
Received: 17 March 2017 Accepted: 19 March 2017

DOI: 10.1002/cav.1775

S P E C I A L I S S U E P A P E R

A comparative study of k-nearest neighbour techniques in crowd
simulation

Jordi L. Vermeulen Arne Hillebrand Roland Geraerts

Department of Information and Computing

Sciences, Utrecht University, Princetonplein

5, Utrecht, 3584 CC, The Netherlands

Correspondence
Roland Geraerts, Department of Information

and Computing Sciences, Utrecht

University, Princetonplein 5, 3584 CC

Utrecht, The Netherlands.

Email: R.J.Geraerts@uu.nl

Abstract
The k-nearest neighbour (kNN) problem appears in many different fields of computer

science, such as computer animation and robotics. In crowd simulation, kNN queries

are typically used by a collision-avoidance method to prevent unnecessary compu-

tations. Many different methods for finding these neighbours exist, but it is unclear

which will work best in crowd simulations, an application which is characterised

by low dimensionality and frequent change of the data points. We therefore com-

pare several data structures for performing kNN queries. We find that the nanoflann

implementation of a k-d tree offers the best performance by far on many different

scenarios, processing 100,000 agents in about 35 ms on a fast consumer PC.

KEYWORDS
comparative study, crowd simulation, nearest neighbours

1 INTRODUCTION

Algorithms that find the k-nearest neighbours (kNN) are pop-

ular in many different fields of computer science, such as

computer animation, robotics, machine learning, databases,

computer vision, and computational geometry. In these fields,

the data typically has high dimensionality, and there is

a clear separation between an offline phase in which an

index is constructed and an online phase in which queries

are performed. In addition, many data structures are opti-

mised for use cases in which not all data fits into main

memory.

In crowd simulation, efficient collision avoidance is impor-

tant, and collision-avoidance methods require an agent (such

as a virtual pedestrian or robot) to know several of its near-

est neighbours (e.g., Guy et al1 and van den Berg et al2).

Choosing a high-performance method for finding these neigh-

bours is therefore important when simulating massive crowds.

To our knowledge, a comparative study of different kNN

methods was never performed in a comparable setting. The

properties in this setting are different from those mentioned

above: the data usually have only two dimensions (i.e.,

agents with an x- and y-coordinate), fit into main memory,

and the data continuously change, making it ill-suited to

the notion of a costly offline indexing phase. Due to

these differences, it is unclear which kNN data structure

offers the best performance in applications such as crowd

simulation.

Contribution: we compare several data structures for find-

ing nearest neighbours in the context of crowd simulation.

We test these structures on a wide variety of scenarios, giv-

ing a representative picture of the performance that can be

expected. We find that using the nanoflann implementa-

tion of the k-d tree3 allows us to build the tree and query

it for 100,000 agents in about 35 ms per time step. This

method also has the lowest standard deviation of the query

times.

This paper is structured as follows. First, we motivate our

choice of data structures, give theoretical bounds for the tested

data structures, and describe their implementation details.

Then, we describe our experimental setup, scenarios, and

results. Finally, we conclude that the nanoflann k-d tree out-

performs the other structures, and we provide some leads for

future work.

Comput Anim Virtual Worlds. 2017;28:e1775. wileyonlinelibrary.com/journal/cav Copyright © 2017 John Wiley & Sons, Ltd. 1 of 9
https://doi.org/10.1002/cav.1775

https://doi.org/10.1002/cav.1775
http://orcid.org/0000-0001-7255-561X


2 of 9 VERMEULEN ET AL.

2 RELATED WORK
For spatial data, the kNN problem is usually solved by build-

ing a spatial index.4 These indices can broadly be divided

into two categories: those that partition the space and those

that partition the data. Well-known instances of the former

are quadtrees5 and k-d trees,6 whereas the latter includes

R-trees7 and bounding volume hierarchies. The difference

between the two is that spatial-partitioning methods recur-

sively divide the remaining space into nonoverlapping areas

while trying to balance the number of objects inside each sub-

division, whereas data-partitioning methods try to cluster the

data in potentially overlapping areas, preferably based on spa-

tial proximity. We test data structures from both categories

and describe each structure in more detail in the following

section.

Several comparative studies of kNN methods exist (e.g.,

previous studies8–10), but these focus on applications of kNN

methods in high-dimensional settings like data mining and

computer vision.

When data points are constantly moving, kinetic data

structures can be used to maintain geometric information.11

However, because the trajectories of our agents change unpre-

dictably, there does not appear to be a straightforward way to

apply these techniques efficiently.

Recently, much research has been focused on using highly

parallelised algorithms running on the GPU to speed up

the computation of nearest neighbours; see, for example,

de Gomensoro Malheiros and Walter12 and Pan et al.13

Although the results are promising, implementations are gen-

erally compatible with only a single hardware vendor, and

the performance may vary greatly depending on the specific

hardware used, making it hard to offer a fair comparison to

CPU-based implementations. As such, we do not consider

GPU implementations at this time.

Several motion planning packages that use data structures

to accelerate nearest neighbour queries exist. For instance, the

Open Motion Planning Library14 employs FLANN’s hierar-

chical clustering15 and the Geometric Near-Neighbour Access
Tree,16 and the Motion Strategy Library17 uses the k-d tree

from the ANN library.18 Such packages could benefit from

implementing the fastest method we test here.

3 DATA STRUCTURES
We made our selection of data structures based on prevalence,

theoretical performance, and the availability of good imple-

mentations, taking into account the low dimensionality of our

research domain and the fact that we are working in main

memory. We settled on testing the data structures described

below. A summary of their theoretical performance can be

seen in Table 1. Note that we make a typographical distinction

TABLE 1 Worst case construction and query times on n 2-D points

Data structure Construction time kNN query time

k-d tree6 O(n log n) O(k log n)
BD-tree19 O(n log n) O(k log n)
R-tree7 O(n log n) O(k log n)
Voronoi diagram20 O(n log n) O(k log n)
k-means21 O(n2) O(n)
Linear search O(1) O(n)
Grid O(n) O(n)

Abbreviations: BD-tree = box-decomposition tree; kNN = k-nearest neighbour.

between the completely unrelated k’s in kNN, k-d, and

k-means.

3.1 k-d trees
A k-d tree6 is a spatial-partitioning structure that recursively

splits the data set along one of the k axes of the coordinate

system. This is usually done in sequence: in the case where

k = 2, we split alternately on x- and y-coordinate. Splitting

continues until a maximum depth has been reached, or less

than a specified number of points remains in a cell. k-d trees

can be straightforwardly expanded to contain objects other

than points, such as triangles or line segments. In this case,

it can be difficult to determine the optimal splitting plane; in

our case of points (or disks) in two dimensions, we can simply

sort the points for each dimension and split along the median.

A k-d tree can be constructed in O(n log n) time and can be

used to find the k-nearest neighbours in O(k log n) time.

3.2 BD-trees
The box-decomposition tree,19 or BD-tree (not to be confused

with the bounded-deformation tree), is structurally similar to

a k-d tree. It differs in two major ways: the rectangles that

the space is decomposed into are fat, and each rectangle may

have an associated inner rectangle. A fat rectangle is one with

bounded ratio between the shortest and longest axis. Having

fat rectangles ensures the size of the regions decreases expo-

nentially as one traverses the tree. The inner rectangles allow

a rectangle to be split not into two rectangles along some coor-

dinate axis, but into an outer and an inner rectangle, where

the resulting region is the set-theoretic difference between the

two. A BD-tree can be constructed in O(n log n) time and can

be used to find the k-nearest neighbours in O(k log n) time.

3.3 R-trees
R-trees were created as a data-partitioning structure support-

ing multidimensional data in multidimensional spaces.7 They

are also fully dynamic: queries may be mixed with insertions

and deletions without a need for periodic rebalancing. R-trees

 1546427x, 2017, 3-4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cav.1775 by U

trecht U
niversity L

ibrary, W
iley O

nline L
ibrary on [11/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



VERMEULEN ET AL. 3 of 9

are based on B-trees and as such are structurally similar: the

number of objects in a leaf node, as well as the number of

children of an internal node, is limited by both a lower and an

upper bound, and all leaves appear on the same level. Many

different heuristics exist for the construction of the structure;

in our case, we use the R*-tree,22 because it tries to pre-

vent overlapping regions. An R*-tree can be constructed in

O(n log n) time and can be used to find the kNNs in O(k log n)
time. Because R-trees theoretically handle updates very well,

we test both a version in which we rebuild the entire tree every

time step, and one in which we remove and insert every agent

incrementally.

3.4 Voronoi diagrams
Voronoi diagrams are spatial subdivisions where each cell is

exactly the set of points closest to a site.20 We can then find

the kNNs by an algorithm similar to Dijkstra algorithm for

single-source shortest paths. We add a site’s neighbouring

cells to a priority queue, where our priority is the distance of

a cell’s site to the query point. We then repeatedly extract the

cell with minimum distance from the queue and add its neigh-

bours. A Voronoi diagram can be constructed in O(n log n)
time, and if we use a binary heap as our priority queue, we

can find the kNNs in O(k log n) time.

3.5 Hierarchical k-means clustering
k-means clustering was originally conceived to partition a

population based on a sample.21 The algorithm works by ini-

tialising k sites at some location and calculating for each data

point which of the k sites it is closest to. Many seeding heuris-

tics exist; in our application, the sites are chosen randomly.

Each site is then moved to the mean of all points for which

it is the closest site. This process is repeated until the sites

no longer move, or until a maximum number of iterations has

been performed. A hierarchical clustering then recursively

performs this algorithm on each of the clusters that has been

created. The spreading of points over the clusters can be arbi-

trarily bad, giving us a worst case construction time of O(n2)
and a query time of O(n), but if each cluster is consistently of

roughly equal size, we get a construction time of O(n log n)
and a query time of O(k log n).

3.6 Linear search and grids
Linear search is a naive, brute-force approach to the kNN

problem: we simply iterate over all points in the set, keeping

track of the k closest points so far. This gives a query time

of O(n), but it has the advantage of requiring no construc-

tion whatsoever. A grid-based approach tries to improve on

this in a simple way: we place a regular grid over the entire

simulation area and keep track of the agents located in each

cell. During a query, we search the cell containing the query

points, as well as those cells directly adjacent. The construc-

tion time is O(n + m), where m is the number of cells in the

grid. The worst case query time is O(n), but practical perfor-

mance depends heavily on both the distribution of agents and

the size of the cells.

3.7 Implementations
The BD-tree was provided by the ANN library.18 The FLANN

library provided one of the k-d trees and the k-means

method15; another k-d tree came from the nanoflann library.3

The Boost.Geometry library was used for the R-tree and

Voronoi diagrams.23 Finally, linear search and the grid-based

method were implemented by us. Note that, although the

FLANN library supports the calculation of approximate near-

est neighbours, we only use it for finding the exact nearest

neighbours.

We had to make a minor modification to the ANN library

to support querying from multiple threads (i.e., one vari-

able containing state pertaining to the current query was

changed from a global to a local variable). Also, although

Boost supports building a Voronoi diagram, we implemented

the algorithm for finding the k nearest sites ourselves, as

described above.

Other than Boost’s R-tree implementation and the grid,

none of the structures straightforwardly supported adding and

removing points, so for all other structures, we rebuild them

completely every time step. Furthermore, we use the default

parameters for creating the spatial indices for each library;

notably, this means that the number of clusters in the hier-

archical k-means clustering is 32 per level of the hierarchy.

Finally, we set the cell size for the grid to 10 m, as this is

roughly the distance in which we normally expect to find

neighbours.

4 EXPERIMENTS

We used data captured from real crowds and from simulations

that have real-world applications. To also give some insight

into specific aspects of the data structures, we introduced

some artificial scenarios that highlight specific properties of

the crowds or environments.

4.1 Experimental setup
As our data captured from real crowds are only available as

a list of 2-D coordinates per agent for each time step, we

converted all our other data to this form as well, rather than

performing the tests during the simulation. For each struc-

ture, we read these data per time step, updated the structure,

 1546427x, 2017, 3-4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cav.1775 by U

trecht U
niversity L

ibrary, W
iley O

nline L
ibrary on [11/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 of 9 VERMEULEN ET AL.

then performed a kNN query for each agent. For all our

tests, k = 10; we do not vary this parameter because

collision-avoidance methods generally do not need more than

10 of the closest neighbours. Each time step, we measured the

time taken to update the structure and the time taken to per-

form all queries. To better approximate the real usage of these

structures in a crowd simulation framework, we performed

multiple kNN queries in parallel using OpenMP.24

All our code was written in C++, as were all the libraries

we used. Our experiments were performed on a desktop com-

puter with two Intel Xeon E5-2690 v3 12-core processors and

32 GB of DDR4 ECC RAM, running Ubuntu 15.10. We used

g++ 5.2.1 to compile our program.

4.2 Scenarios
Our data from real crowds were obtained from the Jülich

Forschungszentrum’s Institute for Advanced Simulation.

Descriptions of the various situations can be read in Keip

and Ries.25 They provide data captured from crowds in sev-

eral scenarios. We used the data from the scenarios bidi-

rectional flow, free choice of destination; bidirectional flow,

ordered destination, symmetric flow rate; bottleneck; mouth

hole in stadium, lower level; and mouth hole in stadium,

upper level. We chose these scenarios for the presence of a

relatively large number of people, as well as their relative

complexity.

We also obtained data from simulations made in

the Explicit Corridor Map (ECM) crowd simulation

framework.26 We used scenarios that were developed for the

planning of the Grand Départ of the Tour de France,27 which

were used to simulate different placement of things such as

fences and footbridges. We also used scenarios simulating

the evacuation of a building with different numbers of peo-

ple present. A selection of our test scenarios can be seen in

Figure 1.

As we also wanted to obtain data on specific aspects of the

performance of the different structures, we included several

artificial scenarios. We were interested in how the following

aspects affect the performance:

Density: We wanted to know how the distribution of agents

affected the performance of the different structures. We

included one scenario with 10,000 agents distributed uni-

formly at random, and one in which 75% of agents is

spawned in five high-density clusters, and 25% uniformly

at random.

Stationary agents: If many of the agents are standing still,

we would expect methods that update rather than rebuild

their structures to perform better. We included scenarios

in which 25%, 50%, or 75% of the agents are standing still.

Scaling: We also wanted to test how the different structures

scale in practise with increasing numbers of agents. We

included a scenario where 100 agents are added to the sim-

ulation every time step. We ran this simulation for 1,000

time steps, scaling up to 100,000 agents.

4.3 Results
As the number of experiments is quite large (62 different

scenarios) and the results for each category of experiments

are quite similar, we only describe the results for one instance

of each category.

4.3.1 General remarks
Looking at Figure 2, we see that the grid- and k-d tree-based

methods offer the best update performance (disregarding

linear search, which has no update). We also see that the query

performance of the k-d trees and R-trees are better than those

of the other methods. It is worth noting that this graph favours

those methods that are fast for small numbers of agents

FIGURE 1 Some of the different test scenarios. (a) The scenario with a clustered distribution of agents, (b) the evacuation scenario, and (c) one

of the Tour de France scenarios

 1546427x, 2017, 3-4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cav.1775 by U

trecht U
niversity L

ibrary, W
iley O

nline L
ibrary on [11/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



VERMEULEN ET AL. 5 of 9

FIGURE 2 A box plot of the time needed for updating and querying per agent per time step across all experiments. The whiskers extend to the

fifth and 95th percentile. BD-tree = box-decomposition tree

FIGURE 3 Total update and query times per time step for the evacuation scenario. There is a constant number of 1,470 agents in the simulation.

BD-tree = box-decomposition tree

(e.g., grid and linear search), as there were only a handful of

tests with more than about 2,000 agents.

We note that there is a lot of noise in the measurements,

especially in scenarios with a small number of agents (such as

the bottleneck scenario seen in Figure 7). For the query per-

formance, preliminary tests indicate this is due to the usage of

a large number of threads (one for each core, 24 in total) on

a small number of agents, meaning the scheduling overhead

is large. The noise is greatly reduced when running the sim-

ulation on a single thread. The variance of the computation

times for both updates and queries is most likely also influ-

enced by the cache performance of each data structure. We

also note that the peaks are not in the same locations when

the experiments are repeated, meaning they are not related to

the specific layout of the data points in those time steps. Our

measurements suggest that k-d trees are particularly consis-

tent in their performance, as the variance of the performance

is much lower for both implementations than it is for other

data structures.

The variance of the update time for the hierarchical

k-means clustering is particularly high. This is likely due to

the nature of the construction algorithm: depending on the

quality of the initial (random) cluster locations, the algorithm

needs more or fewer iterations to reach a solution. The vari-

ance for the update time for the R-tree that is rebuilt in each

time step is also larger than that of the R-tree that is updated

incrementally, indicating that the construction algorithm is

sensitive to the particular layout of the data points, unlike the

method for removing and inserting one point at a time.

Overall, the nanoflann implementation of the k-d tree

clearly gives the best performance: it is only outperformed in

situations with very few agents, and it can process 100,000

agents in about 35 ms per time step. It also has the most con-

sistent performance, as can be seen in Figure 2: it has the

smallest difference between the fifth and 95th percentile of all

structures.

4.3.2 Evacuation scenario
Figure 3 shows the update and query performance on the

evacuation scenario. The grid-based method shows that the

update cost is very constant (and low). However, we note that

the query time increases as the simulation progresses. We

postulate that this is caused by the increase in local density

due to crowding at the exits (see Figure 1b), but further tests

would be needed to confirm this. The Voronoi diagram-based

method shows the opposite effect: the query time is fairly con-

stant, but the cost of computing the Voronoi diagram increases

as the density does. The nanoflann k-d tree has the best query

performance; the FLANN k-d tree, linear search, and both

R-tree versions give similar query performance, although the

R-trees have more variance in their performance. However,

the FLANN k-d tree has about 4 times better update per-

formance, and linear search requires no updates at all. This

makes it quite competitive with the nanoflann k-d tree for

this number of agents, which is still about 20% faster when

considering both update and query times.

4.3.3 Scaling test
Figure 4 shows the change in performance as the num-

ber of agents steadily increases. We see that linear search

quickly becomes infeasible: it performs relatively well until

 1546427x, 2017, 3-4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cav.1775 by U

trecht U
niversity L

ibrary, W
iley O

nline L
ibrary on [11/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 of 9 VERMEULEN ET AL.

FIGURE 4 Total update and query times per time step for the scaling scenario. The number of agents starts at 0 and increases by 100 every time

step. BD-tree = box-decomposition tree

about 8,000 agents, but then quickly starts to slow down;

at 100,000 agents, it takes about 16 s to perform all the

queries for a single time step. The grid-based method does

slightly better, but at about 25,000 agents, its performance

also quickly deteriorates. The BD-tree and k-means method

offer comparable query performance, but the cost of updat-

ing the k-means structure quickly rises as the number of

agents grows. The same can be said for both R-tree meth-

ods and the FLANN k-d tree: the query performance is

similar, but the R-trees are over 3 times more expensive

to update.

Figure 5 shows the sum of the update and query times for

this scenario, showing how much time each structure needs

per time step in total. Here, we see that the grid-based method

is actually somewhat faster than the k-means method on the

whole, but the curve of the graph suggests this will quickly

change if even more agents are added. The update version of

the R-tree is about 20% faster than the version that rebuilds

the tree every time step. The k-d trees are the fastest by a large

margin, and the nanoflann implementation is about twice as

fast as the FLANN version.

4.3.4 Density test
In the clusters scenario, several locations in the environment

quickly get congested, resulting in a sharp increase in the

query time of the grid-based method, as seen in Figure 6. This

is because some grid cells contain a disproportionally large

FIGURE 5 The sum of update and query times for the scaling

scenario. The number of agents starts at 0 and increases by 100 every

time step. BD-tree = box-decomposition tree

FIGURE 6 Total query times per time step for the clusters scenario.

There are 10,000 agents in the simulation. Linear search has been

omitted to show more detail in the other graphs.

BD-tree = box-decomposition tree

number of agents: the cell size is too large for the local density.

None of the other methods seem to be particularly affected by

changes in density.

4.3.5 Bottleneck scenario
In Figure 7, the update and query performance of all struc-

tures on the bottleneck scenario are shown. We note that

there is a strong correlation between the number of agents

and the query and update times of all structures. The BD-tree

is clearly the slowest in query performance, whereas the

Voronoi diagram-based method needs the most time to

update the structure. For this small number of agents, the

grid-based method and linear search are very efficient, but

the nanoflann implementation of k-d trees offers comparable

performance.

4.3.6 Tour de France scenario
In Figure 8, the BD-tree once again clearly has the worst query

performance. We also note, however, that this is not a suit-

able setting for the grid-based method, due to the high local

densities and small walkable area in a large environment. Fur-

thermore, we observe that the methods based on k-d trees

clearly give more consistent performance than those using

 1546427x, 2017, 3-4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cav.1775 by U

trecht U
niversity L

ibrary, W
iley O

nline L
ibrary on [11/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



VERMEULEN ET AL. 7 of 9

FIGURE 7 Total update and query times per time step for the bottleneck scenario. BD-tree = box-decomposition tree

FIGURE 8 Total update and query times per time step for the Tour de France scenario. BD-tree = box-decomposition tree

FIGURE 9 Total update times per time step for the stationary agents scenario. The left and right graphs are of the scenario with 25% and 75%

stationary agents, respectively. Note that only the R-tree with updates (the brown line) has a significant drop in computation time.

BD-tree = box-decomposition tree

other spatial indexing structures. There are some unex-

pected peaks in the update time for the k-means method

for which we have no definitive explanation; they are not

present when the measurement is repeated, so they may have

been caused by another program temporarily running on the

same core.

4.3.7 Stationary agents test
Figure 9 shows that the three tests with varying degrees of sta-

tionary agents perform as expected: the implementation that

updates an R-tree rather than rebuilding it has progressively

better update performance as more agents are stationary,

whereas other structures are unaffected. With 25% of the

agents standing still, the R-tree has an average update time of

10 ms per time step; this drops to 3.6 ms when 75% of the

agents do not move. This is comparable to the FLANN k-d

tree, which needs an average of 3.2 ms, but still significantly

slower than the nanoflann version, which requires 1.6 ms

on average.

5 CONCLUSION

Having tested nine different implementations of structures for

finding the kNNs of agents in a simulated crowd on a variety

of scenarios, we can conclude that the nanoflann implemen-

tation of the k-d tree is the fastest by a large margin, even for

a moderate number of agents, allowing us to process 100,000

agents in about 35 ms on a fast PC. Its performance also has

the lowest variance of all structures. A grid-based approach

can be efficient for moderate numbers of agents (up to about

1,000), mostly because updating the structure is cheap, but

this method is sensitive to the spatial distribution of agents.

There are several areas of interest that could be explored

in future work. In a simulation, each agent only ever moves

a small distance per time step. We could potentially exploit

this by only updating the query structure once every few time

steps. We could even guarantee to find a superset of the exact

result by increasing the search radius by twice the maximum

distance any agent can move between updates. This modifi-

cation could potentially give a great performance boost, but

 1546427x, 2017, 3-4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cav.1775 by U

trecht U
niversity L

ibrary, W
iley O

nline L
ibrary on [11/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 9 VERMEULEN ET AL.

research is needed to determine the number of time steps we

could delay the update by.

Additionally, the performance of the Voronoi diagram

-based method could be improved by implementing a point

location algorithm and by employing higher order Voronoi

diagrams.28 However, it seems unlikely that this will make it

faster than a k-d tree.

We are currently working on a solution of the kNN problem

in multi-layered environments, such as a building with mul-

tiple floors. In such environments, we cannot simply give the

agents with the smallest Euclidean distance in 2-D, as these

could be on a different floor. Instead, we must take visibility of

agents into account when computing the k nearest neighbours.

We think that this study can benefit developers of software

packages that perform kNN queries in a comparable setting.

REFERENCES
1. Guy SJ, Chhugani J, Kim C, et al. Clearpath: Highly paral-

lel collision avoidance for multi-agent simulation. Proc. ACM
SIGGRAPH/EUROGRAPHICS Symp. Comp. Anim.; New Orleans

2009. p. 177–187.

2. van den Berg J, Lin M, Manocha D. Reciprocal velocity obsta-

cles for real-time multi-agent navigation. IEEE Int. Conf. Robot.
Autom.; Pasadena. 2008. p. 1928–1935.

3. Blanco-Claraco JL. Nanoflann. https://github.com/jlblancoc/

nanoflann (version 1.1.9, Accessed January 17, 2016);

2015.

4. Muja M, Lowe DG. Scalable nearest neighbor algorithms for

high dimensional data. IEEE Trans Pattern Anal Mach Intell.

2014;36(11); 2227–2240.

5. Samet H. The quadtree and related hierarchical data structures.

ACM Comp Surv. 1984;16(2):187–260.

6. Bentley JL. Multidimensional binary search trees used for associa-

tive searching. Commun ACM. 1975;18(9):509–517.

7. Guttman A. R-trees: A dynamic index structure for spatial search-

ing. Proc. ACM SIGMOD Int. Conf. Manag. Data; Boston 1984.

p. 47–57.

8. Ponomarenko A, Avrelin N, Naidan B, Boytsov L. Comparative

analysis of data structures for approximate nearest neighbor search.

Data Analytics; Rome 2014. p. 125–130.

9. Verma D, Kakkar N, Mehan N. Comparison of brute-force and

KD tree algorithm. Int J Adv Res Comp Commun Eng. 2014;3(1):

5291–5294.

10. Bhatia N, Vandana. Survey of nearest neighbor techniques. Int J

Comp Sci Inf Secur. 2010;8(2): 302–305.

11. Guibas LJ. Kinetic data structures: A state of the art report. Proc.
3rd Workshop Alg. Found. Robot.; Houston 1998. p. 191–209.

12. de Gomensoro Malheiros M, Walter M. Spatial sorting: An effi-

cient strategy for approximate nearest neighbor searching. Comput

Graph. 2016;57:112–126.

13. Pan J, Lauterbach C, Manocha D. Efficient nearest-neighbor com-

putation for GPU-based motion planning. IEEE/RSJ Int. Conf. on
Intell. Robots and Systems; Taipei 2010. p. 2243–2248.

14. Şucan IA, Moll M, Kavraki LE. The Open Motion Planning

Library. IEEE Robot & Autom Mag. 2012;19(4): 72–82. http://

ompl.kavrakilab.org (version 1.1.0, Accessed January 17, 2016).

15. Muja M, Lowe DG. FLANN—Fast library for approximate near-

est neighbors. http://www.cs.ubc.ca/research/flann/ (version 1.8.4,

Accessed January 17, 2016); 2012.

16. Brin S. Near neighbor search in large metric spaces. Proc. 21st Int.
Conf. Very Large Data Bases; Zurich 1995. p. 574–584.

17. LaValle S. Motion Strategy Library. http://msl.cs.uiuc.edu/msl/

(version 2.0, Accessed January 17, 2016); 2003.

18. Mount DM, Arya S. ANN: A library for approximate nearest

neighbor searching. http://www.cs.umd.edu/~mount/ANN/ (ver-

sion 1.1.2, Accessed January 17, 2016); 2010.

19. Arya S, Mount DM, Netanyahu NS, Silverman R, Wu AY. An opti-

mal algorithm for approximate nearest neighbor searching fixed

dimensions. J ACM. 1998;45(6):891–923.

20. Voronoi G. Nouvelles applications des paramètres continus à la

théorie des formes quadratiques. premier mémoire. sur quelques

propriétés des formes quadratiques positives parfaites. J Reine

Angew Math. 1908;133:97–178.

21. MacQueen J. Some methods for classification and analysis of multi-

variate observations. Proc. 5th Berkeley Symp. Math. Stat. Probab.,
Berkeley vol. 1;1967. p. 281–297.

22. Beckmann N, Kriegel H-P, Schneider R, Seeger B. The R*-tree:

An efficient and robust access method for points and rectangles.

Proc. ACM SIGMOD Int. Conf. Manag. Data; Atlantic City 1990.

p. 322–331.

23. Gehrels B, Bruno L, Mateusz L, Adam W, Menelaos K. Boost

Geometry Library. http://www.boost.org/libs/geometry (version

1.60, Accessed January 17, 2016); 2016.

24. OpenMP Architecture Review Board. OpenMP Applica-

tion Program Interface Version 4.0. http://www.openmp.org/

mp-documents/OpenMP4.0.0.pdf (Accessed January 17, 2016);

2013.

25. Keip C, Ries K. Dokumentation von Versuchen zur Personenstrom-

dynamik. http://ped.fz-juelich.de/experiments/2009.05.12_Duess

eldorf_Messe_Hermes/docu/VersuchsdokumentationHERMES.

pdf (Accessed January 17, 2016); 2009.

26. van Toll WG, Jaklin NS, Geraerts R. Towards believable crowds:

A generic multi-level framework for agent navigation. ICT.OPEN
Amersfoort 2015; 2015.

27. van der Zwan M. The impact of density measurement on the funda-

mental diagram. Master’s Thesis, Utrecht University, Utrecht 2015.

ICA-3401928.

28. Shamos MI, Hoey D. Closest-point problems. 16th Annu. Symp.
Found. Comp. Sci.; Berkeley 1975. p. 151–162.

Jordi L. Vermeulen is a recent

graduate of the Game and Media

Technology Master’s track at the

Department of Information and

Computing Sciences of Utrecht

University, the Netherlands. He

received his bachelor’s degree

in Computer Science cum laude
from Utrecht University, while also participating in the

honour’s programme.

Arne Hillebrand is a PhD stu-

dent at Utrecht University, the

Netherlands, in the Department

of Information and Computing

Sciences. He received both his

bachelor’s and master’s degree

from Utrecht University. For his

master’s thesis, he received both

 1546427x, 2017, 3-4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cav.1775 by U

trecht U
niversity L

ibrary, W
iley O

nline L
ibrary on [11/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/jlblancoc/nanoflann
https://github.com/jlblancoc/nanoflann
http://ompl.kavrakilab.org
http://ompl.kavrakilab.org
http://www.cs.ubc.ca/research/flann/
http://msl.cs.uiuc.edu/msl/
http://www.cs.umd.edu/~mount/ANN/
http://www.boost.org/libs/geometry
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://ped.fz-juelich.de/experiments/2009.05.12_Duess
eldorf_Messe_Hermes/docu/VersuchsdokumentationHERMES.pdf
eldorf_Messe_Hermes/docu/VersuchsdokumentationHERMES.pdf


VERMEULEN ET AL. 9 of 9

the Best Master’s Thesis Award from the Graduate

School of Natural Sciences and the Best Thesis Award

in Computer and Computing Sciences from the Royal

Holland Society of Sciences and Humanities. His cur-

rent research interests include preprocessing 3-D mod-

els for crowd simulations and the analysis of crowd

simulations for pedestrian safety.

Roland Geraerts is an assis-

tant professor at the Games and

Virtual Worlds group in the

Department of Information and

Computing Sciences at Utrecht

University in the Netherlands.

There, he obtained his PhD on

sampling-based motion planning

techniques. In addition, he studied quality aspects of

paths and roadmaps. His current research focuses on

path planning and crowd simulation in games and

virtual environments. Based on this research, he has

created a software engine for simulating crowds in big

infrastructures, events, and computer games. Further-

more, he teaches several courses related to games and

crowd simulation. Roland has organised the Creative

Game Challenge and is one of the cofounders of the

annual Motion in Games conference.

How to cite this article: Vermeulen JL,

Hillebrand A, Geraerts R. A Comparative Study of

k-Nearest Neighbour Techniques in Crowd Simula-

tion. Comput Anim Virtual Worlds. 2017;28:e1775.

https://doi.org/10.1002/cav.1775

 1546427x, 2017, 3-4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cav.1775 by U

trecht U
niversity L

ibrary, W
iley O

nline L
ibrary on [11/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/cav.1775

	A comparative study of k-nearest neighbour techniques in crowd simulation
	Abstract
	INTRODUCTION
	RELATED WORK
	DATA STRUCTURES
	k-d trees
	BD-trees
	R-trees
	Voronoi diagrams
	Hierarchical k-means clustering
	Linear search and grids
	Implementations

	EXPERIMENTS
	Experimental setup
	Scenarios
	Results
	General remarks
	Evacuation scenario
	Scaling test
	Density test
	Bottleneck scenario
	Tour de France scenario
	Stationary agents test


	CONCLUSION
	References


