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Abstract
With the development of virtual reality technol-
ogy, surgery simulation has become an effective
way to train the operation skills for surgeons.
Soft tissue dissection, as one of the most fre-
quently performed operations in surgery, is in-
dispensable to an immersive and high fidelity
surgery simulator. Energized dissection tools
are much more commonly used than the tradi-
tional sharp scalpels for patient safety. Unfor-
tunately, the interaction of such tools with the
soft tissues has been largely ignored in the re-
search of surgical simulators. In this paper, we
have proposed an energized soft tissue dissec-
tion model. We categorize the soft tissues into
three types (fascia, membrane and fat) and sim-
ulate their physical property accordingly. The
dissection algorithm we propose employs an
edge-based structure, which offers an effective
mechanism for the generation of incisions dis-
sected with energized tools. The mesh topology
will not be changed when it is dissected by an
energized tool, rather it is controlled by the heat
transfer model. Our dissection method is highly
compatible and efficient to the physically based
simulation resolved by a pre-factorized linear
system.
Keywords: energized dissection, deformation
simulation, strain limiting, surgery simulation

1 Introduction

Soft tissue dissection, which is defined as the
separation of tissues with haemostasis, is one

Figure 1: Fascia and fat dissection in real
surgery

of the most frequently performed operations in
surgery. It mainly consists of three steps: ex-
posure, stabilization and division [1]. Current
virtual reality based surgical simulators usually
treat the soft tissues as homogeneous elastic ma-
terials and the cutting tools as a geometric plane
which simply dissects the intersected meshes in
a straightforward manner. Unfortunately, this
simplification is not computationally efficient
and does not reflect the reality.

To reduce the risk to the patient, the con-
tact between soft tissue and sharp instruments
should be minimized purposefully. Mechanical
energy based dissection systems have been in-
corporated into modern surgery, such as elec-
tricity, diathermy, ultrasound etc. With the ener-
gized tools, dissection is performed depending
on the amount of energy the soft tissue receives
and its material property. As the material of soft
tissue is composed of fat, fascia, lymph, nerve
etc., some of the dissected area may still con-
nect after dissection because different tissues re-
act differently to high energy, see figure 1. Such
complex incision generated by energized tools is
challenging for real-time simulation.

In computer graphics research, the energized



tool based dissection has not been widely stud-
ied yet. Most of the researches focus on accurate
cutting which is not suitable for the energized
dissection. The newly generated degree of free-
dom caused by topology changed method will
heavily influence the performance of physics
simulation which is dependent on the solving of
pre-factorized linear system.

In this paper, we propose an energized soft
tissue dissection model. Our main contributions
are:

• Proposing different physically based simu-
lation strategies for three kinds of soft tis-
sues: fascia, membrane and fat, rather than
treating the soft tissues as uniform elastic
materials.

• Proposing a computationally efficient edge
based dissection model.

• Proposing an energized tool based dissec-
tion using heat transfer model.

2 Related Works

Deformation simulation is very important for
the modeling of soft tissue. For a complete sur-
vey, readers can refer to [2][3][4]. Currently, the
real-time deformation techniques such as mass
spring method [5], finite element method [6],
position based dynamics [7][8], projective dy-
namics [9] have been widely used in surgery
simulation [10] and anatomy modeling [9][11].

The force based method such as the mass
spring and finite element methods suffers from
the instability problem. Mass spring method can
not capture the volume effect of soft tissue. Fi-
nite element method can provide more accurate
physics simulation but it is computationally ex-
pensive because it contains complex matrix op-
erations [12]. Position based dynamics (PBD)
enjoyed wide application due to its uncondi-
tional stability and high efficiency. However,
PBD suffers from low convergence rate and in-
accuracy. To improve accuracy, Jan Bender et
al.[13] incorporated continuous material energy
into PBD framework based on the energy reduc-
tion. To improve the convergence, a hierarchy
multigrid structure [14] and unified solver [15]
has been proposed. The accuracy of PBD is de-
pendent on the iteration counts. However, the

linear momentum of the object will be washed
away by using large literation count [9].

The projective dynamics [14] provides a fast
convergent, efficient and accurate solver based
on a two steps numerical optimization. As a
general form of PBD, it conserves the momen-
tum by finding a compromise between momen-
tum and internal elastic energy. However, the
efficiency of projective dynamics solver will be
influenced by the topology change because the
solution is dependent on a pre-factorized linear
system. In this paper, we proposed an efficient
dissection method which can reduce such influ-
ence.

Wu et al. [16] gives a comprehensive intro-
duction to the recent cutting techniques used
in physics based simulation. Sifakis et al.[17]
proposed a cutting strategy for arbitrary tetrahe-
dron. However, such topology changed meth-
ods [18][19] are not efficient for physical sim-
ulation especially for the global solving based
method. To improve the influence caused by
topology change, Wu et al. [20][21][22] pro-
posed fast topology modification optimization.
To improve the simulation efficiency, the hybird
dissection methods [23][24] and implicit shape
based dissection [8] is developed. To simulate
multi-layer material cutting, spring based multi-
layer soft object dissection has been proposed
in [25] which uses implicit adhesive springs to
connect each layer. However, those techniques
can not well simulate the incision pattern from
real surgery shown in figure 1. That is the prob-
lem we want to solve in this paper.

3 Soft Tissue Structure Overview

We categorize the soft tissue into three groups:
fascia, membrane and fat. The fascia refers
to a band of connective tissue beneath the skin
that attaches, stabilizes, encloses, and separates
muscles and other internal organs [26], such as
ligaments, aponeuroses, and tendons. The fas-
cia is mainly composed of fibrous connective
tissue which encloses packed bundles of colla-
gen fibers parallel to the direction of pull. The
elastin confers stiffness to the fascia and store
most of the energy. Due to the inextensibility of
the collagen fibers, the tension caused by the taut
fascia will grow when the collagen is gradually



Figure 2: The connectivity between different
types of soft tissues

pulled and stretched in one direction.
For the fatty tissue, it mainly includes water,

carbohydrate and protein which makes it like a
hyperelastic object combined with damping re-
sistance. When the stretch of fatty soft tissue
exceed certain limit, it will not recover to its ini-
tial shape. Figure 2 shows the overall structure
of our multi-layer soft tissue.

The physical property of membrane is similar
to fascia. Therefore,

• the fascia and membrane is simulated using
anisotropic strain limiting for normal and
shear strain. The strain direction is depen-
dent on the direction of the tissue fibers.

• the fatty tissue is simulated using hypere-
lastic and plastic model.

4 Deformation Model

Before introducing the deformation model, we
give the definition of some variables in table 1.

Integration scheme is important for a dynam-
ics system because it influences the stability and
accuracy of the system. Explicit integration will
cause instability under large time step or high
stiffness. Implicit integration scheme can over-
come this issue. The implicit integration update
the positions and velocities as:

vt+1 = vt + tM−1(fint + fext) (1)

xt+1 = xt + ∆tvt+1 (2)

where ∆t is the time step. The following equa-
tion can be derived from equation 1 and 2:

M(xt+1 − xt −∆tvt) = ∆t2(fext + fint) (3)

Name Description
n The number of vertices. n ∈ R
v Velocity state vector in current config-

uration, which assembles all vertices’
velocity into one column vector. v ∈
R3n

x, X Position state vector in current config-
uration (x) and rest configuration (X),
which assembles all vertices into one
column vector. x,X ∈ R3n

xi, Xi The ith vertex position. xi,Xi ∈ R3

xt The position state at time t. xt ∈ R3n

fint(x),
fext(x)

The position independent internal force
(fint(x)) and external force (fext(x))
state vector. fint, fext ∈ R3n

C The constraint set, which contains N
constrains (C1, C2...CN )

M,Mi M is the mass matrix. M ∈ R3n. Mi is
the mass matrix for the ith node.

Mm Mm is the mass matrix for the nodes
involved in the mth constraint Cm ∈ C

x̃m Vertices involved in the mth constraint
Cm ∈ C.

E(x) Total internal energy generated by
fint(x), E(x) ∈ R, fint(x) = −∇xE(x)

Em(x) The internal energy generated by the
mth constrain Cm, Em(x) ∈ R

xpm Auxiliary position variable for con-
straint Cm ∈ C, xpm is the projection of
x̃m onto its corresponding undeformed
constraint manifold.

Table 1: Mathematic definitions

Solving this equation equals to find the critical
point of the following minimization problem:

min
xt+1

1

2∆t2
‖M

1
2 (xt+1 − st)‖2F + E(xt+1) (4)

where st = xt+∆tvt+∆t2M−1fext actually re-
flects the momentum under the influence of ex-
ternal forces. The total internal energy equals
to summation of the energies generate by all the
constraints E(xt+1) =

∑
Cm∈C Em(xt+1). To

make the notation easy to understand, we will
represent xt, st using x and s.

In the projective dynamics [9], the projective
means it projects the vertices which involved
in a constraint (current state) back to the unde-
formed manifold of this constraint. The energy



Figure 3: The workflow of projective dynamics

E(x) is formulated as:

1

2∆t2

∑
Cm∈C

(‖M
1
2
m(x̃m−xpm)‖2F +χm(x̃m, xpm))

(5)
x̃m can be obtained through the constant selec-
tion matrix Sm where x̃m = Smx. Assuming the
mth constraint Cm ∈ C, it involves M vertices
so Sm ∈ R3M×3n. χm(x̃m, xpm) is a function to
penalize E(x) when the projection of x̃m is not
on the undeformed constraint manifold which
means E → ∞. When x̃m is projected to the
undeformed constraint manifold, E(x) = 0 and
xpm stores the projected results of the vertices in-
volved in the mth constraint.

How to project x̃m onto the undeformed man-
ifold can be found in [7][9]. The main idea is
to project the constraint in the negative direction
of its gradient and linearize the constrain in this
direction until the constraint vanish in this direc-
tion, then we get the ∆xmp which is used to up-
date the current state (x̃m) to the projected state
(xpm).

xpm = x̃m + ∆xpm (6)

The derivation of the equation 4 can be formu-
lated as:

Ax =
M

∆t2
s +

∑
Cm∈C

ωmSTmxpm (7)

where A = ( M
∆t2

+
∑

Cm∈C ωmSTmSm). The
whole algorithm is generalized in figure 3.

In equation 7, A is a constant matrix which
can be precomputed in the initial stage, mak-
ing the solve of this sparse linear system very
efficient. However, when the mesh topology
changed, the left hand side matrix is needed to
be changed which affects the performance sig-
nificantly. Our method will fix this problem.

5 Modeling of Three Different
Soft Tissues

5.1 Strain Limiting for Fascia and
Membrane

To model the strain limiting for fascia and mem-
brane, finding the direction of limiting is impor-
tant. The texture of fascia and membrane can
well reflect the fibers direction so we limit the
strain in the direction of its material coordinate.

According to the general Hook’s Law, stress
is dependent on strain (ε). ε is a function of the
deformation gradient F. For a surface mesh, let
(xi, xj , xk) be the world positions of a triangle
element’s vertices, the deformation gradient can
be calculated as:

F = DsD−1
m (8)

where Ds = [xj − xi, xk − xi], Ds ∈ R3×2,
Dm = [Xj − Xi,Xk − Xi], Dm ∈ R3×2. How-
ever, D−1

m is not defined because it is not a
squared matrix. Let ui ∈ R2×1 be the texture
coordinate of xi. To project Dm to the material
coordinate, the tangent vectors (tu, tv) in texture
UV direction can be calculated.

(tu, tv) = Dm(uj − ui,uk − ui)−1 (9)

Then by orthogonalizing (tu, tv), the new tu and
tv is perpendicular to each other. Then project-
ing the world coordinate to (tu, tv) direction to
get the material coordinate D′m ∈ R2×2.

D′m = (
tu
|tu|

,
tv
|tv|

)T (xj − xi, xk − xi) (10)

The deformation has become F = DsD′−1
m . In

figure 4, the left column show the material co-
ordinate does not conform to the mesh topology
so the strain follows the material coordinate di-
rection. The right column shows material coor-
dinate conform to the mesh topology.

For the strain measurement, we use the rota-
tional invariant and computationally efficient St.
Venant-Kirchhoff model to capture the nonlin-
ear material property. Here we limit the strain
as:

ε = FTF−T = K−T =

[
k00 − t00 k01 − t01

k10 − t10 k11 − t11

]
(11)



Figure 4: Strain limiting comparison. First row,
no strain. Second row: strain limiting
in x-axis. Third row: strain limiting in
both x and y axis

The diagonal entries and off-diagonal elements
of T ∈ R2×2 will limit the normal and shear
strain respectively. The strain limiting constraint
can be defined as:

Cmab
= kab − tab (12)

where kab and tab (a, b = 1 or 2) are the
entries of K and T respectively. According
to the workflow of projective dynamics de-
scribed in figure 3, the gradient of the constraint
∇xiCmab

,∇xjCmab
,∇xkCmab

need to be com-
puted to obtain the projected result. For the de-
tails of the computation, please refer to the Ap-
pendix A. Finally the position update ∆xpmt for
xt, (t = i, j, k) which involved in x̃m can be cal-
culated as:

−
2∑

a=1

2∑
b=1

(Mt)−1∇xtCmab
Cmab∑

w=i,j,k ‖(Mω)−
1
2∇xwCmab

‖2F
(13)

∆xpmt updates xt to its projected position. When
a = b the strain limiting is caused by normal
stress, otherwise, it is caused by shear stress.

5.2 Modelling of the Fatty Tissue Beneath
Membrane

In this part, we model the elasticity, strain lim-
iting and plasticity properties of fatty tissue be-
neath the fascia. The fatty tissue is composed
of the surface membranes and the fat warped in-
side. We use tetrahedron as the basic element to
represent the fatty tissue. We treat the bound-
ary of the tetrahedral mesh as the surface mem-
branes which we apply the physics properties

described in section 5.1. For the fatty tissue in-
side surface membrane, we describe the model-
ing method in the following part.

Assuming the tetrahedral element is com-
posed by (x1, x2, x3, x4). Now Ds = (x1 −
x4, x2 − x4, x3 − x4), Dm = (X1 − X4,X2 −
X4,X3 − X4). The deformation gradient F =
DsD−1

m ∈ R3×3. The energy exist in the nth
tetrahedral element τn can be calculated as [6]:
Eτn = Ψ(F) where Ψ(F) is the energy density
function which is dependent on the constitutive
model used. We used the St.Venant Kirchhoff
model so that Ψ(F) = µε : ε + λ

2 tr
2(ε). Here

we want to minimize the energy stored inside
each element, so we add a energy constraint for
each element τn as:

Cm = Eτn (14)

The gradient of the energy constrain is:

∇xuCm =
∂Eτn
∂F

∂F
∂xu

= P(F)
∂F
∂xu

(15)

where u = 1, 2, 3, P(F) is the first Piola-
Kirchhoff stress tensor. The above equation can
be caluclated as (the details can be referred in
Appendix B):

∇xuCm =

eT1 P(F)D−1
m eu

eT2 P(F)D−1
m eu

eT3 P(F)D−1
m eu

 (16)

where ej ∈ R3×1 is a selection vector j =
1, 2, 3, the jth element of ej is 1, other ele-
ments equals to 0. So ∇x4Cm = −(∇x1Cm +
∇x2Cm + ∇x3Cm). Then the position update
∆xpmt for xt (t=1,2,3) which involved in x̃m can
be calculated as:

∆xpmt
=

−(Mt)−1∇xtCmCm∑
ω=1,2,3 ‖(Mω)−

1
2∇xωCm‖2F

(17)

The first Piola-Kirchhoff stress tensor of
St.Venant Kirchhoff is [6]: P(F) = F(2µε +
λtr(ε)I) where µ, λ are Láme coefficients, ε is
the strain.

For the plasticity property, we use the von
Mises yield criterion proposed in [27], they de-
composed the strain into elastic part and plastic
part ε = εe + εp. When the elastic strain devi-
ation ε′ = εe − Tr(εe)

3 I3 exceed the elastic limit



Figure 5: Edge based structure

(γ1) and within the plastic limit (γ2), plastic de-
formation happens.

For tetrahedral element, strain limiting tech-
niques mentioned in section 5.1 can also be used
but F now becomes F = (f1, f2, f3).

For the connectivity between fascia and its at-
tach membrane or fatty tissue, we used the truss
based structure proposed in [8] to connect the
space between fascia and membrane.

6 Dissection Model

6.1 Edge Based Structure

In this section, we presented an edge-based
mesh structure which is different from the poly-
gon (triangle, tetrahedral, hexahedral etc.) based
structure. We treat the edge as the most basic el-
ement for the mesh. Each edge maintains the
information of triangles or tetrahedrons which
share this edge, see figure 5. Our method can ef-
ficiently incorporate the dissected mesh into the
physics computational model and produce more
realistic incision pattern which generated by en-
ergized tools (see figure 7).

In the initial stage, each polygon primitive
keeps the counts it has been shared by the
edges, we denote the counter for the kth face
as share_count[k]. When an edge is dissected,
the shared count of this edge’s surrounding poly-
gons should be subtracted by one. When render-
ing the mesh, there is no need to reorganize the
index buffer and change the size of vertex buffer.
In each frame, we only feed the rendering buffer
with the polygon faces whose share_count re-
mains the same as the initial stage. Further anal-
ysis is in section 7.

6.2 Heat Transfer Model

Due to the high energy in the tool, most of the
soft tissue will be dissected immediately when
touched, so we assume that there is no heat

transfer on the soft tissue. The heat transfer is
only between soft tissue and energized tools. We
build a local N × N × N uniform grid coordi-
nate based on the heat source. We take dl as the
length step of the grid coordinate and dt as the
time step. We donate the temperature at a grid
node n = (nx, ny, nz) as u(n). According to
the parabolic heat equation:

∂u

∂t
− α∇2u = 0 (18)

where α is the thermal diffusivity. ∇2 is the
Laplace operator. ∇2u(n) = (∂

2u
∂x2

, ∂
2u
∂y2

, ∂
2u
∂z2

).
To solve this parabolic PDE, the finite difference
method can be used. At u(n), the ∂2u

∂x2
can be

solved as:

u(nx + 1, :, :) + u(nx − 1, :, :)− 2u(nx, :, :)

dl2
(19)

It is the same for ∂2u
∂y2

, ∂
2u
∂z2

. The temperature in-
side the grid can be achieved by interpolation.
We use a conductivity parameter ξ to control
how much heat the soft tissue can absorb. Due to
our dissection method is based on edge, we cal-
culate the temperature (τe) of an edge (e) by us-
ing the average temperature at the edge’s nodes.

τe = (ua + ub)ξ∆t/2 (20)

where ∆t equals to the sum of the time the edge
e intersect with the implicit shape proxy of the
tool and the time the edge e completely lay in-
side the implicit shape. When τe excess the ig-
nition temperature δ, the edge will be dissected.
For different soft tissue, δ have different values.
Following are some reference data for the igni-
tion temperature of soft tissues [28].

Ignition Temperature (δ)
Name Description
peritoneum (fascia) 172°C ± 17 °C
mesentery (membrane) 96.4°C ± 4.1 °C
liver (fatty) 76°C ± 2.9 °C

6.3 Dissection Area Modelling

Due to the high energy of the energized tool, the
newly generated edges and surfaces of the dis-
sected area will shrink because the fibers and



Figure 6: Dissected area modeling

protein inside the tissue is burnt [28]. Accord-
ing to the equation 8, the hyperelastic deforma-
tion can be conceived as the process that the de-
formable object from the Ds state gradually go
back to Dm state, which equals to the process
that F gradually recover to the identity matrix.
If we change the target shape that F goes back
to, the shrink effect can be achieved. The newly
exposed surface should shrink perpendicular to
the contact surface. To get the contact normal,
we approximate the contact point (xc) as the in-
tersection between the implicit shape of the tool
and the lines which determined by the center
of the newly exposed element and the center of
the implicit shape, see figure 6. Assuming the
implicit shape function represents the dissection
tool is f(x) ∈ R, the normal (Nc) at the contact
point is ∂f/∂xc. To build the local coordinate for
the newly generated primitive, we use the direc-
tion of Nc as one axis. Other two axis (Na, Nb),
we compute them use the face normal (Nf ) of
the newly generate face and Nc. Na = Nf ×Nc,
Nb = Nc × Na.

To find the direction for the shrinking, we
transform the initial normal strain direction to
the local coordinate of the contact point. Then
applying the strain limiting to the transformed
normal strain direction. Finally rotate the cur-
rent shrinked state back to the original coordi-
nate, to get the shrinkage in world space. We
use the St. Venant-Kirchhoff model:

ε = FTF− R−1

Sx 0 0
0 Sy 0
0 0 Sz

R (21)

where R is the rotation matrix which transforms
the initial normal strain direction to the local co-
ordinate of the contact point. Sx, Sy, Sz are the
shrink ratio in each direction.

7 Method Comparison and
Results

7.1 Complexity Comparison

Before making comparison, we categorized
the dissection methods into topology-changed
and topology-unchanged. Different from the
topology-unchanged methods, the topology-
changed methods contain the newly generated
vertices. Our method belongs to the topology-
unchanged method.

For the buffer update, the topology-changed
methods need to change the vertex and index
buffers size, which require frequent inserting
and deleting operations. We donate the com-
plexity of inserting as O(ins) and deleting as
O(del). There is no need for our method to
update both buffers. We reference the original
vertex and index buffers and render the faces
whose share_count equals to initial configura-
tion. The complexity of the buffer operation for
our method is O(n) because we only need to it-
erate all the faces once for each simulation step.

For the newly generated primitive, the
topology-changed methods need to perform
mesh refinement (O(re)) and find the neigh-
bors for the newly generated primitives, delet-
ing (O(N_del)) and inserting (O(N_ins)). Our
method only needs one iteration of share_count
to update the neighbour information for vertices
and faces (O(n)).

For the ill shape handling, the topology-
change method needs to concern whether the
newly generated polygons are in ill shape, as-
suming the complexity as O(ill). Our method
has not change the topology so that ill shape test
is not needed.

The overall complexity of our method is
O(n) and the topology changed method is
O(ins) + O(del) + O(N_ins) + O(N_del) +
O(re) + O(ill). Comparing with the topology-
unchanged methods, our method has the same
complexity as others. However, our edge based
structure can generate more patterns than other
polygon based dissection methods (figure 5).

7.2 Efficiency Comparison

The governing equation of our simulation sys-
tem is described in equation 7. The left side



Figure 7: Energized tool dissection using our method

matrix A = (M
t2

+
∑

m∈C ωiS
T
mSm) is constant

when there is no topology changes. Thus, topol-
ogy changed method has great influence on the
efficiency of the solving process.

Assuming a mesh is composed of n vertices,
a constraint Cm ∈ C which contains k ver-
tices so Sm ∈ R3k×3n, STmSm is a diagonal
R3n×3n matrix. The non-zero entries represent
the the vertices involved in constraintCm. Thus,
the entries of

∑
Cm∈C ωiS

T
mSm represents the

times a vertex has been involved in the con-
straint. For our method, what we need to do is to
find the dissected edges and elements, ignoring
the row and columns of matrix represent those
deleted vertices and modifying corresponding
entries of

∑
m∈C ωmSTmSm by subtracting the

times each entry has been involved in the deleted
constraints. We do not change the matrix size.
For the topology-changed method, the size of
matrix is needed to be changed due to new ver-
tices. Also, the relationship between vertices
has changed, so

∑
Cm∈C ωmSTmSm needs to be

computed again, making the solving of this lin-
ear system very inefficient.

7.3 Experiments

In figure 7, we simulate the fascia using the fol-
lowing parameters: Strain limiting parameters:
t00 = 0.1, t11 = 0.1. Energized tool tem-
perature: 170°C. Ignition temperature:160 °C.
Shrink ratio:Sx = 0.1, Sy = 0.3. Thermal con-
ductivity parameter: 0.4. The fascia mesh is
composed of 6K triangles, running at 103.2 fps.

For the fatty tissue dissection, we use the fol-
lowing parameters: Strain limiting parameters:
t00 = 0.3, t11 = 1, t22 = 1. Energized tool
temperature: 90°C. Ignition temperature:78 °C.

Shrink ratio:Sx = 0.1, Sy = 1, Sy = 1. Ther-
mal conductivity parameter: 0.6. Elastic limit:
0.00054. Plastic limit: 0.16. The fatty tissue
is composed of 30K tetrahedrons and the mem-
brane is composed of 6K triangles. The average
fps is 15.1 fps. For the energized tool, the ther-
mal diffusivity we used is 4.210−6m2/s.

8 Conclusion and Future Works

In this paper, we proposed an energized soft tis-
sue dissection model based on heat transfer and
physically based simulation strategies for three
kinds of soft tissues. This represents a step for-
ward comparing with the exiting research in sur-
gical simulation. A simplified heat transfer ap-
proach was used in our current work in order to
favour computing efficiency, which can be im-
proved by incorporating more accurate model
[29]. Our implicit shape representation for the
heat source of the dissection tool is not accurate
enough. More accurate shape representation can
be designed to approximate different tools.
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Appendix A

We denote the deformation gradient F as F =
(f1, f2), Dm = (d1,d2), d1 = (d1x, d1y)

T ,
d2 = (d2x, d2y)

T , where fi,di are R2×1 vec-
tors (i = 1, 2). For a, b = 1 or 2, the en-
tries of K in equation 11 can be expressed as:
kab = fTa fb = (Dsda)T (Dsdb). ∇xjCmab

=

∇xj (fTa fb) = fbd1x ⊗ I3 + fad2x ⊗ I3 and
∇xkCmab

= ∇xk(fTa fb) = fbd1y⊗I3+fad2y⊗I3

, which can be represented as:

[
∇xjCmab

∇xkCmab

]
=
[
d1 d2

]
⊗ I3

[
fb
fa

]
(22)

Then∇xiCmab
= −(∇xjCmab

+∇xkCmab
).

Appendix B

Assuming vertex xu = (x
(1)
u , x

(2)
u , x

(3)
u )T .

∇xuEτn = (∇
x
(1)
u

Eτn ,∇x(2)u
Eτn ,∇x(3)u

Eτn)T ,

∇xuEτn ∈ R3×1

∇
x
(j)
u

Eτn = P(F) : ejeTuD−1
m = tr(eTj P(F)D−1

m eu)

(23)
eTj P(F)D−1

M eu is a scalar, so it can be taken out
of the tr as:

∇
x
(j)
u

Eτn = P(F) :
∂F

∂x
(j)
u

= eTj P(F)D−1
m eu

(24)


