
Stable Advection-Reaction-Diffusion With Arbitrary
Anisotropy

Theodore Kim
IBM TJ Watson Research Center

Ming Lin
University of North Carolina at Chapel Hill

ABSTRACT
Turing first theorized that many biological patterns arise
through the processes of reaction and diffusion [1]. Sub-
sequently, reaction-diffusion systems have been studied in
many fields, including computer graphics. We first show
that for visual simulation purposes, reaction-diffusion equa-
tions can be made unconditionally stable using a variety of
straightforward methods. Second, we propose an anisotropy
embedding that significantly expands the space of possible
patterns that can be generated. Third, we show that by
adding an advection term, the simulation can be coupled to a
fluid simulation to produce visually appealing flows. Fourth,
we couple fast marching methods to our anisotropy embed-
ding to create a painting interface to the simulation. Uncon-
ditional stability to maintained throughout, and our system
runs at interactive rates. Finally, we show that on the Cell
processor, it is possible to implement reaction-diffusion on
top of an existing fluid solver with no significant performance
impact.

1. INTRODUCTION
Alan Turing posited that a wide variety of biological pat-
terns such as whorls in leaves and tentacles on Hydras form
as a result of two simple physical processes: reaction and
diffusion [1]. In general, reaction diffusion systems do not
have closed form solutions, so Turing appealed to numerical
methods.

In computer graphics, [2] and [3] first introduced reaction-
diffusion systems in 1991, and demonstrated the rich set of
patterns they can produce. Recently, a variety of numer-
ical integration schemes have become popular in computer
graphics that allow the fast, stable simulation of related phe-
nomena, such as the Navier-Stokes equations [4], the invis-
cid Euler equations [5], and Stokes’ flow [6]. In this paper
we show how these techniques can be applied to reaction-
diffusion.

Using this stable formulation, we significantly extend reaction-

Figure 1: Advection-Reaction-Diffusion result: The
leftmost column is an advection-only result, while
the right three columns are coupled to various
reaction-diffusion equations.

diffusion in a variety of ways. First, we show how to embed
arbitrary anisotropy functions into the diffusion operator,
allowing for the creation of patterns that were not possible
with previous graphics techniques (See Figure. 4). Next
we show that by adding an advection term, the simulation
can be naturally coupled to a fluid solver to create visually
appealing flows (See Figure 1). Last, we use fast march-
ing methods and our anisotropy embedding to creating a
painting interface to advection-reaction diffusion systems.
Unconditional stability is maintained throughout, and our
system runs at interactive rates.

2. PREVIOUS WORK
For a general survey of procedural texture synthesis, we refer
the readers to standard textbooks, such as [7], for an exhaus-
tive survey of such techniques. The existing techniques are
capable of generating easy to control, visually convincing re-
sults. However, their physical basis can be tenuous, making
their extension to the patterns we present here difficult.

We use many of the same integration methods as [4] in fluid
simulation. However, we will forgo an exhaustive survey of
computational fluid dynamics (CFD) in computer graphics,
as CFD is not the focus of this paper. We instead men-
tion thematically similar recent works in CFD. The ‘passive
advection’ we describe is similar to the treatment of the tem-
perature and density fields presented by Fedkiw et al. [5].

Iham et al. [8] showed that by coupling reaction effects to
the velocity field, explosion effects can be simulated. Unlike
our work, their focus was on explosions, not pattern forma-
tion. Notably, they used a conditionally stable integration
scheme, so our technique could be used to make their scheme
more robust.

Bargteil et al. [9] used reaction-diffusion to show effective
advection of texture coordinates in a fluid simulation, but
the pattern formation was not clearly visible in their simula-
tion. Most likely, this is because the simulation parameters
had to be set to avoid a strict timestep restriction. The
method we present here could be used to remove this re-
striction.

Integration of advection-reaction-diffusion equations is a well-
studied problem in applied mathematics (eg. [10]), but is
usually not presented in the unified form shown in this pa-
per, because the overall convergence of the scheme is consid-
ered too low. However, for interactive applications, stability
is more important than accuracy, as long as visual plau-
sibility is maintained. To the best of our knowledge, this
paper presents the first fast, stable scheme for simulating
reaction-diffusion suitable for interactive design.

3. STABLE REACTION DIFFUSION
In this section, we describe the standard mathematical for-
mulation for reaction-diffusion systems and present an un-
conditionally stable scheme for simulating such a system.

3.1 Reaction-Diffusion Systems
A reaction-diffusion equation for a chemical A takes the gen-
eral form

∂A

∂t
= ∇ · (a∇A) + R (1)

where a is a diffusion constant. The ∇ · (a∇A) term cor-
responds to the physical process of diffusion. The R term
is the reaction term, and defines how the chemical A in-
teracts with other chemicals. A reaction-diffusion system is
obtained when several chemical interact via their reaction
terms, such as the two-chemical system shown in Eqns. 2
and 3.

∂A

∂t
= ∇ · (a∇A) + RA(A, B) (2)

∂B

∂t
= ∇ · (b∇B) + RB(A, B) (3)

These equations are then integrated numerically. This step
is usually accomplished by discretizing the two chemicals
and replacing the differential operators with finite difference
operators. Witkin and Kass [3] discretized the equations
over a rectilinear grid, an approach that can suffer from dis-
tortion when the final pattern is stretched over an arbitrary
model. They proposed a correction matrix that minimized
this parametric distortion. Turk [2] circumvented the distor-
tion problem by computing an irregular grid in the form of a
Voronoi diagram directly on the surface of a model instead.
The reaction-diffusion system was then integrated along this
irregular grid. In this paper we adhere more to the approach
described by [3] because integration over a rectilinear grid is
a well studied problem in applied math, and we would like
to be able to draw from this wealth of knowledge.

3.2 An Unconditionally Stable Scheme
For the remainder of this paper, we will employ the following
notation. At

i,j denotes the concentration of A at time t, at
grid cell (i, j). Spatial and temporal neighbors are defined
as offsets from these indices, i.e. At+1

i,j is the concentration

in the grid cell at the next timestep, and At
i−1,j is the grid

cell to the left of At
i,j . The diffusion operator for A is usually

discretized as:

∇ · (a∇A) ≈
a(At

i−1,j + At
i,j−1

− 4At
i,j + At

i+1,j + At
i,j+1

)

h2
(4)

where h is defined as the physical length of a single grid
cell. We can insert this discretization directly into Eqn. 1
to obtain a forward Euler integration scheme (Eqn. 5).

At+1
i,j = At

i,j + ∆tR(A, B)+

a∆t

h2
(At

i−1,j + At
i,j−1 − 4At

i,j + At
i+1,j + At

i,j+1)
(5)

The stability condition for this integration scheme is 2a∆t

h2 <

1, where ∆t is the desired timestep. This is unacceptably
stringent, especially if the diffusion constant a is large, as
the timestep must be very small to offset the large a. De-
pending on the stiffness of the reaction equation, the size
of the timestep may have to be reduced further. The usual
method for circumventing timestep restrictions is to use im-
plicit integration schemes. In order to apply implicit Euler
to both the reaction and diffusion operators, we split the
integration into two stages (Eqns. 6 and 13). We begin by

integrating the reaction component in Eqn. 6. Let dAt
i,j de-

note an intermediate value for At+1
i,j after reaction but before

diffusion.
dAt

i,j = A
t
i,j + ∆tR(dAt

i,j ,
dBt

i,j) (6)

The reaction term in reaction-diffusion equations usually
takes the form of a polynomial, in which case Eqn. 6 de-
fines a small polynomial system. While non-linear systems
are difficult to solve in general, the ones produced by reac-
tion equations are usually small enough that they can be
factored by hand and sent to a non-linear solver such as
Newton-Raphson at runtime. For example, take the reac-
tion terms for Gray-Scott reaction-diffusion [11],

RA(A, B) = −AB
2 + F (1 − A) (7)

RB(A, B) = AB
2 − (F + k)B (8)

where F and k are constants. Reaction equations usually
do not require any neighbor information, so it is well-known
(e.g. [10]) that they can be addressed using ODE methods.
We have retained the (i, j) subscripts in the following equa-
tions purely for consistency. Substituting the Gray-Scott
reaction equations into Eqn. 6, we obtain the following sys-
tem:

dAt
i,j = A

t
i,j + ∆t(−dAt

i,j
dBt

i,j

2

+ F (1 − dAt
i,j)) (9)

dBt
i,j = B

t
i,j + ∆t(dAt

i,j
dBt

i,j

2

− (F + k)dBt
i,j) (10)

We can solve for dAt
i,j in terms of dBt

i,j :

dAt
i,j =

At
i,j + F∆t

∆tdBt
i,j

2

+ F∆t + 1
(11)

Substituting this into dBt
i,j , we obtain:

dBt
i,j = Bt

i,j + ∆t

0
@ At

i,j + F∆t

∆tdBt
i,j

2

+ F∆t + 1

dBt
i,j

2

− (F + k)dBt
i,j

1
A

(12)

This is a cubic equation that can be solved using cubic for-
mula, Newton-Raphson, or any other non-linear solver. Al-
though cubic formula may appear attractive because it is
an analytical solution, it requires manipulation of complex
numbers (even if all the root are real) and involves a large
number of arithmetic operations. We instead prefer to use
Newton-Raphson because it is faster, simpler to implement,
and more general. The solution is then plugged back into
Eqn. 11 to complete the integration. While a new derivation
is necessary for each different set of reaction equations, this
method applies as long as the reaction terms do not con-
tain any additional derivatives. Additional update rules for
several common reaction equations are given in Appendix
A.

It may seem expensive to perform Newton-Raphson itera-
tion at every grid cell, but since A and B represent concen-
trations, their values over the lifetime of the simulation is
limited to the [0, 1] range. Thus, it is possible to precom-
pute a table of values and perform a lookup at runtime. In
practice, this method is faster than even forward Euler.

In the second integration stage, we apply implicit Euler to
the diffusion operator thus:

At+1
i,j = dAt

i,j+

∆ta

h2
(At+1

i−1,j + At+1
i,j−1

− 4At+1
i,j + At+1

i+1,j + At+1
i,j+1

)
(13)

The diffusion operator is now stable for any value of ∆t.
Since At+1

i,j appears on both sides of Eqn. 13, it defines a lin-
ear system that must be solved. Many efficient sparse matrix
solvers exist for systems of this type. Incomplete Cholesky
Conjugate Gradient (ICCG) is generally considered one of
the best choices [5], as it is both fast and handles boundary
conditions more naturally than multigrid. Excellent intro-
ductory texts exist for the novice [12]. We note extension
to second order implicit methods is straightforward. The
Crank-Nicolson can be used for the diffusion operator, and
second order Adams-Moulton can be used for the reaction
equations. An excellent overview of these methods is avail-
able in [13].

4. ANISOTROPIC REACTION DIFFUSION
In this section, we present a general anisotropy embedding
for creating more interesting reaction-diffusion patterns. This
embedding will later allow us to introduce user-specified
stroke orientations into the simulation. The anisotropy em-
bedding poses additional numerical challenges, and we show
how to maintain unconditional stability in its presence.

4.1 A Generalized Anisotropy Function
Using solely Eqns. 2 and 3, we get patterns with no clear
anisotropy. In order to address this limitation, Witkin and

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

(a) a1 = 1, a2 = 1, θ0 = 0

 0.5

 1

 1.5

30

210

60

240

90

270

120

300

150

330

180 0

(b) a1 = 1, a2 = 1.5, θ0 = 0
(solid), θ0 = π

4
(dots)

Figure 2: Polar plots of the Witkin-Kass anisotropy
function. In Fig. 2(a), the anisotropy strengths a1

and a2 are set to be equal, creating four cosine lobes
of equal size. In the solid line plot in Fig. 2(b),
a2 is set to be greater, creating larger lobes over
π
4

< θ < 3π
4

and 5π
4

< θ < 7π
4

. In the dotted line plot
in the same figure, the function has been rotated
counterclockwise by setting θ0 = π

4
.

Kass suggested adding anisotropy to the diffusion operator.
This was accomplished by varying the diffusion constant a

according to the local orientation. Two separate diffusion
values are defined, a1 for the x axis and a2 for the y axis.
These two diffusion constants, along with a local rotation,
were then embedded in the discrete Laplacian. This ap-
proach gives directional results, but the anisotropy function
is limited to a four-pronged axis-aligned cross, and along
each axis only one diffusion speed can be specified. So, for
example, separate speeds cannot be defined for the positive
and negative x directions.

By embedding the anisotropy directly into the reaction-diffusion
equations, we can obtain a more general method. We begin
by replacing the diffusion constant with a polar function

∂A

∂t
= ∇ · (a(θ)∇A) + R (14)

We define θ here as the angle of the 2D projection of the 3D
normal [∂A

∂x
, ∂A

∂y
,−1]. The angle becomes undefined when

both derivatives are equal to zero, but this is not a problem
because diffusion is also equal to zero in such regions.

In polar coordinates, we can express the Witkin-Kass scheme
as:

a(θ) =

8
>><
>>:

α + a1−α

2
(1 + cos(4(θ + θ0)))


−π

4
≤ θ + θ0 ≤ π

4
3π
4

≤ θ + θ0 ≤ 5π
4

α + a2−α

2
(1 + cos(4(θ + θ0)))


π
4

< θ + θ0 < 3π
4

5π
4

< θ + θ0 < 7π
4

(15)

where α = a1+a2

4
. Polar plots of Eqn. 15 are shown in

Figs. 2(a)-2(b). Intuitively, the Witkin-Kass function can
be viewed as four cosine lobes of different amplitude. The
‘4’ in Eqn. 15 specifies four total lobes, the θ0 rotates the
overall function counterclockwise, and the remaining terms
of Eqn. 15 are present for normalization. A more general
version of a cosine-based anisotropy function of this type is

given by Eqn. 16.

a(θ) =

jX

n=1

an

2
(1+cos(j(θ + θ0)))


(n − 2)π

j
< θ + θ0 ≤

nπ

j
(16)

Eqn. 16 describes j cosine lobes, where the influence of each
lobe is limited to a 2π

j
slice of the θ domain. Using this for-

mula, we can now overcome the limitations of the Witkin-
Kass formula and specify a separate speed an for each cosine
lobe. In Fig. 4, we show the results of running Gray-Scott
reaction diffusion with various settings of our anisotropy
function. Note that the Witkin-Kass anisotropy function
can only generate the upper left pattern in Fig. 4. Eqn.
16 is not a direct generalization of Eqn. 15, as two bound-
ary values would have to be specified for each cosine lobe.
This limitation could be overcome by doubling the number
of cosine lobes and halving their domains of influence, but
we have found that Eqn. 16 is a more intuitive and compact
formula.

Nothing constrains us to solely Eqn. 16, as we can set a(θ) to
any arbitrary polar function. In fact, we are not even limited
to analytic forms, and could incorporate user-drawn polar
functions. Further exploration of the patterns generated by
various functions poses an interesting future direction.

4.2 Maintaining Unconditional Stability
With this addition of an anisotropy function, a stable in-
tegration method is needed more than ever. The stabil-
ity condition for a forward Euler method is now at least
2∆t

h2 · |a(θ)| < 1, where |a(θ)| is the maximum value of a(θ)
over 0 ≤ θ ≤ 2π. Since the user can specify an anisotropy
function with arbitrary large maxima, the timestep can eas-
ily become impractically small. However, the discretization
given by Eqn. 13 assumes that the diffusion constant a is the
same throughout the entire computation domain, and this
is no longer true. Instead we must separate Eqn. 3.2 into its
four directional components and associate a different diffu-
sion coefficient with each direction. Ideally we would assign
each direction the value of a(θ) that would exist halfway be-
tween At

i,j and each of its neighbors. This produces a sym-
metric matrix that we can continue to solve using ICCG.
We interpolate to find this value by averaging of a(θ) values
between At

i,j and its neighbors. So, in the anisotropic case,
we use Eqn. 17 instead of Eqn. 13,

A
t+1
i,j = dAt

i,j+
∆t

h2

„
a(θ)i−1,j + a(θ)i,j

2
(At+1

i−1,j − A
t+1
i,j)+

a(θ)i+1,j + a(θ)i,j

2
(At+1

i+1,j − A
t+1
i,j)+

a(θ)i,j−1 + a(θ)i,j

2
(At+1

i,j−1 − A
t+1
i,j)+

a(θ)i,j+1 + a(θ)i,j

2
(At+1

i,j+1 − A
t+1
i,j)

«

(17)

We note that a full discretization of ∇ · (a(θ)∇A) would
actually need to take into account a (∇a(θ))T (∇A) term as
well. However, we have found that even without this term,
we get the desired anisotropy effects, so we have omitted it
here for simplicity.

5. STYLIZED FLOW SIMULATION

In this section, we show how to integrate a reaction-diffusion
solver with a fluid solver in order to obtain a stylized flow
simulation. Formally, this is known as an advection-reaction-
diffusion system, and an integration scheme exists that main-
tains the unconditional stability of the overall system.

5.1 Passive Transport
An advection operator usually takes form of (u ·∇)v, where
u is some vector field and v is some scalar field. The v field
should be set to the chemical whose equation the operator
is embedded in, and by setting u to the velocity field of a
Stam-style solver, an elegant method of coupling a reaction-
diffusion simulator to a fluid simulator is obtained. The
general form of such an equation is:

∂A

∂t
= −(u · ∇)A + RA(A, B) + ∇ · (a(θ)∇A) (18)

where u is the external velocity field. An example of passive
advection is shown in Fig. 5. Passive transport is by no
means the only possible utility of u, just its usual meaning.

5.2 An Unconditionally Stable Scheme
Advection imposes the timestep restriction of ∆t < ∆x

|u|
,

where ∆x is the size of a grid cell, and |u| is the magnitude
of the largest velocity over the entire grid. In computer
graphics, Stam first circumvented this restriction using a
Semi-Lagrangian integration scheme [4]. In order to main-
tain unconditional stability in the above advection-reaction-
diffusion equations, we suggest using the same scheme. Stam
recommended that the advection step be run after the diffu-
sion step, since the diffusion step smears out the current val-
ues and provides more information for the advection back-
traces to ‘grab’. We must therefore rewrite Eqn. 17 to treat
the results as intermediate values:

Ã
t+1
i,j = dAt

i,j+
∆t

h2

„
a(θ)i−1,j + a(θ)i,j

2
(Ãt+1

i−1,j − Ã
t+1
i,j)+

a(θ)i+1,j + a(θ)i,j

2
(Ãt+1

i+1,j − Ã
t+1
i,j)+

a(θ)i,j−1 + a(θ)i,j

2
(Ãt+1

i,j−1 − Ã
t+1
i,j)+

a(θ)i,j+1 + a(θ)i,j

2
(Ãt+1

i,j+1 − Ã
t+1
i,j)

«

(19)

where Ãt+1
i,j represents an intermediate value after reaction

and diffusion, but before advection.

A linear Semi-Lagrangian advection scheme is

A
t+1
i,j = Ã

t+1

k,l


k = i − ∆t

∆x
· u(x)

l = j − ∆t
∆y

· u(y)
(20)

where u(x) and u(y) correspond to the x and y components
of the vector u. Usually k and l do not yield integers, so a
bilinear interpolation is performed. If the values of k and
l are outside the grid, they can be clamped to borders or
wrapped periodically. For a cubic version of Eqn. 20, see
[5]. The full, final integration scheme is Eqns. 6, 19, and
20.

6. A PAINTING INTERFACE
The scheme we propose is fast enough that it can run at
interactive rates on non-trivial grid sizes. However, this in-
teractivity is most useful if it is coupled with an intuitive
interface. A näıve interface would merely have the user de-
posit chemicals in the simulation domain using a mouse or
pen tablet. Creating interesting patterns can be difficult
with only these basic controls.

Given the large number of tunable variables available in the
reaction-diffusion simulation, it seems natural to semanti-
cally couple some of these to the user input. We propose
one such coupling that ties the anisotropy orientation (θ0 in
Eqn. 16) to the direction of the user’s brushstrokes. The
θ0 variable is usually kept constant over the domain, but we
will vary it spatially so that it causes the reaction-diffusion
patterns to form in the direction of the strokes.

When the user deposits a stroke, we rasterize its position
and direction on a regular grid. This defines the θ0 values
of the grid cells that lie directly underneath a stroke. We
then propagate these orientations to grid cells that do not
lie underneath a stroke using fast extension velocities [14],
which is a variant of fast marching methods [15, 16]. Briefly,
the fast marching method constructs a distance field around
an interface (in our case, the rasterized brushstrokes), and
the fast extension velocity algorithm adds a step that prop-
agates scalar values defined on the interface to cells far from
the interface. In our case, our scalar value is an orientation
value in the (0, 2π) range. The overall effect is that each
grid cell is constrained to form reaction-diffusion patterns
according to the direction of the nearest brush stroke.

7. IMPLEMENTATION AND RESULTS
We have implemented the techniques presented here in C++
and coupled it to a tablet interface, and demonstrated their
effectiveness on various applications.

7.1 Applications and Demonstrations
We applied several different anisotropy functions to Grey-
Scott reaction diffusion to generate the “space cookies” [3]
in Fig. 4. Note that with the exception of the upper left
cookie, the Witkin-Kass anisotropy function would require
a great deal of user intervention to generate similar patterns.
However, using our method, the user only needs to specify
the initial conditions.

Three different purely reaction-diffusion systems, Gray-Scott,
FitzHugh-Nagumo [17, 18], and turbulent Barkley [19], were
used to create the patterns in the Figs. 5 and 6. FitzHugh-
Nagumo generates periodic heartbeats, while turbulent Barkley
generates a turbulent version of FitzHugh-Nagumo, much
like a defibrillating heart. The final results are suitable for
use as static textures, while the temporal evolution of the
system can be used as animations or flow visualizations.

In Figure 5, we simulated reaction-diffusion in the lid-driven
cavity flow example described in [20]. We show the simula-
tion with passive advection only, and then stylized with the
three different kinds of reaction-diffusion. In Fig. 6 we sim-
ulate reaction-diffusion in the flow past an obstacle example
described in [20]. We compare flows with advection only,
reaction-diffusion only, and full advection-reaction-diffusion.

All the reaction-diffusion simulations utilized Dirichlet bound-
ary conditions. Such techniques can be useful for the gen-
eration and rapid visualization of visual effects. Please see
the supplementary video clips to see animations of Figs. 5
and 6 produced by the integration schemes presented here.

Figure 3: Patterns generated interactively using our
advection-reaction-diffusion scheme with a tablet in-
terface. In both cases the user drew the white spi-
ral. Top: A pattern generated using the basic ‘de-
position only’ method. The pattern grows outwards
once and then stops. Bottom: Pattern generated
using the brushstroke - θ0 coupling. Waves perpet-
ually grow out radially from the stroke, and then
gradually spiral inwards toward the center.

We have implemented the painting interface we described in
section 6, and integrated it with a pen tablet input. Using
this interface, the user can generate complex patterns with
a very small number of strokes. In the right half of Figure
3, the anisotropy function was set to a single cosine lobe
that propagates in the opposite direction of the stroke. The
user input a single spiral-shaped stroke, and stripes then
radiate outwards perpendicular to the stroke. Once they
stabilize, the stripes spiral inwards toward the center, as
prescribed by the anisotropy function. The pattern is self-
sustaining and continues indefinitely. If we instead use the
näıve deposition-only interface (Figure 3 left), we still get
an interesting pattern, but it propagates outwards once and
remains static. The user stroke exists only as a boundary,
and the stroke is not reflected in the overall pattern.

7.2 Performance
We have implemented our stable reaction-diffusion scheme
on top of a Stam stable fluid solver [4] on the Cell proces-
sor. Somewhat surprisingly, it is possible to add our scheme
with no significant impact on the total running time. A de-
tailed flop and bandwidth analysis shows that this is because
the fluid solver is a memory-bound process, and the Cell’s

Resolution Fluids only Fluids + RD

1282 223 FPS 223 FPS
2562 78.7 FPS 78.5 FPS
5122 21.4 FPS 21.5 FPS
10242 5.5 FPS 5.5 FPS

Table 1: Running time of a fluid solver on the
Cell processor, and the fluid solver with reaction-
diffusion added. All measurements are in frames
per second. The timings are nearly identical, with
slight discrepancies attributable to thread synchro-
nization noise.

synergistic processing elements (SPEs) are idle roughly 75%
of the time. By judiciously placing the reaction-diffusion
computation, it is possible to exploit this idle time with no
additional impact on the overall running time. We show
the performance of the fluid solver and the fluid solver plus
reaction-diffusion in Table 1. The slight discrepancies in
between the running times can be attributed to thread syn-
chronization noise.

While at first glance it appears that a non-linear solve per
grid cell would be quite expensive, there are in fact ample
unused cycles to devote to this computation. Since this run-
ning time of both schemes can be entirely hidden, it makes
little sense to compare their running times directly. The
implicit method is technically ‘infinitely’ faster than the ex-
plicit method, since it allows arbitrarily large timesteps. It
is up to the user to decide when the results of the implicit
method are too smeared out to be of use in their specific
application.

7.3 Limitations
While our approach is fast and stable, the algorithm does
have some limitations. The scheme does not guarantee that
identical patterns can be obtained using large steps in place
of small steps. For example, in the extreme, it is still not
possible to generate leopard spots in a single timestep. Per-
haps higher-order methods or a hybrid method using the
cellular approach of [21] may be able to address this prob-
lem.

While we mentioned unconditionally stable second-order schemes
in section 3, they do not extend to higher orders due to
the second Dahlquist stability barrier [13]. To achieve an
unconditionally stable scheme greater than second order, a
different approach will be needed.

8. CONCLUSIONS AND FUTURE WORK
We have presented unconditionally stable schemes for reaction-
diffusion, anisotropic reaction-diffusion, and advection-reaction-
diffusion for pattern generation and stylized flow simula-
tions. The PDEs we used are dimensionless, so they apply
to 3D as well as 2D. In 3D, a 7-point discrete Laplacian is
used in Eqn. 19, a z-coordinate lookup is added to Eqn. 20,
and the polar function in Eqn. 14 becomes spherical.

We have presented one set of reaction terms, one possible ad-
vection operator in Section 5, and a cosine-based anisotropic
diffusion function in Section 4. These are by no means

the only possibilities; the space of functions that could be
plugged into these terms is virtually infinite. This space of
functions can now be explored without fear of numerical in-
stability, and ideally classes of interesting patterns can be
mapped out at interactive rates. There still remain classes of
functions that our approach cannot handle. If the reaction
terms contain time or space derivatives, the ODE approach
we describe is no longer valid and a different approach is
necessary. We are not aware of any scheme that removes
this problem, so it poses an interesting direction for future
work.

Finally, we have only proposed one semantic coupling be-
tween user-input brush strokes and the simulation, namely
the θ0 variable. This is by no means the only possible
coupling, and further exploration is necessary to determine
what coupling is the most intuitive and semantically mean-
ingful.

Appendix A
For brevity, we have dropped the superscripts and subscripts

in the following equations. Keep in mind that bA = Ât+1
i,j ,

bB = B̂t+1
i,j , A = At

i,j , and B = Bt
i,j . In all cases, bA should

be solved with a non-linear solver and substituted into bB.
All undocumented variables are constants.

Turing’s Spot Formation Equations
Turing’s spot formation reaction terms [1] are:

RA = s(AB − A − β)

RB = s(16 − AB)

The implicit update rules are:

bA = A + s∆t

„
B + 16∆t

1 + s bA∆t

bA − bA − β

«
.

bB =
B + 16∆t

1 + s bA∆t

Meinhardt’s Spot Formation Equations
Meinhardt’s spot formation reaction terms [22] are:

RA = s(Ap1 +
0.01αA2

B
+ p3)

RB = s(Bp2 + 0.01αA
2)

The implicit update rules are:

bA = A + ∆ts

bAp1 +

(1 − ∆tsp2)(0.01α bA2)

B + ∆ts(0.01α bA2)
+ p3

!

bB =
B + ∆ts(0.01α bA2)

1 − ∆tsp2

FitzHugh-Nagumo Model
The FitzHugh-Nagumo [17, 18] reaction terms are:

RA = A − A3
− B

RB = ε(A − a1B − a0)

The implicit update rules are:

bA = A + ∆t

bA − bA3

−
B + ∆tε(bA − a0)

1 + ∆tεa1

!

bB =
B + ∆tε(bA − a0)

1 + ∆tεa1

The Barkley Model
The Barkley [19] reaction terms are:

RA =
1

ε
A(1 − A)

„
A −

V + b

a

«

RB = A − B

The implicit update rules are:

bA = A +
∆t

ε

bA(1 − bA)

bA −

B+∆t bA
1+∆t

+ b

a

!!

bB =
B + ∆t bA
1 + ∆t

Barkley’s turbulent flow model is the same as above except
RB = A3 − B.

9. REFERENCES
[1] Alan Turing. The chemical basis of morphogenesis.

Philosophical Transactions of the Royal Society B,
237:37–72, 1952.

[2] G. Turk. Generating textures on arbitrary surfaces
using reaction-diffusion. Proc. of SIGGRAPH, pages
289–298, 1991.

[3] A. Witkin and M. Kass. Reaction-diffusion textures.
Proc. of SIGGRAPH, pages pp. 299–308, 1991.

[4] Jos Stam. Stable fluids. Proc. of SIGGRAPH, pages
121–128, 1999.

[5] Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen.
Visual simulation of smoke. Proc. of SIGGRAPH,
pages 15–22, 2001.

[6] B. Baxter, Y. Liu, and M. Lin. A viscous paint model
for interactive applications. Computer Animation and
Virtual Worlds Journal, 15:433–442, 2004.

[7] D. Ebert, F. Musgrave, D. Peachey, K. Perlin, and
S. Worley. Texturing and Modeling: A Procedural
Approach. AP Professional, 1998.

[8] I. Ihm, B. Kang, and D. Cha. Animation of reactive
gaseous fluids through chemical kinetics. Proc. of
ACM SIGGRAPH / Eurographics Symposium on
Computer Animation, pages 203–212, 2004.

[9] Adam Bargteil, Tolga Goktekin, James OBrien, and
John Strain. A semi-lagrangian contouring method for
fluid simulation. ACM Transactions on Graphics,
2006.

[10] W. Hundsdorfer and J.G. Verwer. Numerical Solution
of Time-Dependent Advection-Diffusion-Reaction
Equations. Springer Verlag, 2003.

[11] J.E. Pearson. Complex patterns in a simple system.
Science, 261:189–192, 1993.

[12] Jonathan R Shewchuk. An introduction to the
conjugate gradient method without the agonizing
pain. Technical report, Carnegie Mellon University,
1994.

[13] Lloyd N. Trefethen. Finite Difference and Spectral
Methods for Ordinary and Partial Dif-
ferential Equations. unpublished text, 1996. available at
http://web.comlab.ox.ac.uk/oucl/work/nick.trefethen/pdetext.html.

[14] David Adalsteinsson and James Sethian. The fast
construction of extension velocities in level set
methods. Journal of Computational Physics, 148:2–22,
1999.

[15] J. N. Tsitsiklis. Efficient algorithms for globally
optimal trajectories. IEEE Transactions on Automatic
Control, 40(9), 1995.

[16] James Sethian. A fast marching level set method for
monotonically advancing fronts. Proc. Nat. Acad. Sci.,
93, 1996.

[17] R. FitzHugh. Impulse and physiological states in
models of nerve membrane. Biophysics Journal,
1:445–466, 1961.

[18] J. S. Nagumo, S. Arimoto, and S. Yoshizawa. An
active pulse transmission line simulating nerve axon.
Proc. IRE, 50:2061–2071, 1962.

[19] Dwight Barkley. A model for fast computer simulation
of waves in excitable media. Physica D, 49:61–70,
1991.

[20] Michael Griebel, Thomas Dornseifer, and Tilman
Neunhoeffer. Numerical Simulation in Fluid
Dynamics: A Practical Introduction. SIAM, 1997.

[21] Kurt W. Fleischer, David H. Laidlaw, Bena L. Currin,
and Alan H. Barr. Cellular texture generation. In
Proceedings of SIGGRAPH ’95, pages 239–248, 1995.

[22] Hans Meinhardt. Models of Biological Pattern
Formation. Academic Press, 1982.

Figure 4: Space Cookies Redux: Clockwise from
lower left, cookies were generated with 3,4,5, and 8
lobed anisotropy functions. Previous methods can
only produce the upper left cookie.

Figure 5: Stylized lid-driven cavity: Left to right, passive advection, Grey-Scott reaction-diffusion (RD),
FitzHugh-Nagumo RD, Barkley RD. With passive advection, a relatively uninteresting result is obtained,
even though the underlying flow is quite interesting. Coupled with RD, a much more interesting visual result
is obtained.

Figure 6: Stylized flow past an obstacle: Chemical flows in from the top, past the ball, and out the bottom.
From left to right: passive advection, Gray-Scott advection-reaction-diffusion (ARD), FitzHugh-Nagumo
ARD, Barkley ARD, Gray-Scott reaction-diffusion only (RD), FitzHugh-Nagumo RD, Barkley RD. All flows
are from the same timestep in the flow simulation. The ball is not included in the RD simulation.

