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Abstract

The advent of the Internet has caused an increase in content reuse, including

source code. The purpose of this research is to uncover potential cases of source

code reuse  in  large-scale  environments.  A good example is  academia,  where

massive courses are taught to students who must demonstrate that they have

acquired the knowledge. The need of detecting content reuse in quasi real-time

encourages the development of automatic systems such as the one described in

this paper for source code reuse detection. 

Our approach is based on the comparison of programs at character level. It is

able to find potential cases of reuse across a huge number of assignments. It

achieved  better  results  than  JPlag,  the  most  used  online  system  to  find

similarities among multiple sets of source codes. The most common obfuscation

operations  we  found  were  changes  in  identifier  names,  comments  and

indentation.
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1.  Introduction

The huge amount of resources available on the Web facilitates the access (and

reuse) of diverse content. Automatic detection is necessary to keep track of reuse

and especially unauthorised reuse (e.g. plagiarism). Text reuse is defined as “the

situation in which pre-existing written material is consciously used again during

the creation of a new text or versions” [1]. In recent years, considerable interest

in  creating  better  models  for  uncovering  text  reuse  has  been  observed1.

Nevertheless,  source  code  oriented  models  have  been  mostly  disregarded,

except  for  a few works ([2];  [3];  [4];  [5]).  Source code reuse occurs when a

programmer  borrows  (part  of)  a  program “...authored  by  someone  else  and,

intentionally  or  unintentionally,  fails  to  acknowledge  it  adequately,  thus

submitting it as her own work” [6].

A recent survey by [7] reveals that source code plagiarism represents 30% of the

instances  of  plagiarism  in  academia.  Around  63%  of  college  students  admit

making their work available to classmates. Programmers may obtain source code

from their  own previous coding,  from a classmate,  or  from a co-worker.  As a

result, source code reuse detection studies have been mostly applied to closed

groups [8]; [5]; [2]. However, resources are also available on the Web.  The Web

has enabled the rise of new teaching environments.

1 See for instance the International Competition on Plagiarism Detection 
(Potthast et al., 2013); http://pan.webis.de



Two good examples are Google Code Jam2 and Coursera3. In these examples, a

huge  number  of  students  need  to  solve  the  same  problems  to  certify  their

acquired knowledge. In Google Code Jam, more than 20K contestants participated

in the 2012 edition. In Coursera, online lectures are crowd-taught. In its Computer

Science courses, programming homework is assigned to thousands of students

around the globe (e.g.  the 2012 lecture on Natural  Language Processing was

reported to  have  over  50K enrolled  students).  The growth of  online students

requires to include in academic environments the use of systems to control and

improve their learning [9]. Other massive programming competitions that involve

high school and college students are the International Olympiads in Informatics4

and  ACM  International  Collegiate  Programming  Contest5.  As  in  a  traditional

academic  context,  these  massive  coding  environments  disapprove  the  co-

operation  between participants  when solving  the  proposed  tasks.  The  use  of

automatic  grading  tools  for  programming  assignments  improves  the  learning

experience  of  the  students  and  discourage  cheating  [10].  Automatic  grading

tools combined with a source code reuse detection system should significantly

reduce plagiarism among students.

In this paper we approach the problem of identifying cases of source code reuse

in a large collection. We apply our recently proposed model for source code reuse

detection  [11],  inspired  by  previous  work  on  natural  language  text  reuse

detection  [12].  We  focus  on  the  most  used  programming  languages  in  the

contest: C++, Java, and Python. All in all, we seek to uncover potential cases of

borrowing among 34.3K programs. To the best of our knowledge, this is the first

2 http://code.google.com/codejam/

3 https://www.coursera.org/

4 http://www.ioinformatics.org/

5 http://icpc.baylor.edu/



time that such a large collection has analysed for reuse. Our experiments show

numerous instances of collaboration.

The rest of the paper is organised as follows. In Section 2, we overview different

approaches to detecting source code reuse.  Section 3 describes our model. In

Section  4,  we  describe  the  corpora  we  extracted  from  the  Code  Jam  2012

program repository. In Section 5, we report our findings on detecting reuse in this

corpus  and  compare  our  model  against  JPlag.  Finally,  in  Section  6  we  draw

conclusions and propose future research.

2. Related Work

Taking advantage of  their  formality,  programming languages allow for  a clear

typology of potential modifications when reusing complete programs, methods,

or  just  routines.  In  [13]  Faidhi  and  Robinson  identified  seven  levels  of

modification applied to reused source code (Table 1 illustrates): 

1. Verbatim copy; i.e., copying code snippets without modification.
2. Changes in comments and indentation.
3. Changes in identifiers of variables, methods, and classes.
4. Changes in the position of declarations or addition of extra constants.
5. Methods merging and splitting.
6. Changes in program statements (e.g. switch for if or while instead of for).
7. Deep changes in the program decision logic.

Methods for automatic source code reuse detection are divided into two main

approaches [14], [15], [16]: attribute-counting and structure-based. The general

idea of attribute-counting models is measuring how similar two programs are in

terms  of  the  number  of  elements  contained.  For  instance:  number  of



unique/distinct operators and operands; number of execution paths; or average

nesting depth of the program among others. The structure (logic sequence) of

the program is completely ignored. Examples of  this approach are [17],  [18],

[19].This approach performs well when low-level modifications are applied; i.e.,

Faidhi and Robinson's levels 0 to 3 [16]. 

We focus more on the second approach: structure-based, which proved to be

more successful  than the previous approach [3].  This  approach considers  the

entire program contents when looking to identify common segments or assessing

an overall  level  of  similarity.  The  approach  mainly  consists  of  converting  the

source code into a string of tokens and then making a comparison. Structure-

based  approaches  are  divided  into  three  categories:  flow-based;  vocabulary-

based; and free vocabulary.

Flow-based approaches represent the structure of the code and only focus on

bifurcation statements [20], [16], [21]. This kind of representation is also applied

in software maintenance [22]. Software maintenance tries to detect redundant

code (code clones) to have clearly separated the functionality from the structure

of the source code. Its interest consists of finding similar source code fragments

that  occur  more  than  once  [23].  Flow-based is  weak  against  changes  in  the

bifurcation statements, or the combination/division of methods; such as Faidhi

and Robinson's levels 3 and 4.

Vocabulary-based  approaches  represent  the  code  using  only  certain  types  of

tokens, i.e., reserved words or delimiters. The authors in [4], [8] and [24] show

programs submitted by students  on the  basis  of  the longest  non-overlapping

common sequences of reserved words; whereas [5] look at the length of such

common sequences. Superficial changes could become more difficult to find for

related sequences between two source codes (for example, changing reserved



words,  adding extra constants,  changing types,  merging or  splitting methods;

Faidhi and Robinson's levels 2-5).

  An  approach  proposed  by  [2]  is  shown  to  be  robust  against  changes  in

statements and some changes in decision logic (i.e., Faidhi and Robinson's level 5

and 6). By compiling the programs to generate intermediate code, they remove

some common changes made by students; such as changes in statements, the

addition of  useless constants,  etc.  The resulting code is  split  into  n-grams of

instruction  blocks  and  these  are  compared  with  the  Okapi  BM25  similarity

function [25]. However, this approach is not language-independent, as it needs a

common compilation framework that includes the required languages.

Finally,  free vocabulary  approaches  take into account  the entire  source code,

including  reserved  words,  identifiers,  and  comments.  The  approach  [26]  for

detecting  plagiarism  in  programming  classes  involves  representing  different

segments  with  hashes,  which  are  compared  using  the  Winnowing  algorithm

(originally proposed for natural language text reuse detection by [27]). Whereas

this model is highly efficient, it is weak against editions: modifying one single

character in a string dramatically alters its resulting hash value, causing potential

cases  of  reuse  to  go  undetected.  However,  this  approach  remains  extremely

efficient. Our approach belongs to the free vocabulary family and it is described

in depth in the next section. 

3. Character n-Grams for Source Code Reuse 

Our detection approach is adapted from models for mono- and cross-language

plagiarism  detection  in  natural  language  texts  [28].  The  assumption  is  that

programming languages and natural languages can be considered in the same

way and both can be treated as an array of characters. The model is designed to



compare  all  the  programs  in  a  large  pair-wise  collection,  making  it  ideal  for

searching in scenarios with previously unknown cases of reuse, such as online

teaching and contest scenarios.  Figure 1 shows a simple representation of  its

architecture, which is divided into three main modules:

1. Pre-processing. Line feeds, tabs, and spaces are removed and characters

case-folded.  Symbols  duplicated  more  than  six  times  (e.g.  “*******”,

“///////”) were cut down to six characters to reduce the noise these symbols

introduce in the detection.
2. Term selection and weighting. Code is split  into character  n-grams; i.e.,

contiguous overlapping sequences of n characters. In particular, we use 3-

grams,  as  we  empirically  observed  that  this  value  produces  the  best

retrieval  results  [11].  Weighting  is  then  computed  by  simple  term

frequency  (tf)  ([29],  page  117),  making  it  collection  independent.  The

resulting terms are then stored in an inverted index ([30], page 109).
3. Similarity  estimation.   Similarity  between codes  is  estimated  using  the

cosine measure, ranged in [0,1]:
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where d and d' are two programs in the collection and t represents terms; i.e., the

character  3-grams.  Pre-processing tries  to  counteract  the vocabulary  changes

that  programmers introduce to conceal  reuse.  For  example,  changes to case-

sensitive characters in variables, or modifications to the visual structure of the

code (by adding line breaks, tabs and spaces), are commonly made to disguise

reuse.  This kind of change corresponds to the second and third levels of [13] (cf.

Section 2).



In  the  feature  extraction  module,  3-grams  are  extracted  from  the  resulting

character  string.  A  vector  representation  of  the  source  code  is  obtained  by

weighting the resulting 3-grams on the basis of normalised tf. Spatial information

of the 3-grams is lost, thus preventing the system being sensitive to one of the

typical  operations to hide reuse: function and operand shifting, first  and third

level showed in Section 2.

In  the document comparison module,  all  the programs are compared against

each other pair-wise, by means of the cosine similarity measure. The output of

this  module  is  a  similarity  ranking  that  includes  every  program  pair  in  the

collection. The user can then explore the top pairs to uncover potential cases of

reuse.

Our decisions are  supported in  our  empirical  analysis  of  a small  collection of

student  assignments  following  a  lecture  on  multi-agent  systems  offered  in  a

Computer  Science  MSc  degree  [11].  We  proposed  some  variants  considering

parts  of  the  source  code  to  improve  the  detection  of  changes  made  by  the

programmer. These changes are focused on detecting levels 0 to 4 indicated by

[13].  We  considered  the  following  sections  of  the  original  source  code  for

experimentation:  (a)  source  code  with  comments;  (b)  source  code  without

comments; and (c) reserved words only. The best results were obtained with (a).

We used a character  n-gram with different  n values, and found three to be the

best  option.  Therefore,  character  3-grams  seem  to  represent  a  good

characterisation for code in this task, as it is also for natural language texts [31].

We compared our approach, which we will refer to from this point as SoCo-C3G,

against two models: a sliding-window model and the well-known JPlag tool [32].

We  tested  these  models  using  a  collection  of  79 C  programs  from  student

assignments. These assignments were produced on a course on secure electronic



commerce. This test collection contains 27 reused source code pairs. P-R curves

in Figure 2 show that the precision of JPlag starts dropping at very low levels of

recall. The maximum F1 values obtained are 0.64 for SoCo-C3G, 0.4 for JPlag, and

0.55 for  the  sliding-window  model.  In  terms  of  AUC,  SoCo-C3G  clearly

outperforms the other two models by achieving a value of 0.70, versus 0.57 and

0.37 of the others. These results show that SoCo-C3G performs better than a

well-known tool  such as JPlag.  This  experiment lead us to  consider  the same

configuration in the current framework. 

As  this  model  does  not  require  lexical  and  structural  knowledge  about  the

language, it can be applied to any source code regardless of the programming

language used. 

4. Corpus

Due to privacy  and ethical  issues,  it  is  practically  impossible  to  find a  freely

available  corpus  of  academic  programming  assignments  (e.g.  online

programming courses) for plagiarism analysis. To the best of our knowledge, one

of the few available source code collections that resembles a large-scale corpus

of academic programs is Google Code Jam. Therefore, we focused our research

work on this massive evaluation platform.

In the 2012 edition of the Google Code Jam contest, 20.6K contestants from 149

regions participated, working on one of 73 different programming languages. The

objective  in  the  contest  was  to  reach  the  final  test  stage  after  a  number  of

rounds.  Our  analysis  focused  on  the  programs  submitted  in  the  first  round:

Qualification.  Four  problems  were  proposed  in  this  stage:  (A)  Speaking  in

Tongues, (B) Dancing with the Googlers, (C) Recycled Numbers, and (D) Hall of

Mirrors. Qualification to further stages requires providing correct solutions to the



proposed problems in the allotted time. A problem can have different levels of

difficulty (i.e., larger input data, larger restrictions). Problems B, C, and D have

small and large versions. Although it is expected that the same program would

solve both problems, the increase in the size of the input data may force re-

coding the program to make it more efficient. Participants do not need to solve all

the tasks to advance to the next round, but must surpass a minimum quality

score. 

Problem A had the lowest difficulty of the four. We dismissed it because the data

and source  code files were included in  the same repositories  without  a clear

distinction  (something  that  could  introduce  noise  in  the  calculation  of  code

similarities).  Problems  B  and  C  are  considered  of  medium difficulty,  whereas

problem D is the most difficult.  Moreover,  problems B-D have two complexity

levels: small and large6.

Figure 3 shows the number of participating codes in each task compared to the

number of solved codes. For the easiest tasks (i.e., Bs, Bl, and Cs), most submitted

programs  were  considered  adequate;  a  range  of  89%-95% of  success.

Conversely, for more complex tasks (i.e., Cl, Ds and Dl) the success rate dropped

significantly to 63%-71%. As expected, the greater the complexity the lower the

success rate. This supports the hypothesis that the intention of many contestants

is to obtain the minimum score to advance to the next round without trying to

solve the most complex tasks. 

We focused on the three most used programming languages in the competition:

C++, Java, and Python. The total number of programs submitted in these three

languages is  34.3K (84.7% of the overall amount). Some figures are included in

6 The programs collection is freely available at 
https://code.google.com/codejam/contest/1460488/scoreboard?
c=1460488\#vf=1



Table  2.  Problems  B  and  C  require  fewer  tokens,  whereas  the  most  difficult

problem (D) requires the largest number.

5. Experimental Results and Discussion

This section presents two experiments. The aim of experiment 5.1 is to analyse

the similarity distributions in three languages. The goal of experiment 5.2 is to

detect  potential  cases  of  reuse  in  the  competition.  In  both  experiments  the

programs are exhaustively compared pair-wise; a demanding processing task. For

instance, only for problem B more than 34.6 million comparisons of source code

pairs were computed. 

5.1 Analysis of Similarity Ranges

In this experiment we aim to detect which similarity intervals accumulate among

the  source  code  pairs  and  observe  whether  these  intervals  differ  for  each

programming language. Systems like the approach described in Section 3 have to

face a large number of source codes that solve the same problem and need to

distinguish between high similar parts of the code. These similarity intervals can

help establish a threshold for distinguishing between potentially reused and non-

reused source code pairs. 

Figure 4 shows the similarity distribution of source code pairs for each problem

and programming language. For mid-complexity problems, such as B and C, most

code pairs in Java have a similarity in the range 0.4-0.6. For the most complex,

problem D, most codes are in the  0.2-0.3 similarity range. The solutions to the

easier  problems  tend  to  be  more  similar  to  each  other.  Programs  written  in

Python show the same behaviour. The most similar codes are in the range 0.2-0.4

for problems B and C, while for problem D they are in the range  0.1-0.3.  The

same  behaviour  can  be  appreciated  for  C++  but  to  a  smaller  degree:  for



problems B and C most program pairs are in the range 0.2-0.5, while for problem

D they are between 0.2-0.4.

The trend shows that the accumulation of similar source codes decreases as the

complexity of the problem increases. The highest similarity values occur between

programs written in Java, followed by C++ and Python. Hence, two codes written

in Java may share more common snippets, without necessarily implying reuse.

This information is particularly useful to establish decision thresholds between

reuse and chance matching for the different programming languages.

5.2 Looking for Instances of Source Code Reuse

The aim of  this  experiment  is  to  check  whether  cases  of  source  code  reuse

occurred  in  the  contest.   SoCo-C3G  was  applied  to  compute  the  similarity

between  58.6 million pairs  from  34.3K programs distributed by language and

task. 

After obtaining the similarity-based ranking for each programming language and

task, we retrieved the top 20 pairs and presented them to a fluent programmer in

the three languages for manual analysis (i.e. 360 instances: 20 pairs x 6 tasks x

3 programming languages).  The purpose of such manual analysis was to uncover

cases of reuse.

Table 3 shows the number of potentially reused cases we detected. It includes the

total number of reused cases by task and programming language (top-20 pairs).

It is worth noting that the harder the task, the fewer the cases of reuse: most

reuse cases are in the simpler tasks (Bs, Bl, and Cs). In general, we found that

reuse occurrence was lower in Python than in C++ and Java. There was a major

difference between tasks Cs and Cl (roughly the same task,  but with differing

complexity) in Python, which can be explained by the higher computational time

requirements of the more complex version. As mentioned previously, we believe



that contestants had to code a more efficient program to accomplish within the

time limit for submitting Cl (something that was probably not necessary for the

other  two  languages).   We  do  not  discard  the  possibility  that  a  manual

exploration of pairs beyond the top-20 would uncover more cases of reuse. 

We compared the performance of SoCo-C3G on the 6 tasks against JPlag [4]. As

JPlag does not support Python, we compare source codes written in C++ and Java

only. Table 4 shows the number of potentially reused cases detected by JPlag.

SoCo-C3G managed to detect 37 more cases reuse than JPlag.

When source codes are  larger (i.e.  the harder  tasks),  both models performed

comparably.  Larger  codes  contain  more  information  (e.g.  functions,  style  of

programming, etc.) which allow for a better characterisation of the codes. When

facing  shorter  —relatively  more  similar—  codes,  JPlag  did  not  manage  to

distinguish whether two source codes were reused from each other or not. Figure

5 shows the performance of JPlag and SoCo-C3G in terms of number of reused

source  code pairs  detected.  It  is  worth  noting that  our  model  detected more

cases than JPlag when facing the most difficult (i.e., short) cases to be detected. 

We performed a revision of the detected reused pairs in order to classify the

levels of source code modifications discussed in Section 2. Table 5 shows the

resulting distribution. Note that the reused pairs may belong to more than one

level of modification (a frequent occurrence). All the cases include at least one

verbatim-copied fragment (level 0). More than 65% of the pairs contain changes

in identifiers (level 2). Changes in comments and indentation occur less often:

roughly  50% (level  1).  In  this  type of  scenario,  programmers  do not  tend to

comment on their source codes. Moreover, they have to respect an indentation in

Python. These reasons cause level 1 to occur less often than level 2. 



Higher levels of modification were found less often. On one hand, if they exist,

these cases are the hardest to detect, as the similarity between two fragments

becomes extremely low. On the other hand, whether they imply relevant reuse

instances remains an open question.  Differentiating between cases with high-

level  modifications  and independently  generated code  was  nearly  impossible,

even for a human reviewer.

6. Conclusions and Future Work

Our research work aims at producing source code reuse detection models useful

in large-scale programming environments. We analysed the implementations of

six different challenges in the three most widely used languages in the contest

(C++, Java, and Python) extracted from a Google Code Jam contest. The total

number of  programs considered was  34.3K;  resulting in  58.6 million pair-wise

comparisons.

Our  system  for  source  code  reuse  detection  is  programming-language

independent.  SoCo-C3G is  based  on  computing  similarities  at  character  level

(especially character  3-grams);  an idea borrowed from the analysis of natural

language text reuse. The similarities were computed with the well-known cosine

measurement.

Our experiments showed an inverse correlation between the complexity of the

contest tasks and the similarity between the programs submitted: the simpler the

program, the larger the number of common snippets and the instances of reuse.

Furthermore,  the  similarity  ranges  in  the  different  languages  vary:  the  most

similar code pieces are found within the programs written in Java. This evidence

can be  taken  into  account  to  establish  a  threshold  for  retrieving  good  reuse

candidates. 



For each challenge and programming language we retrieved the 20 most similar

program pairs  (360 in total) and gave them to reviewer for manual inspection.

The reviewer found 216 cases of potential reuse (i.e. roughly 60%). Most cases

were found in programs written in Java, closely followed by C++. 

SoCo-C3G and JPlag performed in a similar way when detecting reused source

codes  in  the  most  complex  tasks.  However,  our  model  has  achieved  better

results, especially when the source codes are highly similar and there is a low

variability.  SoCo-C3G  is  programming-language  independent,  an  advantage

respect to tools like JPlag.

Most fragments in the detected cases were reused by verbatim copying. Among

the  obfuscated  fragments,  the  most  common  operations  applied  by  the

programmers  implied  a  change  in  the  identifiers  names,  comments,  and

indentation.  Therefore,  the  development  of  new source  code  reuse  detection

models, as described in this paper is important in order to detect obfuscation

operations and improve assessment in academic environments.

Our future work aims to explore potential cases of reuse across programming

languages.  This  is  a  challenging  problem  because  of  the  inherent  language

differences and the fuzzy frontiers between reuse, inspiration, and coincidental

matching between programs in different languages.



Captions

Table 1. Instances of the seven different levels of alteration applied when reusing

source code (levels as proposed by [13]). 

Table 2. Corpus statistics of the Qualification Round of Google Code Jam 2012. 

Table  3.  Amount  of  reused  pairs  among  the  top-20 pairs  using  our  model.

Brackets include similarity ranges of the top-20 pairs.

Table 4. Amount of  reuse cases among the top-20 pairs using JPlag.  Brackets

include similarity ranges of the top-20 pairs.

Table 5. Distribution of Faidhi and Robinson modification operations found among

the uncovered cases of reuse (percentages).

Figure 1. System architecture: character n-grams approach for source code reuse.

Figure 2.  Precision-recall  curves comparing SoCo-C3G, a sliding-window model

and  JPlag.  In  general,  SoCo-C3G  outperforms  the  sliding-window  and  JPlag

models.

Figure 3. Amount of programs per task: submitted versus correct. The right-hand-

side scale applies for problem D, as participation was significantly lower than for

the rest.

Figure  4.  Distribution  of  pair-wise  similarity  per  problem  and  programming

language.

Figure 5. Difference between SoCo-C3G and JPlag in terms of number of detected

source code pairs.
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