
A Friendly Online C Compiler to 
Improve Programming Skills 
Based on Student 
Self-Assessment 
RAQUEL CEDAZO CECILIA E. GARCIA CENA BASIL MOHAMMED AL-HADITHI 

ABSTRACT: This paper presents an online C compiler designed so that students can program their practical 
assignments in Programming courses. What is really innovative is the self-assessment of the exercises based on 
black-box tests and train students' skill to test software. Moreover, this tool lets instructors, not only proposing 
and classifying practical exercises, but also evaluating automatically the efforts dedicated and the results obtained 
by the students. The system has been applied to the 1 st-year students at the Industrial Engineering specialization 
at the Universidad Politecnica de Madrid. Results show that the students obtained better academic performance, 
reducing the failure rate in the practical exam considerably with respect to previous years, in addition that an 
anonymous survey proved that students are satisfied with the system because they get instant feedback about 
their programs. 

Keywords: black-box testing; C programming language; E-learning; interactive learning environments; online 
self-assessment 

INTRODUCTION 

The programming learning is a complex task, especially for first-
year students [1]. The literature contains many studies citing the 
poor performance of students after completing their first program­
ming courses [2]. The programming learning is characterized by 
the large amount of exercises that students are expected to practice 
intensively in order to develop good programming skills [3]. In the 
field of the Industrial Engineering, this basic subject is considered 
extremely important since it offers the fundamentals of program­
ming, totally required for learning more complicated software 
concepts in advanced courses. 

Nowadays, one advantage to learn programming is that stu­
dents have lots of compilers for any language. In the case of 
C language, there are some commercial ones (Microsoft Visual 
C++ is the most popular, with a powerful debugger). Others are 
open source ones (GCC under GNU/Linux or the multi-platform 
Dev-C++), and even online ones [4,5]. However, one disadvantage 
remains that these compilers cannot analyze the source code (possi­
ble bugs, dead code, overcomplicated expressions, etc.) or validate 
the acceptance criteria for students programs. Therefore, the sup­
port of the instructor is still required in the learning process of 
the students. Nevertheless, the assessment and feedback provided 
by instructors is not possible for courses with a large number of 
students, affecting negatively students' learning motivation [6]. 

Facing the impossibility of assessing larger groups of 
students, in many occasions the tendency is to reduce the number 
of individual homework assignments proposed to the students 



[7], which is detrimental to learning. However, with the rapid 
advent of new technologies, computer-based assessment (CBA) is 
considered to be a fast and accurate tool for the assessment of stu­
dents learning [8]. Therefore, in response to the challenge of giving 
support to students, many instructors have been using ICT effec­
tively in higher education. Some of them have built collaborative 
assessment environments where students share their responses, 
exchange their ideas [9] and peer review programs written by other 
students [10]. Others have developed software solutions to assist 
teachers in their tutoring and assessing tasks. There are already 
many systems described in the literature that adopt this approach 
to offer an online environment for programming learning, that 
is, for Java [11,12], Assembly [13], VHDL [14], Web [15], Mat-
lab [16] or C Languages [17], among others. These systems have 
their particular automatic evaluators, some of them are based on 
executing a set of previously designed and configured tests, com­
paring the output with the one generated by the instructor, which 
is called black box evaluation [18-20], and others systems even 
are focused on compiler error messages understanding [21] or on 
programming style analysis [22]. 

The authors teach the course of "Programming" to first-year 
students where they learn the techniques of structured program­
ming in C language. The course is for all students at the Higher 
Technical School of Industrial Design and Engineering, Universi-
dad Politecnica de Madrid (www.etsidi.upm.es), that is, students 
of different degree programmes; Chemical Engineering, Electrical 
Engineering and Electronics and Automatic Control Engineering. 
Each academic year there are more than 350 students in this course, 
divided into six groups for theoretical lessons, that is, around 55-70 
students per group. Large class sizes make difficult the progress 
of each student, since there are not enough personnel resources 
to manually assess all the exercises during the course. This dis­
advantage, typical of large courses, is more apparent with these 
programming assignments, because the student requires support 
to consider the validity of their programs. The authors, motivated 
by the poor performance of students in large programming classes, 
recognized the need to develop an attractive tool, which could offer 
support for the student learning. 

This paper presents a friendly and novel online compiler for 
C programming, which provides an editor for writing, editing, 
compiling and executing programming code, so the students can 
execute practical exercises online. It offers syntax highlighting in 
editing code, which helps students to remember the syntax better. 
In addition, the proposed system has other remarkable advantages 
compared to the traditional desktop tools: 

1. Any user, both student and instructor, are able to access to their 
programming environment through any web browser, without 
installing any software or desktop IDE. This in turn offers them 
an underlying architecture completely transparent to users. 

2. The compiler offers students a WIDE (Web Integrated Devel­
opment Environment) in order to write and execute the C 
programs. This lets them to carry out on distance the practical 
assignments proposed by the instructors. 

3. The compiler allows instructors to manage the programming 
exercises and assignments. The instructors organize all the 
resources through the web interface, grouping and classifying 
the exercises with different educational purposes. 

(a) The compiler lets instructors to propose extra comple­
mentary exercises along the course in order to strengthen 
students' theoretical concepts. 

(b) The application gives instructors indicators of the work 
carried out by the students. 

(c) The tool detects potential cases of plagiarism among stu­
dents based on the students' logs, as it is explained in 
detail at Plagiarism section. Plagiarism is a serious and 
growing problem on the web educational environments. 
Detecting it is a useful feature for large courses because, 
otherwise, instructors would require much effort to man­
ually find such possible cases. In fact, there are other 
authors which offer particular solutions to detect and 
prevent the plagiarism [24-27]. 

The paper is structured as follows: second section presents 
the educational environment where the proposed compiler has been 
launched. In third section, a detailed description of the laboratory 
architecture and the technology used is presented. Fourth section 
describes the full functionality for both students and instructors. 
Fifth section examines the characteristics that contribute to the 
effectiveness of the proposed online compiler in comparison with 
other existing ones. Sixth section examines the impact of the first 
use of this online C compiler during 2013/2014 academic years. 
And, finally, seventh section devotes to the conclusions that can 
be extracted from the proposed work and possible future improve­
ments for the application. 

CASE STUDY: PROGRAMMING COURSE IN 
INDUSTRIAL ENGINEERING 

The proposed application has been applied to the first-year 
Programming course in three-degree programmes at the Indus­
trial Engineering specialization at the Universidad Politecnica de 
Madrid. Along the second semester, this course, with a total of 
6 ECTS (European Credit and Accumulation System)1 credits, is 
divided into three parts: (1) theoretical and problem-solving lec­
tures (2.4 ECTS) in 55-70 students/classroom along 15 weeks, 
of 4 h weekly, (2) 9 practical assignments (0.6 ECTS) in labora­
tory where there is a computer per student, and (3) private work at 
home and examinations (3 ECTS). This structure is summarized 
in Figure 1. 

Regarding to the practical part, each student must carry out 9 
practical assignments of 1 h during the course. Each group consists 
of one instructor for 20-24 students. Each practice has a script, 
which is previously given to the students, which consists of a set of 
4-5 exercises to be programmed in the laboratory during this hour. 
The script has been designed so a student would be able to finish 
all exercises during the session. However, our experience is that 
the majority of students are not able to complete all the exercises 
on time. On the other hand, the instructor cannot supervise all 
students and give them individual feedback about all their codes. 
As a result of all these factors, a significant number of students fail 
the practical exam each year. 

(a) With respect to the other systems mentioned before, the 
innovative approach is that students are those who must 
design their own tests, acquiring the ability to test soft­
ware [23] so important in a programming course. 

(b) It allows students to compare their output generated 
with the instructor-provided version (black-box testing). 
Through this feature, students self-assess their programs 
getting an instant feedback about their codes. 

http://www.etsidi.upm.es


COURSE: PROGRAMMING 
6 ECTS 

I 

Theory 
1.2 ECTS 

Problems 
1.2 ECTS 

15 weeks/course 
4 hours/week 
Classroom (in-person) 
1 instructor 
55-70 students / classroom 

Practices 
0.6 ECTS 

4 Online 
Practices 

Online C 
Compiler 

is: 
5 In-person 

Practices 

1 hour/session 
Laboratory 
1 instructor 
20-24 students 

Private work and 
examinations 

3 ECTS 

I I 
I Optional Extra I 
I Problems (Online) I 
! ! 

Online C 
Compiler 

Figure 1 Programming course structure. 

Since the inception of the Bologna Process at our School 
in 2010, there has been an tangible increment in enrollment 
with respect to the previous educational system. Since then, the 
maximum number of students enroll each year in our degree pro­
grammes. The high number of newcomers (250-260 students) 
imposes an overload to our department. This number must be added 
to those students who have repeated from previous courses, and 
that represents a substantial volume: 115 students (41.39% of the 
total) in 2011/2012, and 100 students in 2012/2013 (28.17% of 
the total). As statistics reflect, significant failure rates are shown, 
mainly in the Electrical Engineering Degree (34.45% is the average 
of all the previous academic years) and in the Chemical Engineer­
ing Degree (32.07%). However, the failure rate in the Electronics 
and Control Degree is considered within normal rates (19.23%), 
due to two factors worthy of mention: (1) their special predispo­
sition for the programming, and (2) because of their appreciable 
higher access marks than the others two degrees. 

In spite of the increase in incoming students, this has not 
been matched by a corresponding increase in instructors. There­
fore, the ratio of students to instructors has been increased year 
after year, overloading the workload of the instructors with respect 
to the number of assignments and, consequently, the amount of 
assessments. 

Motivated by the large failure rates mentioned before and the 
limited number of instructors, it was decided to introduce the sys­
tem developed as an educational resource during the 2013/2014 
course by first time. The instructors made several changes to the 
original curriculum, which are highlighted with dotted border in 
the Figure 1; (1) 4 online practices over the 9 in total were made 
available to perform them compulsorily through the online com­
piler proposed, and (2) a set of 40 extra exercises classified by 
different tags were published with the aim to serve as a comple­
ment to the private work at home. The results obtained during the 
pilot experience are detailed in Results section. 

SOFTWARE ARCHITECTURE 

Our department has a Weblabs Portal where remote laboratories of 
different subjects are integrated. Among them, Automatic Control, 
Digital Electronics, and Programming. Similar Internet-based net­
works of facilities are been used for practical learning activities in 
engineering education in the universities worldwide [28-31]. The 

web platform used is Liferay Portal Community Edition, dis­
tributed under free software license. This platform is the common 
point of access for students of any laboratory, and offers lots of 
advantages. Besides solving the User Management (accounts, per­
missions, profiles, roles), Liferay is a powerful tool that includes 
a large set of components for creating forums, blogs, and wikis, 
among others, similar to any CMS (Content Management System). 

At the same time, Liferay lets an easy LDAP (Lightweight 
Directory Access Protocol) integration. In this way, the Weblabs 
Portal has been configured in order to connect to the University's 
central repository to authenticate users using the corporate LDAP. 
This is an advantage because it solves the authentication in every 
labs integrated into this Portal, allowing users to login with the 
same username and password that for the rest of the university 
services. 

Technologies 

This section describes briefly the set of technologies that have been 
used during the development phase, both server and client side (see 
Fig. 2). 

On the other hand, Figure 3 shows a scheme of the archi­
tecture of the application. As the figure reflects, both students 
and instructors access to the C compiler through the Weblabs 
Portal using simply any web browser (Firefox, Chrome, Inter­
net Explorer, Opera, etc.). The application runs in a GNU Linux 
computer, concretely in an Ubuntu Server, where the following 
software packages have been installed: 

• GCC Compiler. GCC (GNU Compiler Collection) is an inte­
grated distribution of compilers for several major programming 
languages: C, C++, Java, Fortran, and Ada, among others. The 
proposed application only uses the front end for C to compile 
the code and execute the programs. 

• Node.js. It is aplatformbuilt on Chrome's JavaScript runtime for 
easily building fast and scalable network applications, especially 
in the server side. It provides asynchronous events and uses an 
event-driven, non-blocking I/O model that makes it very light. 
Then, Node.js is especially suitable to execute many independent 
background processes in a non-blocking way. 

• ExpressJS. It is a framework for Node.js is used to manage 
requests, responses and sessions, among other features. 

• SocketJO. It is a JavaScript library which allows the use of 
the WebSocket protocol. It has two parts; a client-side library 
that runs in the browser, and a server-side library for Node.js, 



Client Side 
HTML + C 

JavaScri 
HTML + CSS 

JavaScript 

Server Side 

Figure 2 Layers of the technologies used in the application, both client and server sides. 

providing full-duplex communications channels over a single 
TCP connection between server and client. 

• Ext JS 4. It is currently one of the most powerful JavaScript 
web frameworks in the client side currently. It uses a model-
view-controller (MVC) architecture and has hundreds of User 
Interface (UI) widgets with support for all major web browsers. 
Different widgets have been used in our application making it 
very attractive. For instance, ItemSelector with drag and drop, 
Grids with paging and sorting, etc. 

• TinyMCE. It is a Javascript HTML WYSIWYG2 editor. It 
allows users to write easily a rich content (text and graphics) 
through the web interface. 

• CodeMirror. It is a versatile text editor implemented in 
JavaScript, specialized in editing code. It has been used to facil­
itate users to write the C programs since it includes features of 
any IDE, like automatic indentation and syntax highlighting. 

• jQuery. It is a JavaScript library which includes features like 
HTML document traversal and manipulation, event handling, 
animation, and much simpler AJAX. 

• MySQL Server. We have designed a relational model for storing 
all the persistent data of the application. MySQL is chosen as 
database server because it is considered the world's most popular 
open source database. 

Finally, it should be stressed that all the software used is 
distributed under free software or for non-commercial use licenses. 
And, consequently, the source code developed of the application 
has been hosted as a free software project available at SourceForge 
website (https://sourceforge.net/p/compiladorc/). 

DESCRIPTION OF THE APPLICATION 

The system gives different levels of access to users, depending 
whether the user is student or instructor. The following sections 
describe in detail the whole system. 

Exercises 

Instructors are responsible for creating exercises using a friendly 
interface and they must specify the following contents associated 

to each exercise: 

• A meaningful and clear title to describe the exercise. 
• The descriptive wording, by means of a WYSIWYG editor, 

which indicates clearly the problem to be solved, that is, what is 
expected from the program to do. 

• One or more tags, necessary to classify it (see more details at 
Tagging section). 

• Source code with the solution of this exercise. The instructor 
writes the program directly in the online editor text and compile 
it. This code is stored into the server and will be used by students 
during their self-assessment process, as it will be described at 
Black-Box Testing section. 

The interface lets instructors to manage the exercises and the 
practices, that is, they can add, edit, delete, publish/unpublish both 
exercises and practices. As it is shown in Figure 4, this interface 
allows the user to see different information: the name of instruc­
tor who created it, the date, the current status, and the list of the 
practices where the exercise is included. 

Instructors have also the possibility to group exercises fol­
lowing some selection criterion, some different topics or several 
difficulty levels, etc. The set of these exercises is registered into 
the system as a "Practice." Therefore, an exercise could belong to 
zero, one or more practices, as it is indicated in the last column of 
the grid at Figure 4. 

On the other hand, students can carry out both individual exer­
cises and full practices. They can select exercises from a list or even 
search exercises by a specific tag (see next section). All the exer­
cises carried out by a student are stored into an individual "Exercise 
Repository" to which they can access through the student interface. 

Tagging. Since this application is able to store multitude of exer­
cises, the authors think that there is a need for classifying exercises 
by categories or also called tags, so that the user would be able 
to search a particular type of exercise. This is useful if a student 
would like to strengthen some particular concept, like for instance 
loops, switch-case structure, pointers, etc. 

There is a list of tags created and maintained by the instruc­
tors, who assign to each exercise as many tags as they want from 
the tag list. 

https://sourceforge.net/p/compiladorc/


Browsers 

Users - Roles 

Student Professor 

fr# V ^ 
: ; r-

•\illl I.R. 
Weblabs 

Portal 

*AY 

Figure 3 Overview of the architecture of the online C compiler. 

I ^ Linux 
. 9 Server 

• ; \ < -

Self-Assessment Process 

The exercises proposed are of short duration and moderate diffi­
culty. These exercises are designed by the instructors so that the 
result is unique for the same input values. For example, possible 
exercises could be assigned as follows: (1) generation of n numbers 
of the Fibonacci sequence, (2) ordering in an ascending form the 
elements of a vector, (3) multiplication of two matrices. The major­
ity of exercises requires interaction with the students through the 
standard input in order to introduce some data, and compulsorily 
prints the results to standard output. 

As it has been mentioned before, the main and the most origi­
nal contribution of this system is that students can self-assess their 
programs. In the next section it is explained in details how the 
proposed system works. 

Black-Box Testing. The method used for the self-assessment is 
called "black-box testing" in computer science. It is a method of 
software testing that examines the functionality of an application 
without peering into its internal structures or workings. As it is 
shown at Figure 5, the student is aware of that a particular input 
returns a certain output but he/she is not aware of how the soft­
ware produces the output. In fact, the program could have different 
codes, that is, a student could use a switch-case structure while 
another one would prefer an if-else structure. In case of loops, the 
student could use while, for or do-while statements. 

The instructors' source code is inside the black box, so their 
programs are never shown to students. They only can see the output 
of the instructor's solution compared to their own output. There­
fore, students are required to design their own tests to check the 

-1 1 Compilador C 
^ Home B Management * £ System * j j j j j Statistics * 

• r 

Q New exercise // Edit exercise 1Q1 Delete exercise (Q, Watch exercise ^ Publish exercise 

Id * Title 

1 Convert from lowercase to uppercase 

2 The largest of three numbers 

3 Multiple of 5 

4 Fahrenheit to Celsius Converter 

5 Find out the acronym 

6 Peseta to Euros Converter 

7 Water invoice 

8 Basic calculator: addition, subtraction, multiplication and division 

9 Find out type of character 

10 Multiplication through additions 

11 Approximation to Pi 

12 Volume of a sphere calculator 

13 Leap year 

14 Count from m to m between two numbers 

15 Fibonacci sequence 

16 Multiplication Tables 

17 Compare two dates 

j • • a _ L 

' 

Instructor 

Raquel Cedazo Leon 

Raquel Cedazo Leon 

Raquel Cedazo Leon 

Raquel Cedazo Leon 

Cecilia Garcia Cena 

Javier Munoz Cano 

Raquel Cedazo Leon 

Cecilia Garcia Cena 

Basil Al+ladithi 

Basil Al+ladithi 

Cecilia Garcia Cena 

Javier Munoz Cano 

Basil Al+ladithi 

Raquel Cedazo Leon 

Cedlia Garcia Cena 

Raquel Cedazo Leon 

Basil Al+ladithi 

i ^ J 

... 

Q Unpublish exercise Filter by tag: 

Creation date 

10/03/2013 18:07:42 

10/03/2013 18:12:02 

20/03/2013 11:59:02 

12/03/2013 12:33:34 

12/03/2013 12:07:12 

20/03/2013 11:56:23 

12/03/2013 12:13:34 

12/03/2013 12:21:43 

12/03/2013 12:28:05 

20/03/2013 16:10:58 

21/03/2013 14:27:42 

20/03/2013 16:51:45 

21/03/2013 14:31:50 

21/03/2013 15:19:17 

21/03/2013 15:37:02 

20/03/2013 16:35:31 

20/03/2013 16:45:29 

nj.*,»t™*~ *r ™ 1H 

Select a tag 

State 

<5> 
y 

y 

<§> 
f 
$ 
y 

y 

y 

y 

y 

y 

y 

• 
• 
• 
y 

* 
User: Raquel Cedazo Leon - Profile 

^ Report bug 

1 v ^ Remove filters 

Practices 

1,7,8 

1,7,8 

1,7,8 

1 

1 = 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

2 

2 

„ 
• 

Instructor -Status: Connected 

Figure 4 Screenshot of the instructor interface in order to manage the exercises. 

file://�/illl


Input 

Black-box 
C Source Code 

Output 

• 

Figure 5 Black-box testing approach. 

validity of the code. The authors choose this method mainly to 
force students to review their code as many times as necessary and 
to try to pass the tests again. It is considered that students will 
assimilate the concepts better which in turns improves the learn­
ing process. Moreover, students will be also capable of designing 
different test cases and achieving a good coverage with black-box 
tests, which means a high percentage of code checked. 

The way that students have to check the correctness of their 
programs is to build their own test cases based on the specifica­
tions and requirements of the exercise. Thanks to the web interface 
developed, students are able to compare their solution with the 
instructor one. When students consider that their program fulfill all 
the test cases, then, they mark themselves the exercise as "Marked 
as solved" through a button in the interface (see Fig. 6). Then, 
instructors can see the exercises done by students. 

An example of how this process is implemented is shown in 
Figure 6. The interface is distributed in different areas: the wording 
on the top, the source code on the middle, the student output con­
sole on bottom left, the instructor output console on bottom right, 
and the input console on bottom in the yellow text area, which 
is the common console input for both student and instructor pro­
grams. For example, as it is shown in the wording of the exercise 

%• CompiladorC 
i.J System ~ 

shown, the student has to generate the Fibonacci sequence of n 
numbers, being n an integer and positive number read by the stan­
dard input. The result indicates a wrong program since the output 
of the student program does not match the output of the instructor 
program, as it can be seen comparing the two output consoles. It 
is expected that the student will change the code and re-compiles 
it to get the proper output. This process, for different input values, 
will indicate to the student if the code is correct or not. 

Statistics 

All the interactions with the system, along with the exact time, are 
registered into the database in order to obtain information about 
the usage of the system and about the performance of the students. 
These statistics can be consulted by the instructors through the 
website. They include: 

• Global information: 

- Total number of exercises marked as solved. 
- Total number of compilations, distinguishing the number of 

wrong and correct compilations as well. 
- Total number of executions. 

• Statistics by exercise. It includes the number of times marked as 
solved, compilations, and executions. 

• Statistics by practice. It includes the statistics of each exercise 
which is part of the practice. 

• Statistics by student. Instructors can select a student and see 
the individual statistics about his/her work, giving the chance 
also of visualizing the source codes of the exercises, that is, the 
"Exercise Repository" of the student. 

A proper interpretation of these statistics is fundamental for 
evaluating the students. For example: how many tests they have 

F Report bug 

« L i 37 - Fibonacci sequence 

fc3 Exercises 
Hg 37- Fibonacci sequence 

Write a program for generating the Fibonacci sequence of n numbers. The n value (integer and positive) 
must be read by standard input. In this serie, each number is the sum of the previous two numbers. The 
first two numbers are 1. 

For instance, for n = 8, the Fibonacci sequence is: 1,1,2,3,5,8,13,21. 

% t Compile • Run Q Run with solution © Cancel | @ Marked as soked 

b 
1 
8 
9 
1G 
11 
12 
13 

scant ("Hid", &n); 
printf ("l\t"); 
for (i=0; i<n; i++) { 
fib = auxl + aux2; 
printf ("%d\t", fib); 
aux2 = auxl; 
auxl = fib; ^ 

} 

Enter the number of terms 
First 8 terms of Fibonacci seri 
1 1 2 3 5 8 

Figure 6 Screenshot of the student interface in order to solve a programming exercise. 



Table 1 Comparison Table of Online Environments for Learning Programming Languages 

The Online Jude [7] 
JEST [11] 
Mookshak [12] 
ALP Laboratory [13] 
VHDL Laboratory [14] 
Web Laboratory [15] 
Matlab Laboratory [16] 
C Laboratory [17] 
C Online Compiler 

Online 
editor 

x 

/ 
X 

X 

X 

/ 
X 

/ 
/ 

Syntax 
highlighting 

x 

X 

X 

X 

X 

/ 
X 

X 

/ 

Plagiarism 
detection 

/ 
X 

X 

/ 
X 

X 

X 

X 

/ 

Battery 
exercises 

of 
for 

self-learning 

x 

/ 
X 

X 

X 

/ 
X 

X 

/ 

Test 
cases 

Automatic 
Automatic 
Automatic 
Automatic 
Automatic 
Self-testing 
Automatic 
Automatic 

Self-testing 

Code 
analyzer 

x 

/ 
X 

X 

/ 
X 

/ 
/ 
x 

done of each exercise, how many wrong compilations they have 
done before executing, the mean time for solving each exercise, 
and which are the easiest and most difficult exercises in general, 
among other useful information. 

Plagiarism 

In this online tool, any student could share his/her code with other 
students through the other external ways (e-mail, chat, pen-drive, 
etc.), and could be copied and pasted instantly onto other user 
account. 

It is not easy to identify plagiarism automatically on distance 
courses. There are tools which detect plagiarism in programming 
based on the similarity of codes [32]. However, in this framework, 
it is not considered as a really decisive tool since the exercises are 
simple and the solutions are in most cases very similar. Therefore, 
the approach is different and consists of analyzing the exact time 
of starting, compiling, and executing a program, and see if the 
difference between times is significantly small. This could be a 
clue that the student has copied the exercise. If this behavior is 
repeated for different exercises, it can be considered as a real case 
of plagiarism. This has been the starting point set up in order to 
detect possible copies in the system. 

During this first year of working, it was detected that 18 
(6%) of the total of 301 students copied the majority of their pro­
grams, which reflects the need of including methods for detecting 
plagiarism cases. 

Bug Reporting 

Through the application itself, students can report errors and bugs, 
both technical (i.e., unexpected behavior at the application) and 
about the correctness of the exercises if the solution of the instructor 
is wrong. Users have a "Report bug" button accessible from the 
interface (see Fig. 6) and let users to fill out a form detailing the 
problem encountered, which is notified by e-mail to the webmaster. 
It is worth mentioning that the application was refined during the 
first weeks and some errors in the exercises were modified thanks 
to the bug reporting from the students. 

THE EFFECTIVENESS OF THE PROPOSED C ONLINE 
COMPILER 

In order to examine the validity of the developed compiler, in this 
section we will highlight the main advantages in comparison with 
other existent systems cited in the introduction. 

Some of the advantages mentioned in the introduction about 
the system under study are also present in other many systems. 
Common benefits include immediate feedback, suitability for mass 
courses, 24-h availability, without time or place restrictions, and 
tracking of the students' progress based on the recorded informa­
tion. Table 1 shows a comparison of the remarkable features among 
these systems and the proposed one: 

• As it can be seen, some environments integrate an online editor 
(see column 1—Table 1), so students can program their exer­
cises through the browser and deliver them directly. The rest of 
systems require a submission system to upload the files. 

• Few environments give importance to the syntax highlighting. 
In fact, one system in addition to the proposed one (see column 
2—Table 1) display the source code in different colors according 
to the category of the terms. 

• Although the plagiarism is a common problem in the mass 
programming courses, it is not easy to find copy detection mech­
anisms embedded in all these systems, as it is reflected in the 
column 3. 

• Unlike many other environments, the proposed system contains 
a battery of exercises freely available to the student (see column 
4—Table 1). This has been designed in this way to serve as a self-
learning environment, where students can select any exercise and 
program it as an extra work, apart from the compulsory practical 
assignments. In addition, some systems like our system classify 
and group the exercises by some criteria (category, tags, difficulty 
level, topic, etc.), which enable students to better customize their 
learning. 

• Table 1 also compares these environments with respect to who 
and how to do the test cases. The evaluation of any code 
requires carrying out an exhaustive test set which should cover 
all the project specifications to assure the correctness of each 
assignment. In this aspect, it can be distinguished among those 
environments which integrate automatic evaluation tools, that is, 
the test cases are pre-defined by the instructors, and those where 
students are who must design their own test set in order to check 
whether programs have been implemented properly and work 
correctly. Our system belongs to the second type, less common, 
where students develop an important programming skill and it 
offers them a valuable experience for their future career. 

• Finally, column 6 summarizes the systems that analyze the 
source codes submitted in order to check that certain require­
ments specified in the wording are properly met, as for example 
the usage of a while loop or other elements. This feature supposes 
a better feedback of the programming concepts. 

As a conclusion, it has been clearly seen that our compiler 
outperforms the other system included in Table 1. Although, with 
respect to the "Code Analysis," this characteristic is planned as 
future work in next versions of the software (see Conclusions 
section). 



Failure and Dropout Rates in Practical Assignments 

45 

40 

35 

30 

25 

20 

15 

10 

5 

0 

• Chemical Engineering 

• Electrical Engineering 

Electronics and Automatic Engineering 

i Dropout Rate 

2010 /2011 2011 /2012 2 0 1 2 / 2 0 1 3 2013 /2014 

Figure 7 Percentages of failure and dropout rates in the practical assignments during the different academic years, 
separated by degree. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.] 

RESULTS 

In this section, the results of the case study presented at Case 

Study: Programming Course in Industrial Engineering section are 

exposed. A rigorous analysis was extracted from the database. The 

following results over a total of 301 students who carried out the 

practices were obtained during the 2013/2014 course: 

• 256 students (85%) marked as solved all the exercises of the four 
practices. The rest of students only did some of the exercises 
proposed. 

• A total of 35 students (11.62%) of all degrees failed the practical 
exam, a much smaller percentage than previous years: 20.9% 
in 2010/2011, 23.37% in 2011/2012, and 20.77% in 2012/2013. 
The Figure 7 shows the failure rates separated by degree. As it can 
be seen, the students of Chemical and Electrical Engineering are 
those with the highest failure rate, following the same trend for all 
academic years. The reasons of the difference with the students 
of Electronics and Automatic Control Engineering are exposed 
at Case Study: Programming Course in Industrial Engineering 
section. Notice that the statistics show a marked improvement 
in the last year thanks to the use of the system presented. 

• Particularly important is that the dropout rate was greatly dimin­
ished, as it is shown at Figure 7. 

• The students required an average of 13.3 executions until they 
marked the exercise as solved. 

• Regarding to the extra exercises proposed, an appreciable per­
centage of 54% students did not participate. However, students 
who carried out some exercise, did an acceptable average of 9.4 
extra exercises. 

• 18 students (6%) copied the majority of their practices (as it was 
explained at Plagiarism section). 

At the end of the practices, an obligatory online questionnaire 

was designed to measure students perception of the tool. The total 

of 301 students answered anonymously to 10 questions, within a 

scale from 0 (the minimum value) to 10 (the maximum value). The 

average of the responses are reflected in Table 2. 

Table 2 Results of the Student Feedback Questionnaire During the 
2013/2014 Course. ATotal of 301 Students Answered the Questionnaire 

Question 
Average 

(Scale 0-10) 

Ql. Do you think that the Online Compiler is an useful 8.8 
tool to learn programming? 

Q2. Before using this tool, indicate what level of trust you 4.8 
had programming. 

Q3. After using this tool, indicate what level of trust you 7.7 
had programming. 

Q4. Do you consider useful the instructor's output console 8.0 
in order to check the correctness of your exercises? 

Q5. Thanks to this tool, I have improved the "Problem 7.4 
Solving" competency. 

Q6. Thanks to this tool, I have improved to "Test and 7.2 
verify software". 

Q7. Indicate if it is a friendly interface. 9.2 
Q8. Indicate if this Online Compiler could substitute the 7.9 

Desktop Compiler used during the course. 
Q9. Would you recommend this tool to another student? 8.4 
Q10. Assess the global level of satisfaction with the 8.1 

Online Compiler. 

http://wileyonlinelibrary.com


Analyzing the results, the first experience is considered as 
a successful one in two fold; firstly, due to the increase of the 
number of students who passed the practical exam and secondly 
because of the high satisfaction level shown by the students in the 
questionnaire. Concretely, through their answers (see Table 2), it 
can be concluded that students consider the Online Compiler as 
a helpful tool to learn programming, promoting also their trust 
and the skill for "Solving Problem" and "Testing and Verifying 
software." Even though, an important percentage of students think 
that the Online Compiler can be considered as a substitute of the 
Desktop Compiler. In this sense, the authors are aware that certain 
improvements are required to achieve a tool totally self-sufficient, 
which is explained in the next section. 

CONCLUSIONS 

An innovative online C compiler has been presented in this paper. It 
has been used by instructors to propose programming exercises and 
practices, store their codes and evaluate the work of the students 
analyzing the statistics gathered in the system. 

On the other hand, the application allows students to carry 
out the exercises and practices totally through a web browser, com­
piling and running their programs without installing any IDE. It 
includes other useful features, such as search exercises by tags and 
store code in a repository. And, what is most important and origi­
nal, is that it offers to the students a mechanism for self-assessment. 
This method consists of black-box tests, through which they must 
test their programs simultaneously against the instructor's code, 
comparing both outputs. Indirectly, this tool promotes the student 
to get one of the skills required for the software developer, that is, 
software testing. 

This tool is specially indicated for classrooms with a high 
number of students, since currently instructors are not able to 
manually supervise the students' work and give them feedback. 
Therefore, it can be a very useful extra tool for any C program­
ming course, so students can carry out exercises and get instantly 
an indicator of correctness. This would also allow totally online 
programming courses, since it would serve as a platform for 
instructors and students to exchange exercises and facilitate the 
evaluation. 

During the 2013/2014 course, the Online C Compiler has 
proved to be a useful tool for the first programming course at three 
different degrees. As it has been exposed at Results section, the 
results has been highly positive: the failure rate decreased with 
respect to previous years. This is mainly because of the increased 
number of compulsory practical exercises done by each student 
through the system presented. The dropout rate also was decreased 
considerably due to important aspects such as the student moti­
vation for an online environment and greater time flexibility. In 
addition, instructors have also shown greater satisfaction as it gives 
them for better tracking of the student. 

Although it is already a full and robust system, the authors 
have proposed three future lines of work: 

• On one hand, it is desired to provide an online debug interface 
using GDB, the GNU Debugger, which is the standard debugger 
for the GNU Operating System. The debugger is a fundamental 
piece for any software developer, since it helps to find and reduce 
the number of bugs. Therefore, the authors consider it as an 
essential tool to be developed in short time. 

• A source code analyzer will be included, based on static rule-
set that identifies potential problems or inefficient code, that is, 

dead code (unused local variables, parameters and functions), 
empty if/while statements, and duplicate code. This would allow 
students to realize potential improvements in the code and, con­
sequently, learn to program better. 

• And finally, an automatic correction of the exercises will be 
added as a complementary tool for the instructors, to provide 
automated grading to the system. 

ACKNOWLEDGMENTS 

The authors would like to acknowledge and thank Leandro DEL 
OLMO COTO, student of our School who developed the software 
of the system presented. The source code is maintained and hosted 
as a free software project at SourceForge (https://sourceforge.net/ 
p/compiladorc/). 

http://sourceforge.net/

