computer Systems and Computation, Universitat
Politècnica de València, MSc dissertation, 2012.

