
Semantic Modeling of Indoor Scenes with Support
Inference from a Single Photograph

Yinyu Nie1, Jian Chang*1, Ehtzaz Chaudhry1, Shihui Guo2, Andi Smart3,
and Jianjun Zhang1

1National Centre for Computer Animation, Bournemouth University, U.K,
2School of Software, Xiamen University, P.R.China

3Centre for Innovation and Service Research, University of Exeter Business School, U.K.
*Corresponding Email: JChang@bournemouth.ac.uk

FCNs Matching

(a) (b) (c)

Figure 1: Semantic modeling of an indoor scene. With a single indoor photograph (a), three parallel fully
convolutional networks are adopted to extract instance masks, a depth map and a layout edge map
for support inference (b). Using the support relationships as constraints, a whole semantic indoor
scene (c) can be automatically reconstructed.

Abstract
We present an automatic approach for semantic
modeling of indoor scenes based on a single
photograph, instead of relying on RGB-D cam-
eras. Without using hand-crafted features, we
guide indoor scene modeling with feature maps
extracted by Fully Convolutional Networks
(FCNs). Three parallel FCNs are adopted to
generate object instance masks, a depth map and
an edge map of the room layout. Based on these
high-level features, support relationships between
indoor objects can be efficiently inferred in a
data-driven manner. Constrained by the support
context, a global-to-local model matching strategy
is followed to retrieve the whole indoor scene. We
demonstrate that the proposed method can effi-
ciently retrieve indoor objects including situations
where objects are badly occluded. This approach
enables efficient semantic-based scene editing.

Keywords: semantic modelling, indoor scene
reconstruction, fully convolutional network,
support inference

1 Introduction

By digitizing real-world surroundings into virtual
environments, scene modeling techniques enable
people to quickly access a realistic 3D represen-
tation of their living world. This is of particu-
lar importance in practitioner environments where
there is a desire to digitize physical artefacts while
adhering to strict limits on capital expenditure.
This includes applications in a multitude of cul-
tural heritage sites, for example, historic buildings
and stately homes. The modeling approach pre-
sented in this paper forms a preliminary experi-
mentation on a e7.8m EU funded project (VISTA
AR) to enhance visitor experiences using digital
innovation. This preliminary experimentation ad-
dresses the complexity of 3D structures, the clut-
tered surroundings and the complicated spatial in-
terrelationships between indoor objects. Model-
ing these complicated indoor scenes in a semantic
sense is still a challenging problem.

With LiDAR technology, active cameras have
played an irreplaceable role in 3D acquisition and

modeling [1]. Bunches of RGB-D image datasets
[2, 3, 4] have emerged for contemporary 3D recon-
struction. These datasets have enabled the Fully
Convolutional Network (FCN) to be an innovative
tool in scene understanding [5]. Unlike traditional
feature extractors, FCN inherits the feature learn-
ing property from convolutional networks and of-
fers a fast end-to-end solution for general com-
puter vision problems, e.g. object detection [6], in-
stance segmentation [7] and depth estimation [8].

In this paper, without using RGB-D cameras
and hand-designed features, three parallel FCNs
are applied to a single photograph to accomplish
semantic modeling (see Figure 1). We generate
object instance masks [7], a depth map [8] and
an edge map of the room layout [9] respectively.
Furthermore, support inference is provided to offer
support context between neighboring objects (e.g.
lamp on a nightstand and picture on a wall). With
learning a priori from the indoor scene dataset Sce-
neNN [2], we present an efficient approach to infer
support context in a hierarchical structure and to
guide our model matching step. In summary, the
main contributions of this work are:
1. We propose a novel approach for indoor scene

modeling based entirely on FCNs.
2. We provide a data-driven support inference ap-

proach to achieve hierarchical modeling, and
have demonstrated that this approach shows
great effectiveness in modeling badly occluded
objects.

2 Related work
Geometric modeling (e.g. SLAM techniques) fo-
cuses on recovering the 3D geometry of surround-
ings. Semantic modeling, however, is used to re-
trieve both geometry and semantics of the whole
scene [1]. There are two stages in semantic model-
ing: semantic segmentation; object modeling. Se-
mantic segmentation separates a scene to labeled
objects, and the object modeling is to recover their
3D content.

2.1 Semantic segmentation
For indoor scene segmentation, traditional meth-
ods usually learn a Conditional Random Field
(CRF) or a Markov Random Field (MRF) model
from a training database to optimize object la-
bels by minimizing a customized energy function
[10, 11]. With the wide availability of RGB-D
cameras, the depth information is used to provide
additional geometric clues. To learn features for
object segmentation, Gupta et al. [12] proposed
a geocentric embedding method, for RGB-D im-
ages, to encode geometric clues in a scene. Lai et

al. [13] proposed a sparse coding method to learn
features from RGB-D frames, and built an MRF
model to label 3D points. Furthermore, Yang et
al. [14] provided a view suggestion method to seg-
ment indoor point cloud in an interactive manner.
Qi et al. proposed a network architecture, Point-
Net++ [15], which directly acts on point cloud to
output semantic labels.

However, consumer-level RGB-D cameras have
noisy depth maps, especially for absorptive or re-
flective surfaces [1]. Convolutional networks pro-
vide opportunities to extend this work and have
shown an overwhelming performance in world-
renowned competitions. In our work, with an
FCN, only a single RGB image is required to seg-
ment indoor objects.

2.2 Objects modeling
Modeling methods from segmented objects can be
divided into two categories: with depth informa-
tion; without depth information (including images
or sketches [16]). Using an RGB-D image, Guo et
al. [17] rendered a composed scene from an RGB-
D image by region matching. Shen et al. [18] pro-
vided a part assembly method to search part prim-
itives to assemble a whole model. For modeling
without depth information, most methods extract
low-level features [19, 20] or CNN features [21]
from images for geometry reasoning to support ob-
ject modeling. Zhang et al. [19] adopted Canny
Edge Detector to filter out line segments for rea-
soning the room layout and used cuboid detection
to guide the object modeling. Inspired by insights
that normal maps and edge information can convey
geometric clues, Liu et al. [20] represented ob-
jects by a normal-based graph descriptor to build
a similar model in the database. Again, extending
this work, as 3D information can generally provide
more geometric details, we estimate the depth map
from a single RGB image using an FCN to guide
the support inference and model matching.

3 Overview
The pipeline of our algorithm is presented in Fig-
ure 2. With only one indoor photo, our goal is to
retrieve a 3D scene with informative semantic con-
text. We produce object masks [7], depth maps
[8], and room layout edge maps [9] using three
FCNs with different architectures to guide object
modeling. In object segmentation, a novel FCN ar-
chitecture [7] is adopted for training on the NYU
v2 [3] dataset, so that we can segment 40 com-
mon categories at the instance level. Combining
the depth map with instance masks, the segmented
point cloud of the scene can be calculated given

Input: an RGB image Pre-processing

3 FCNs

Instance masks Depth map Layout edge map

Point cloud Room layout

Scene dataset

Model dataset

Support inference

3D semantic scene

Constraints

+ targets

Searching and

fine-tuning

Initialisation

TV -> [wall, table]
bed -> [floor]
chair ->[table, floor]
picture ->[wall]
fridge ->[wall, floor]
bed ->[wall, floor]
lamp ->[table]
dresser->[wall, floor]
dresser->[floor]
table ->[wall]
table ->[wall, floor]

Bed tablelamp

Support priori

Figure 2: Pipeline of our method

the camera parameters. Meanwhile, room layout
is estimated from the layout edge map to provide a
baseline for the subsequent support inference.

In support inference, we decide support between
objects a priori. Parsing the SceneNN [2] dataset,
and combining it with the point cloud and room
layout allows the support relationships between
objects to be inferred. We build the support context
as a hierarchical structure. Beginning with the lay-
out frame (floors and walls), every piece is mod-
eled on the basis of its supporting objects (e.g. if
a lamp is supported by a table, the table should be
built first). In our experiments, this kind of hierar-
chical constraint ensures a robust modeling result.

In object modeling, we build each object with
a search-to-match strategy using a model database
(e.g. Google 3D warehouse). The segmented point
cloud is used to estimate an initial position and
size for each object. We set the orientation an-
gle, the translation vector and 3D scales of each
model as optimization variables. The Intersection
over Union (IoU) ratio between the model’s per-
spective projection area and its mask is used as the
maximization target. With two optimization steps
(global searching and local matching), the whole
scene is built following the derivation of the sup-
port hierarchy.

4 Pre-processing

In this section, we discuss the methods involved in
object segmentation, depth estimation, and room
layout estimation.

4.1 Object segmentation

We adopt the FCN architecture proposed by Li et
al. [7] to segment a scene into instance-level ob-
jects. It offers an end-to-end solution with a great
performance in instance segmentation. To use it
for indoor scenes, the NYU v2 dataset is utilized.
This offers 1449 indoor images with 40 fully seg-
mented labels at the instance level. We use the offi-
cial training/test split to evaluate the network. The
mAPr score [22] reaches 29.95% and 19.13% at
IoU threshold of 0.5 and 0.7 respectively. We con-
duct training on the whole dataset (1449 images)
to improve its performance. Figure 3b shows the
segmentation result on an image (Figure 3a) from
the dataset SUN-RGBD [4].

The FCN presents promising instance masks
with most objects detected, except zig-zagged ar-
eas on the mask margin. Therefore in the predic-
tion phase, we append a post-processing layer at
the end of the FCN to refine the edges. The Grab-
cut method [23] is adopted using the FCN masks
as probable foreground and the other areas as prob-
able background. The refined result is shown in
Figure 3c.

4.2 Depth estimation

For depth estimation, we adopt the network pro-
posed by Laina [8]. It also has an FCN archi-
tecture based on residual learning. Without any
post-processing, only a small amount of training
data is required. As this model contains fewer
parameters, it runs quickly in forward propaga-

(a) Original image (b) Initial result from
FCN

(c) Refined result from Grab-cut.

Figure 3: Object instance segmentation on an in-
door image.

tion. Since the model is trained on the benchmark
dataset NYU v2 where Microsoft Kinect is used,
we adopt the technical parameters of Kinect [24]
to retrieve the point cloud (see Figure 4). Figure
4b presents the segmented point cloud using the
object masks. This clearly illustrate that the depth
map is noisy especially for the margin area of the
image. Therefore, support inference is considered
to compensate for the geometric information.

(a) Depth map (b) Point cloud

Figure 4: Point cloud retrieval

4.3 Layout estimation
Layout estimation is intended to provide a unified
reference coordinate system for the further support
inference and object modeling. Unlike the general
room layout estimation [25] where a 3D paramet-
ric box is used to estimate the room layout, only a
corner of the box is required to construct the refer-
ence system. In this part, we extract the edge map
of the room layout following the work by Mallya
et al. [9] (see Figure 5a), where structured edge
detection forests and an FCN are used to provide
a probability map of layout edges. Their experi-
ments present robust results in occluded cases.

From the edge map, we adopt the RANSAC al-

gorithm to search for a robust room corner (see
Figure 5b and a detailed description in Appendix
(B)). With the room corner and the point cloud, ex-
trinsic parameters of the camera can be estimated
by fitting the corner with an orthogonal system.
We transform the point cloud into the new refer-
ence system, then align its x-y plane to the floor
(the lowest plane) and its z-axis upwards (see Fig-
ure 5c). By the layout estimation, the ceiling, two
walls and the floor can be determined. Therefore
in the segmentation step, we do not require floors,
ceilings and walls to be accurately segmented.

(a) Edge map of room
layout

(b) Identified room corner

(c) Aligned point cloud

Figure 5: Room layout estimation

5 Support inference
The layout information and the segmented point
cloud above are used for support inference be-
tween object instances. Three support types are
defined: 1. support from below; 2. support from
behind; 3. support from the top. It should be noted
that we generally only consider the first two sup-
port types as they are able to explain most sce-
narios. We first build basic support rules a pri-
ori at the object category level from the SceneNN
[2] dataset, which contains 50 sophisticated scenes
with the same semantic labels defined in NYU v2.
The object co-occurrence map of the dataset is il-
lustrated in Figure 6a, where the color intensity in-
dicates the frequency of two co-occurred objects.
To infer support relationships at a general category
level, we merge the 40 object categories with the
class mapping provided with NYU v2 [3] resulting
in 13 general categories. It is based on our obser-
vation that if object A is supported by object B, it
could also be supported by others with a similar
semantic label to object B (e.g. lamps can be sup-
ported by both desks and tables). The frequency

(a) Objects co-occurrence map (b) Cases with support from below (c) Cases with support from behind

Figure 6: Support priori from SceneNN dataset

of two co-occurred instances that have some sup-
port relationship (support type 1 or 2) are counted.
The results are illustrated in Figure 6b and Figure
6c, where the block color represents the number of
cases when object i (in row) is supported by object
j (in column) from below or behind. These two
matrices inform the support relationships a priori.

For each instance in a scene, we query the sup-
port matrices to recommend other instances which
could have a support relationship with. Taking
the dresser (see No.10 instance in Figure 3c) as
an example, as the Figure 7 shows, it belongs to
the furniture category. From querying the sup-
port matrices, the furniture category is likely to be
supported from below (by floors, furniture, etc.)
and from behind (by walls, furniture, etc.). A
subsequent search is undertaken to identify ad-
ditional instances that belonging to these cate-
gories. The point cloud is subsequently used to
verify whether they are indeed close to each other
from below/behind and to exclude wrong instances
when these are identified. Using the prior infor-
mation can not only improve searching efficiency,
it also avoids judgment mistakes that could occur
when only using the noisy point cloud. To han-
dle sophisticated cases, we usually use the priori
to recommend all potential categories in querying.
The inferred support context behind Figure 3 can
be built as a hierarchical structure (see Figure 8).

Instance ID

2

6

10

Category

floor

wall

furniture

Class

mapping

Support

priori

querying

Point cloud

verifying

Supported by instance:
from below

Supported by instance:
from behind

2

6

floor, furniture, objects, ...

wall, furniture, objects, ...

Supported by (from below)

Supported by (from behind)

Figure 7: Searching instances with a support rela-
tionship.

2 4 6

1 5 7 8 9 10 12 13 14

11Support from below

Support from behind

Figure 8: Support hierarchy

6 Object modeling
A global-to-local approach is followed in this sec-
tion to both search and fine-tune models in the
database for semantic modeling. Our optimization
variables include the size, position and orientation
of models and to match them with object masks to
retrieve an indoor scene. Models with the most
similar shape are firstly identified by the global
searching step, and secondly fine-tuned. Before
matching, models in the database should be cat-
egorized by labels and pre-processed with z-axis
upwards, x-axis front-toward with their center to
the origin. We build this database with Google 3D
Warehouse.

6.1 Matching problem building
As the point cloud is noisy, it is difficult to use
this information to estimate the object orientation.
However, this data provides insights regarding the
position and height clues. Therefore, we utilize
the point cloud to initialize the model position and
scales (see Figure 9 where height size is initial-
ized by the point cloud). As the segmented mask
provides edge and contour clues, we use it as the
optimization target to obtain the object orientation,
and subsequently refine the position and 3D scales.

In this routine, the floor and walls are firstly
built by the layout estimation. We denote the point
cloud of the target object by Pi, its segmented
image mask by Maski. Mi, Mi

H and Mi
L re-

spectively represents the 3D model for matching,
the supporting model behind and the one below.
i = 1, 2, ..., n, n is the number of object instances
in the scene. The 3D model scales S, the spatial
position p and the orientation angle θ around z-
axis are set as optimization variables. With the
camera parameters estimated in the layout estima-
tion and point cloud estimation, the operator for
projecting the 3D model onto the image plane can
be calculated and we denote it by Proj(∗). Then
we build the matching problem as to minimise

max
θ,S,p

IoU{Proj[R(θ) · S ·Mi + p],Maski},

R =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 ,
S =

s1 0 0
0 s2 0
0 0 s3

 ,p =

p1p2
p3

 ,
(1)

where IoU score is used to measure optimization
performance. We aim at that, on the image plane,
the projection area of the optimal model can match
with the corresponding mask. Besides, there are
three types of constraints: 1. from supporting ob-
jects below; 2. from supporting objects behind; 3.
from point cloud data.
1. From supporting objects below

This type of constraints is to ensure the
matched model placed on the upper surface of
its supporting model (see Equation (2)).

mean[R(θ) · S ·Mi + p]x,y >= min[Mi
L]x,y

mean[R(θ) · S ·Mi + p]x,y <= max[Mi
L]x,y

min[R(θ) · S ·Mi + p]z|x,y = max[Mi
L]z|x,y

(2)
2. From supporting objects behind

The orientation of the target object generally
has high relevance with its supporting object
behind, and they should be attached close. Here
we denote the orientation angle of its support-
ing model Mi

H by θi
H. The constraints are

written as:

θ ∈ {θiH + k · π/4|k = 0, 1, . . . , 7}
dist(Mi,Mi

H)x,y,z < d1

, (3)

where dist is to get the shortest distance in
x,y and z axis between Mi and Mi

H, and d1

is the threshold vector. For those objects that
are not supported by any others from behind,
we restrain the search domain of θ by θ ∈
{k · π/4|k = 0, 1, . . . , 7}. Especially, this type
of constraint will not be used if a bidirectional
support relationship exists between two objects.

3. From point cloud data

The point cloud is used to initialize model po-
sition and 3D scales. The height scale of the
model can be initialized by

s∗3 =
max(Pi)z −max(Mi

L)z
max(Mi)z −min(Mi)z

. (4)

To deal with cases when point cloud is partly
occluded, max(Pi)z − max(Mi

L)z is used to
estimate the real height of the target object. We
set the geometric center of the point cloud Pi
as pi

c, and the constraints are designed as the
following

|p− pi
c| < d2

s1 ∈ [ρ1
L · s∗3, ρ1U · s∗3]

s2 ∈ [ρ2
L · s∗3, ρ2U · s∗3]

s3 ∈ [ρ3
L · s∗3, ρ3U · s∗3]

, (5)

where d2 is to ensure that the model Mi over-
laps the point cloud Pi, and {(ρkL, ρk

U)|k =
1, 2, 3} are used to adjust the model scales.
The optimization problem described above is

built for both global model searching and local
fine-tuning. Following the support hierarchy, ev-
ery supported objects should be built after their
supporting objects.

6.2 Global searching

The global searching step generally requires an ef-
ficient method to find out the model with a simi-
lar semantic shape in the whole parametric space.
Here we adopt the Dividing Rectangles (DIRECT)
algorithm [26] to solve the nonlinear optimiza-
tion problem (1) and find the model with the
highest IoU score. The DIRECT algorithm is a
deterministic-search method, which can efficiently
handle global optimization problems with bound
constraints. It starts by scaling the search domain
to a hypercube then subdivide it into smaller hy-
perrectangles step by step to find the global op-
tima. Since we only use it to search an appropriate
model for the next local matching, only a few iter-
ations are required.

6.3 Local matching

After the model is identified, the BOBYQA algo-
rithm [27] is followed to decide the final size, posi-
tion and orientation. This derivative-free approach
performs an iteratively constructed quadratic ap-
proximation for the objective function, where
bound constraints are acceptable. In practice, we
use the optima from the global searching to initial-
ize the optimization variables and keep the con-
straints unchanged. The target object is built after

the algorithm converges.

Bounding box of point cloud

Bounding box of the model

Figure 9: Point cloud and the matched model

(1) (2)

(3) (4)

(a) Instance masks

(1) (2)

(3) (4)

(b) Depth maps

Figure 10: Ground truth data

7 Experiment and discussions
We present the modeling performance on a vari-
ety of indoor images from SUN-RGBD [4]. The
whole algorithm is implemented on Ubuntu 16.04
with a GTX 1080 GPU and Intel Xeon CPU E5-
1650 0 @ 3.20GHz x 12. The modeling results are
shown in Figure 11. The parameters involved in
our algorithm are presented in Appendix (A). The
performance analysis, comparisons and limitations
of our method are also discussed below.

7.1 Performance analysis
Since the ground-truth masks in SUN-RGBD
dataset are only segmented at the class-level (see
Figure 10a), a numerical comparison is not dis-
cussed here. Our segmentation results (Figure
11b) show that most objects in scenes are seg-
mented with their masks refined. Figure 10b
presents the corresponding ground-truth depth
maps. The errors of the predicted depth maps (see
Figure 11c) are evaluated by rel, rms and log10
scores [8] in Table 1, which shows that they are
noisier than the test results on the NYU v2 dataset
[8]. Although a noisy depth map would lead errors
in initializing model positions and scales, we have
demonstrated that, with support constraints, these
depth maps are sufficient for retrieving semantic
scenes. Figure 11d gives the room corner search-
ing results. With the searched room corner as a
reference system, the object models (Figure 11f)

are built by matching their projection areas (Figure
11e) with the corresponding masks (Figure 11b).

Image ID rel rms log10
(1) 3.509 1.427 0.644
(2) 3.512 0.995 0.644
(3) 4.497 1.089 0.735
(4) 4.738 1.083 0.744

Table 1: Depth estimation errors

Time consumption details are listed in Table 2.
Since the grab-cut algorithm processes masks by
sequence, the quantity of objects determines the
time cost in segmentation. The time consumed in
layout estimation is distinct between cases as its
efficiency is correlated to the sparsity of the layout
edge map. For the modeling step, we calculate the
average time cost of matching with a single model,
and take the summation for all objects involved.
Taking data loading, transferring and all the other
factors into consideration, a semantic scene with
dozens of objects can be built within five minutes.

From a visual point of view, Figure 11f illus-
trates that our algorithm can retrieve plausible in-
door objects even for badly occluded ones. This
is mainly because we use the top point and the
supported model of an object to deduce the height
size. For occluded objects we can also obtain their
spatial scope (see Figure 11e).

ID Num (a) (b) (c) (d)
(1) 14 7.396 0.318 27.718 78.668
(2) 8 4.548 0.254 0.2398 78.137
(3) 9 5.713 0.304 1.1725 141.745
(4) 6 3.918 0.270 14.415 64.967

Table 2: Time consumption details (in seconds).
ID: ID of test images; Num: Number of
segmented objects; (a): Image segmenta-
tion; (b): Depth estimation; (c): Layout
estimation; (d): Scene modeling

7.2 Comparisons and limitations
We have compared our method with two closely
related works [19, 20]. There are some similar-
ities within the modeling approach. All of our
works have a single RGB image using a model
database as the input and with the scene model-
ing completed in a data-driven manner. However,
several differences exist. Firstly, our work bene-
fits from high-level features with the three trained
FCNs. There are fewer parameters in our method
compared with hand-crafted methods that require
features to be defined beforehand. Besides, in
the segmentation part, different from [20], we do

(a) (b) (c) (d) (e) (f)

Figure 11: Semantic modeling results. (a) Test images; (b) Instance masks; (c) Depth maps; (d) Layout
edge maps; (e) 2D Projections of matched models; (f) Retrieved semantic scenes

not require users to give a semantic label for ob-
jects. Also unlike [19] where only main objects
are segmented, more objects like pictures, blinds
can be segmented in our work (see Figure 12).
Secondly, these methods do not provide support
semantics between objects. Offering the support
context along with the reconstruction can provide
cues for retrieving more objects that are supported
by others (see Figure 13). In addition, we mainly
handle scene modeling from photographs. For re-
covering scenes from rendered images, we need to
loosen the constraints from point cloud and append
extra placement priori.

There are some limitations in our work. Al-
though we have tested that our method appears ro-
bust in handling noisy inputs, it could possibly fail
when the pre-processing step does not work well.
The weakest part is the layout edge map genera-
tion. For images whose layout edge map is not
clear or the layout frame is occluded as Figure 14a
shows, the corner searching algorithm could fail
(see Figure 14b). In these cases, however, only a
few manual interactions are required. As Figure
14c presents, four points on the original image are
picked to correct the result. This can be used to im-
prove the final performance (see Figure 14d). For
cases with an extremely complicated support con-
text, which cannot be parsed with some dataset,
a novel support inference method, based on point
cloud and image features, is required. This will be
our focus in future work.

8 Conclusions

We propose a novel indoor scene modeling method
with only a single photograph. Three FCN ar-
chitectures are blended to produce different fea-

(a) Input (b) Zhang et al.
[19]

(c) Our method

Figure 12: Segmentation comparison

(a) Input (b) Liu et al. [20] (c) Our method

Figure 13: Result comparison

(a) (b)

(c) (d)

Figure 14: Modeling with manual interactions

ture maps. We have shown that these high-level
features can provide informative geometric clues
and instance-level semantics for objects. Based
on these features, support relationships between
instances can be reasonably estimated in a data-
driven manner. This offers an effective hierarchi-
cal constraint for the model matching, enabling our
method to reconstruct objects with noisy inputs.

(a) Input (b) Cottage (c) Palace

Figure 15: Furniture replacement

The experiments show that we can retrieve reliable
geometry with detailed support context for indoor
scenes even when poorly occluded objects exist. In
the future, based on semantic scenes, scene-editing
applications (e.g. furniture replacement) will be
developed for VR devices, which enables people
to experience realistic 3D indoor scenes with dif-
ferent decoration styles (see Figure 15).

Acknowledgements
The research leading to these results has been par-
tially supported by VISTA AR project (funded by
the Interreg France (Channel) England), the China
Scholarship Council and Bournemouth University.

References
[1] Chen K, Lai YK, and Hu SM. 3d indoor scene

modeling from rgb-d data: a survey. Computa-
tional Visual Media, 1(4):267–278, 2015.

[2] Hua BS, Pham QH, Nguyen DT, Tran MK, Yu LF,
and Yeung SK. Scenenn: A scene meshes dataset
with annotations. In 3D Vision (3DV), 2016 Fourth
International Conference on, pages 92–101. IEEE,
2016.

[3] Silberman N, Hoiem D, Kohli P, and Fergus R.
Indoor segmentation and support inference from
rgbd images. Computer Vision–ECCV 2012, pages
746–760, 2012.

[4] Song S, Lichtenberg SP, and Xiao J. Sun rgb-
d: A rgb-d scene understanding benchmark suite.
In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 567–
576, 2015.

[5] Long J, Shelhamer E, and Darrell T. Fully con-
volutional networks for semantic segmentation. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3431–3440,
2015.

[6] Dai J, Li Y, He K, and Sun J. R-fcn: Object de-
tection via region-based fully convolutional net-
works. In Advances in neural information process-
ing systems, pages 379–387, 2016.

[7] Li Y, Qi H, Dai J, Ji X, and Wei Y. Fully con-
volutional instance-aware semantic segmentation.
arXiv preprint arXiv:1611.07709, 2016.

[8] Laina I, Rupprecht C, Belagiannis V, Tombari F,
and Navab N. Deeper depth prediction with fully
convolutional residual networks. In 3D Vision

(3DV), 2016 Fourth International Conference on,
pages 239–248. IEEE, 2016.

[9] Mallya A and Lazebnik S. Learning informative
edge maps for indoor scene layout prediction. In
Proceedings of the IEEE International Conference
on Computer Vision, pages 936–944, 2015.

[10] Xiong X and Huber D. Using context to create
semantic 3d models of indoor environments. In
BMVC, pages 1–11, 2010.

[11] Silberman N and Fergus R. Indoor scene segmen-
tation using a structured light sensor. In Com-
puter Vision Workshops (ICCV Workshops), 2011
IEEE International Conference on, pages 601–
608. IEEE, 2011.

[12] Gupta S, Girshick R, Arbeláez P, and Malik J.
Learning rich features from rgb-d images for ob-
ject detection and segmentation. In European
Conference on Computer Vision, pages 345–360.
Springer, 2014.

[13] Lai K, Bo L, and Fox D. Unsupervised feature
learning for 3d scene labeling. In Robotics and Au-
tomation (ICRA), 2014 IEEE International Con-
ference on, pages 3050–3057. IEEE, 2014.

[14] Yang S, Xu J, Chen K, and Fu H. View sugges-
tion for interactive segmentation of indoor scenes.
Computational Visual Media, 3(2):131–146, 2017.

[15] Qi CR, Yi L, Su H, and Guibas LJ. Pointnet++:
Deep hierarchical feature learning on point sets in
a metric space. arXiv preprint arXiv:1706.02413,
2017.

[16] Xu K, Chen K, Fu H, Sun WL, and Hu SM.
Sketch2scene: sketch-based co-retrieval and co-
placement of 3d models. ACM Transactions on
Graphics (TOG), 32(4):123, 2013.

[17] Guo R, Zou C, and Hoiem D. Predicting com-
plete 3d models of indoor scenes. arXiv preprint
arXiv:1504.02437, 2015.

[18] Shen CH, Fu H, Chen K, and Hu SM. Structure
recovery by part assembly. ACM Transactions on
Graphics (TOG), 31(6):180, 2012.

[19] Zhang Y, Liu Z, Miao Z, Wu W, Liu K, and Sun
Z. Single image-based data-driven indoor scene
modeling. Computers & Graphics, 53:210–223,
2015.

[20] Liu M, Guo Y, and Wang J. Indoor scene modeling
from a single image using normal inference and
edge features. The Visual Computer, pages 1–14,
2017.

[21] Izadinia H, Shan Q, and Seitz SM. Im2cad. In
2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2422–2431.
IEEE, 2017.

[22] Hariharan B, Arbeláez P, Girshick R, and Malik
J. Simultaneous detection and segmentation. In
European Conference on Computer Vision, pages
297–312. Springer, 2014.

[23] Rother C, Kolmogorov V, and Blake A. Grab-
cut: Interactive foreground extraction using iter-
ated graph cuts. In ACM transactions on graphics
(TOG), volume 23, pages 309–314. ACM, 2004.

[24] Konolige K and Mihelich P. Technical description
of kinect calibration. Tech. Rep., Willow Garage,

2011.
[25] Hedau V, Hoiem D, and Forsyth D. Recovering

the spatial layout of cluttered rooms. In Computer
vision, 2009 IEEE 12th international conference
on, pages 1849–1856. IEEE, 2009.

[26] Jones DR, Perttunen CD, and Stuckman BE. Lip-
schitzian optimization without the lipschitz con-
stant. Journal of Optimization Theory and Appli-
cations, 79(1):157–181, 1993.

[27] Powell MJ. The bobyqa algorithm for bound con-
strained optimization without derivatives. Cam-
bridge NA Report NA2009/06, University of Cam-
bridge, Cambridge, 2009.

Appendix
(A) Parameter decision

In image segmentation, we keep training con-
figurations following the suite of Li. [7]. In the
room corner searching step (see Algorithm 1 in
Appendix (B)), we set the maximal iteration num-
ber as 1000, the goal of inlier number as 0.7 ∗
number of edge pixels, distance threshold as 10.

In object modeling, we set d1 = [0.5, 0.5, 0.5]T

(in meters, the same below) for normal objects.
For those supported by a wall, d1 is set as
[0.2,∞,∞]T or [∞, 0.2,∞]T depending on the
orientation of the wall. d2 is set as [1.0, 1.0, 0.5]T

as the point cloud is noisier in horizontal plane
than in the vertical direction (see Figure 9). For
model scales, we set ρ1L = ρ2

L = ρ3
L = 0.8,

ρ1
U = ρ2

U = 1.2, and ρ3
U = 1.0. While

for objects whose top part is occluded (see the
rightmost chair in the fourth case in Figure 11a),
the point cloud could underestimate the model
height size. We hence change the lower bounds
to ρ1L = ρ2

L = ρ3
L = 1.0, and the upper bounds

to ρ1U = ρ2
U = ρ3

U = 2.0 or more. In the global
searching step, the maximal iterations number is
limited to 50, while in the local matching, gener-
ally we do not set the maximal iteration number to
ensure convergence, the only stopping criteria is
set as when the absolute tolerance reaches 10−3.
(B) Room corner searching method

Based on the edge map (see Figure 5a), we re-
serve pixels with a probability score higher than
the median value (see green dots in Figure 16a).
Then the Harris corner detector is adopted to find
all possible corners on the map (see red dots on
Figure 16a). A relative smaller block size (3x3) is
used in the Harris detector to produce extra can-
didates for searching four points to find the room
corner. We utilize the RANSAC method to get the
optimal four-point set among the corner candidates
(see Figure 5b). With the point cloud, the rota-
tion matrix and the translation vector of the room
corner can be estimated as the camera’s extrinsic

parameters. The pseudo codes of our designed
RANSAC algorithm is described in Algorithm 1.

In Algorithm 1, based on our observations, we
claim four points forming a room corner when one
of them is covered by the convex hull of the others
(e.g. in Figure 16b, point 1 is covered by the tri-
angular comprised by point 2, 3 and 4). Here we
down-sample the edge map by the sampling inter-
val as 30 pixels to improve efficiency. The whole
algorithm only costs several seconds.

(a) Candidates for corner
searching

1

2

3

4

Threshold

Inliers

Outliers

Candidatesn

(b) Inliers and outliers in
RANSAC searching

Figure 16: Searching the optimal corner on an
edge map of the room layout

Algorithm 1 RANSAC algorithm for searching
the room corner

1: Data: Point candidates (red dots), Edge pixels
(green dots) (see Figure 5b);

2: Result: The optimal four points set S∗ which
forms a corner;

3: Initialization: Set the maximal number of it-
erations as max iter, current step as i, goal
of inlier number as inliersg, current inlier
number as inliers, current best inlier num-
ber as inliersb = 0 , distance threshold as
dist thresh, current best points set as Sb =
{};

4: while i ≤ max iter & inliersb ≤ inliersg

do
5: Randomly pick out a four points set

S = {O,X,Y,Z} from the point candidates
without replacement;

6: if S forms a corner then
7: Calculate the inliers as the number

of pixels on the edge map whose the shortest
distance from {

−→
OX,
−→
OY,
−→
OZ} is smaller than

dist thresh (see Figure 16b);
8: i = i+ 1;
9: if inliers > inliersb then

10: inliersb = inliers;
11: Sb = S;
12: end if
13: end if
14: end while
15: S∗ = Sb;

