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Abstract

Material property has great importance in deformable body simulation and medical robotics. The 

elasticity parameters, such as Young’s modulus of the deformable bodies, are important to make 

realistic animations. Further in medical applications the (recovered) elasticity parameters can 

assist surgeons to perform better pre-op surgical planning and enable medical robots to carry out 

personalized surgical procedures. Previous elasticity parameters estimation methods are limited to 

recover one elasticity parameter of one deformable body at a time. In this paper, we propose a 

novel elasticity parameter estimation algorithm that can recover the elasticity parameters of 

multiple deformable bodies or multiple regions of one deformable body simultaneously from (at 

least two sets of) images. We validate our algorithm with both synthetic test cases and real patient 

CT images.
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1 Introduction

Material properties are important in depicting the characteristics of virtual objects for 

realistic computer animations of soft bodies. In addition, virtual surgical simulation has also 

been increasingly used for rapid prototyping of clinical devices, pre-operation planning of 

medical procedures, virtual training exercises for surgeons and medical personnel, etc. And, 

tissue elasticity properties are important parameters for developing accurate and predictive 

surgical simulation. Futhermore, to compute desired and accurate force feedback for haptic 

display requires knowledge about the deformation of soft tissues and organs, which are 

characterized by patient-specific elastic parameters for different tissues and organs.

Elastography [1] was first proposed to determine the elasticity properties by measuring the 

deformation of the tissue due to the application of the known external forces. The known 

external forces are the boundary condition needed to recover the exact elasticity parameter. 
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Originally, the deformations were measured using ultrasound imagery [2], but such 

techniques produced coarse, two-dimensional representations of the moving tissue. More 

sophisticated imaging techniques, such as magnetic resonance imaging (MRI) [3, 4]and 

computed tomography (CT), produce three-dimensional images of the deforming tissues, 

allowing a more accurate measurement of displacement.

Toward realizing the concept of 3D physiological humans, we propose perhaps one of the 

first elasticity parameter estimation algorithm for multiple, heterogeneous deformable 

bodies simultaneously using medical images1. Our approach is based on a multi-

dimensional optimization method that iteratively performs deformable body simulation 

using a finite element method on reconstructed organ models with the continuously refined, 

estimated elasticity parameters. The geometric models of organs are reconstructed based on 

low-resolution CT images. Our objective function measures the sum of the distance between 

the nodes of the organ surface. In contrast to elastography methods [5, 6, 7], the only 

information we need is the displacement of the nodes of the organ surface. We do not need 

every pixel-wise displacement vector, thus no extra procedures need to be performed on the 

patient. Two sets of (medical) images are sufficient to recover the elasticity parameters 

using our method. Therefore, our method can be widely applicable to different imaging 

technology. It can be used for animatino of soft bodies (see supplementary video) and 

possibly for cancer staging using only low-resolution CT images.

2 Related Work

In computer graphics, extensive research have been done for deformable body simulation [8, 

9, 10, 11]. Researchers have also been studying methods for designing simulation with 

material properties [12, 13, 14, 15] and for realistic bio-structure simulation [16].

In medical applications, there are mainly two kinds of soft tissue elasticity properties 

estimation method [17]: invasive and non-invasive techniques. The invasive methods rely on 

a device to measure the displacement and force response [18, 19, 20]. These methods take 

organ samples either out of the human or animal bodies and perform the experiment in-vitro 

(out side the body) or do the procedure in-situ (inside the body). The collected data are then 

used to solve the inverse problem, which is to recover the elasticity properties, by 

constructing a polynomial interpolation [21] or by using a finite element model [22, 23, 17].

The non-invasive methods mostly base on image analysis techniques to measure the 

displacement. In the 1980s, several methods were proposed to measure the motion of the 

soft tissue, such as the one proposed by Wilson and Robinson [24] using radio frequency M-

mode signals and the one proposed by Birnholz and Farrell [25] using ultrasound B-scans. 

Researchers have also used medical image analysis on 2D ultrasound and/or MRI images to 

estimate the elastic parameters of soft tissue [26, 27, 28].

In the area of elastography, researchers [5, 6, 7] proposed algorithms based on the distance 

between two medical images. By solving the least square problem, the elasticity parameters 

1In this paper, we use computed tomography (CT) images. But, the algorithm is also applicable to magnetic resonance imaging (MRI) 
images.
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are recovered. Van Houten et al. [4] used elastography methods to estimate the Young’s 

modulus distribution of a 2D area, then later extended to solve three-dimensional elastic 

parameter distribution using MRI [29]. These methods need high-resolution displacement 

fields to recover the elasticity parameter [27], where the displacement field is typically 

obtained through an external device using a vibration actuation mechanism. For organs that 

are located deep-seated inside a human body, the vibrator may need to be placed inside the 

organ [30], making the procedure much more complex and possibly uncomfortable for the 

patient.

Other than distance field based methods, there are also other measurement algorithms. The 

modality-independent elastography (MIE) method [31] measures the elasticity parameters 

by maximizing the image similarity based on a number of landmarks. However, this 

technique does not apply to all the soft tissues, as landmarks cannot always be found in 

some of the organs such as prostate. Statistical and machine learning algorithms have also 

been used to classify soft tissues and estimate the parameters using multi-spectral MR 

images [32].

Although the existing elastography methods can provide an estimation of the elasticity 

parameter distribution, they require high-resolution magnetic resonance medical images and 

a device to measure the external force exerted on the soft tissues, which is not always 

possible or practical. Lee et al. proposed the first model to estimate the Young’s modulus 

based on low-resolution CT images and no external force is needed to set the boundary 

condition [33]. By optimizing the distance between the deformed and the reference surface 

meshes, the elastic parameter is estimated. However, this method can only recover the 

elasticity parameter of one organ. In contrast, our work can recover the elasticity 

paramenters of multiple, heterogeneous soft bodies simultaneously using a multi-

dimensional optimization method.

3 Method

We propose a novel method to automatically estimate elasticity parameters of multiple 

organs using only images, such as those from computed tomography (CT) imaging. Our 

approach is based on multi-dimensional optimization and simulation of multiple deformable 

bodies using finite element methods. For each optimization iteration, a finite element 

method is used to assess the deformation of the organs. The objective function is based on 

distance between the initial, reference mesh and the deformed surface mesh. This objective 

function is evaluated and its gradient is used in the multi-dimensional optimization 

algorithm to search for the optimized elasticity parameters that minimize the value of the 

objective function. The flow chart of the optimization process is shown in Figure 1.

A three-dimensional reconstructed model of the organs and the signed distance map of the 

deformed organs are the input of our algorithm. The three-dimensional model is 

reconstructed from the segmented CT images using ITK-SNAP [34]. After each 

optimization iteration, the elasticity parameters are updated and used by the finite element 

model. The simulation-based parameter estimation algorithm is terminated when the 

optimization converges, which usually takes only a few iterations.
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3.1 Forward Simulation

The forward simulation in our method computes the displacement vector u using the 

elasticity parameters recovered in the inverse problem. The displacement vector u is then 

used in the inverse problem to evaluate the objective distance function (Eqn. 4). Our 

simulation framework uses a linear static finite element method [35] (Eqn. 1). The weak 

formulation for elasticity problem is given,

(1)

where u is the displacement vector and t is the boundary condition(traction act on the 

boundary Γ). For quasi-static deformation process the ü = 0. We can rewrite Eqn. 1 as,

(2)

with the first part of the equation as the internal force and the second part of the equation as 

the external force.

We use linear elastic material model. For isotropic linear elasticity, the stress strain relation 

is defined as,

(3)

where σ is the stress tensor, ε is the strain tensor and matrix D is defined by the material 

elasticity parameters. We use Young’s modulus E and Poisson’s ratio ν for describing 

material properties. Previous elastography methods use external forces as the boundary 

condition. Our method, in contrast does not need external forces. The initial boundary 

condition in our algorithm is the known displacement vector of the surface mesh. This 

boundary condition is applied only to the nodes of the surface mesh. When the three-

dimensional model deformed, the force generated by the deformation will drive the 

simulation.

3.2 The inverse problem

The inverse problem is the process of elasticity parameter estimation. Our method is based 

on the multi-dimensional optimization method. By solving the least square problem 

iteratively, we recover the elasticity parameter. We then use the distance between the initial, 

reference surface mesh and the deformed surface mesh to iteratively update the objective 

function.

3.2.1 Distance based objective function—As our simulation framework is based on 

the low-resolution CT images, only the displacement of the boundary of the soft tissue is 

known. Our objective function (Eqn. 4) is constructed using the sum of the distance between 

the nodes of initial, reference surface and that of the deformed surface. By minimizing the 

value of the objective function, we find the optimal elasticity parameters μ.
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(4)

where m is the mth organ and N is the number of the organs that are in the simulation scene. 

d(ul + Δul, ur) is the bidirectional Hausdorff distance between deformed surface mesh Sm 

and the initial, reference mesh Sr. μm = Em in which Em is the Young’s modulus of the mth 

organ. Our method can be extended to optimize more than one parameters. We could also 

include the Poisson’s ratio into μm. The μ that minimizes the objective function is the 

optimized set of elasticity parameter.

3.2.2 Multi-dimensional numerical optimization method—We propose to use multi-

dimensional optimization method to recover the elasticity parameters. Our three-

dimensional model can have a large number of nodes, so a significant amount of memory 

would be needed to store the exact Hessian matrix for the Newton’s optimization method. 

Therefore, to solve the least square problem, we choose the Limited Memory Quasi-

Newton’s method. Using this method, the approximation of the Hessian matrix is 

maintained instead of the exact Hessian matrix. For each step of this BFGS method [36],

(5)

where Hk is the approximated Hessian matrix, xk is the variable to be optimized, Φk is the 

objective function value, and k denotes the kth optimization iteration and ∇Φ is the gradient 

of the objective function. To compute the gradient, the partial derivative of Φ with respect to 

the elasticity parameter, the Young’s modulus of the mth organ.

4 Experiment

We have implemented our algorithm and performed three sets of experiments to evaluate its 

accuracy under different conditions using both two synthetic sets of models with known 

parameters to validate the approach and a reconstructed set of organs from CT images to 

illustrate its robustness.

4.1 Recovering Known Values

The first experiment is designed to test the accuracy of the algorithm, if the three organs 

sharing boundary. As the number of the organs increases, the problem becomes even more 

complicated.

4.1.1 Model Construction—We used 3-concentric spheres to build the test model in 

experiment I. In order to measure the elastic parameter of sphere 1, for the area between 

sphere 1 and sphere 2 and the area between sphere 2 and sphere 3, tetrahedralization is done 

within sphere 1, the area between sphere 1 and sphere 2 and the area between sphere 2 and 

sphere 3. The sliced view of the three-dimensional model is shown in Figure 3. The 

following table is generated when the three areas are all deformed by slightly less than 10%.
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4.1.2 Result—The result of this experiment is shown in Table 1. In this experiment we 

increase the number of ”organs” to test the accuracy of our algorithm. The result of this 

experiment is affected by both the fact that the spheres are sharing boundaries and the 

number of the spheres. Under these complicated conditions, the error rate of our algorithm is 

generally less than 5% (no more than 15% for the highest stiffness values) when the 

deformation is less than 10% within each of the three regions respectively.

4.2 Multiple Reconstructed Organs

The second experiment is designed to test the robustness of our algorithm with more scene 

consists of multiple, separate organs in contact with each other. The simulation scene 

includes multiple organs within a male’s pelvis area. The surface meshes of the prostate, 

bladder, and rectum were reconstructed from the patient’s CT images. These reference 

surface meshes were used to construct the tetrahedral mesh of the simulated scene. A slice 

view of the tetrahedral mesh is shown in Figure 2. In the tetrahedral mesh, the rectum was 

modeled hollow inside, while the prostate and the bladder were modeled as a continuum 

represented by tetrahedral elements. The prostate and the bladder are two organs that we use 

to recover the elasticity parameters.

The signed distance field within each organ was computed using the initial, reference 

surface mesh and the deformed surface mesh. The deformed surface mesh was generated 

based on the displacement of the nodes on the surface mesh. We used the initial 

displacement to set the initial forces as the boundary condition. Then the boundary condition 

was used to generate a displacement field, which was computed by applying the boundary 

condition to the three-dimensional model during each iteration of the optimization. The 

model was deformed using the current set of elasticity parameters. For the synthetic test 

case, we generate the deformed surface by using the set of “ground truth” parameters. We 

then run our algorithm on the resulting deformed surface to estimate the elasticity 

parameters and compare these recovered values with the ground-truth values as shown in 

Table 2.

In the experiment we fixed the Poisson’s ratio of the material only optimized the Young’s 

modulus of the organs. The choice of Poisson’s ratio was taken from the literature [37, 38, 

39].

4.2.1 Model Construction—We use patient specific medical images to reconstruct the 

organ models. The CT images was segmented using ITK-SNAP [34]. After segmentation, 

we reconstruct the surface mesh of the prostate, bladder and rectum also using ITK-SNAP 

[34]. The surface meshes are shown in Figure 6. Then, we used TetGen [40] to generate the 

tetrahedral mesh based on the surface mesh of the organs and a bounding box, with the 

rectum being hollow inside. We used the deformation of the rectum to set the boundary 

condition. The deformed prostate, bladder surface mesh are used to compute the updated, 

signed distance map.

4.2.2 Result—We first did a search of the initial relative Young’s Modulus. The initial 

value affects the optimization result and several initial values are used to ensure 

convergence and determine the global minima. The experimental result is shown in Table 2. 
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In our experiment, we initially assigned the same Young’s modulus to both organs, the 

prostate and the bladder. The three dimensional models are deformed based on the boundary 

condition we provided and the Young’s modulus we assigned to the two organs. The 

boundary condition was defined according to the two surface meshes, which were 

constructed using two CT images taken from the same patient in different time. From the 

table, we can observe that the relative errors of the bladder are generally smaller than those 

of the prostate. From [41], we know that the stiffness of the cancer tissue tend to be much 

more than 10% of the normal tissue, while the error of our algorithm is less than 10% in 

early all cases. Thus, given the relative errors of our algorithm, it can still detect cancer (see 

next). This result also shows the limitation of the linear elastic material model. The accuracy 

is affected by the amount of deformation of the organs.

4.3 Application to Cancer Staging

We use multiple sets of CT images from each of eight patients (totaling 180 sets of images) 

in our real cancer correlation experimental study. The simulation scene which includes 

multiple organs within a male’s pelvis area is the same as the second experiment.

The experiment is designed to determine the correlation between the prostate cancer T stage 

and the elasticity of prostate and the surrounding organs. The T-stage is defined in TNM 

(Tumor, lymph Nodes, Metastasis) system [42] which is a common cancer staging system. 

The result of our experiment is shown in Figure 7. Using the box plot, we can observe that 

the mean of both the prostate’s and the bladder’s Young’s increase with the cancer staging 

(the resulting Young’s modulus is the average value of the entire organ). We further analyze 

the statistical signficance of this correlation between the T-stages and the elasticity of 

prostate and bladder. The resulting Pearson correlation coefficient for prostate’s Young’s 

modulus and T-stage is 0.658 and the p-value for two-tailed probability is 3.16 × 10−5, 

which indicate a strong correlation between the Young’s modulus of the prostate and the 

cancer T stage. The resulting Pearson correlation coefficient for bladder Young’s modulus 

and T-stage is 0.481 and the p-value for two tailed probability is 4.60 × 10−3. This result 

indicates that the Young’s modulus of the bladder increases with the stages of prostate 

cancer, but they are not strongly correlated. Our findings reconfirm the studies [43] that 

prostate cancer increases the probability of bladder cancer. As cancer continues to advance 

to higher stages, it spreads to neighboring tissues.

4.4 Discussion

We have used a range of deformation that is larger than the normal tissue deformation to 

stress test our algorithm and to analyze the relationship between the degree of accuracy vs. 

the amount of deformation. This analysis helps us understand when non-linear models 

should be used. Additional sensitive analysis with respect to segmentation, simulation 

resolution (i.e. the size of mesh), and use of nonlinear FEM model can also be performed to 

provide additional information to the users. We ‘jumpstart’ the iterative optimization 

process with some range of default values and the algorithm usually converges quickly 

within less than 10 iterations in practice. Our implementation currently addressed the 

possibility of multiple solutions by using multiple (3–5) initial values sampled over a wide 

range (50–300) of possible values (say 50, 150, 250) and use multiple sets of the image data 
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from few different days to compute the average values, after eliminating possible ’outliner 

value(s)’. With this approach, our algorithm is able to find the elasticity parameters that are 

very close to the ’ground truth’ values in practice.

5 Conclusion and Future Work

In this paper, we presented a novel multi-body elasticity parameter estimation method using 

the low-resolution CT images. As our method do not require any external forces to be 

measured and only the deformation of the organ surface is needed, it can be applied to 

organs that locate deepseated in the human body. There are limitations, however. The 

amount of deformation of the soft tissue can affect the accuracy of the algorithm. The larger 

the deformation the higher the relative error is from the estimation. This is due to the fact 

that we have adopted a linear, static finite element method and linear elastic material model. 

Linear models are generally considered accurate and sufficient when the deformation is 

small and within a certain range where linearity assumption is applicable. Our experimental 

results support this observation. The linear elastic material model is not suitable for the 

simulation of human organs when they undergo large deformation. In the future, we plan to 

adopt a more complex, non-linear elastic material model for soft tissue simulation, such as 

Mooney Rivlin model. The accuracy may likely be higher when the amount of deformation 

is significant, though we expect the computation cost to increase as well.

The algorithm we proposed in this paper is based on a multi-dimensional optimization 

method, which can also be used to estimate multiple elasticity parameters of a single organ 

of multiple, heterogeneous tissue properties for different regions of a (human) body. 

Because of the importance of Young’s modulus in noninvasive cancer detection, we choose 

to estimate this parameter for multiple organs simultaneously. However, Poisson’s ratio has 

also been suggested as a significant indicator for breast cancer. Therefore, in the future we 

plan to further study the accuracy of multi-dimensional optimization method and hope to use 

it to estimate multiple elasticity parameters of a single organ for more accurate cancer 

screening and grading.
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Figure 1. 
The flow chart of the optimization iteration. The initial guess of the elasticity parameter is 

provided based on standard tissue values, prior to the start of the optimization. For each 

optimization iteration, the tissue deformation is recomputed using an FEM simulation. The 

value of the distance objective function is also re-evaluated. At the end of each iteration, the 

elasticity parameter is updated and used by the finite element model to continue the 

simulated-based optimization process.
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Figure 2. 
a sliced view of the tetrahedral mesh
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Figure 3. 
A sliced view of the tetrahedral mesh of experiment I. The image on the left shows the only 

the tetrahedral mesh of the spheres while the image on the right shows the complete 

tetrahedral mesh.
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Figure 4. 
In this experiment, we show the relative errors (in %) of our algorithm vs. the amount of 

deformation of sphere 1 (left), sphere 2 (middle), and sphere 3 (right). And the three lines 

represent the experiment result with different ground truth elasticity values.
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Figure 5. 
(a) shows the reference surface mesh, (b) shows the deformed surface mesh using the 

elasticity parameter we provided, and (c) shows the deformation from reference meshes to 

the deformed meshes.
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Figure 6. 
(a) shows the reconstructed three-dimensional tetrahedral mesh, (b) (c) (d) shows the 

segmentation result of the CT image of the pelvis area in which the red, green and yellow 

circles show the prostate, bladder and rectum.
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Figure 7. 
This figure shows the box plot of the estimated Young’s Modulus of the prostate of the eight 

patient.
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Figure 8. 
This figure shows the box plot of the estimated Young’s Modulus of the bladder of the eight 

patient.
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