
Screwing assembly oriented interactive model
segmentation in HMD VR environment

Abstract
We present a novel interactive model segmen-
tation method for screwing assembly in HMD
(Head-Mounted Display) VR environments.
Our approach divides a large model into sematic
parts with a screwing interface for repeated tight
assembly. With our method, non-professional
users can intuitively segment models larger than
a printer’s workspace into several components
based on a single VR Handle cut and robust
Boolean operations. After a user places the
cutting interface, the bounding box of the part
to be segmented can be computed automatically
according to the interface, which serves as one
primitive for subsequent Boolean segmenta-
tions. Using iterative segmentation with similar
relevant Boolean operations, multi-component
semantic parts with planar cuts are obtained
for the sequent bolt placement and screwing.
An improved K3M image thinning algorithm
is introduced to determine the position of the
bolt. Both of paired components coincident to
the same cutting interface are merged with the
preset bolt by union and subtraction Boolean
operations respectively, which produces a pair
of screwing bolts. Since rotation collision
may occur during the screwing assembly, we
introduce a Swept Boolean based collision
detection method to solve the problem. When
the swept volume of a rotating segmentation
component intersects with another part of the
segmented models , they have a overlapped
volume space, which can be easily calculated by
Boolean operation. If collision exists, the cut-
ting section will be fine-tuned to a collision-free
position automatically. Experiments show that
our approach provides a new interactive multi-
component semantic segmentation tool, which

supports not only repeated installation and dis-
assembly but also tight and aligned assembly.

Keywords: 3D Segmentation, Virtual Re-
ality, 3D Printing, HCI

1 Introduction

Popular digital manufacturing facilities such as
3D printers make it easy for non-professionals
to convert virtual digital models into physical
objects. As we know, the years of 2013 and
2016 are considered as the starts of 3D print-
ing era and VR era, respectively, and they are
subverting manufacturing and entertainment in-
dustries, both of which are spreading to ordi-
nary consumers. However, only small amount
of ordinary users are willing to buy a desktop
3D printer even though they are affordable. The
main reasons can be accounted as follows. a)
It is not easy for an ordinary user to create and
edit a model using most of the available profes-
sional 3D packages, which only provide 2D de-
sign interfaces to assist terminal users for creat-
ing 3D models. b) Small dimensions of domes-
tic desktop 3D printers limit the printable mod-
els’s sizes (Fig. 1). Although the ideas of gluing,
connecting or interlocking solve the problem to
some extent [1, 2, 3, 4], it is difficult to satis-
fy both multiple assemblies and seamless tight-
ness. Such emerging problems in 3D printing
attract more and more researchers.

The intuitive user interface in the VR environ-
ment provides a possible solution to tackle the
above-mentioned challenges. By integrating VR
and 3D printing, we present a noval interactive
model segmentation and assembly approach in
VR environments for printing large models. To

Figure 1: A model exceeding printing
dimension

our knowledge, it is the first work on segmenting
and assembling models for 3D printing in HMD
VR environments. The main contributions of the
paper include:

• A fastener-based model segmentation
method which supports not only repeated
disassembly but also tight and aligned
assembly.

• We present a new VR user interface for seg-
mentation, through which users can seg-
ment and assemble models according to
their needs in an intuitive way.

• We present a new rotation collision detec-
tion and avoidance method based on cube
cage and Boolean operations, which pre-
vents segmented components from collid-
ing with each other in the later assembly.

The remainder of the paper is organized as
follows. After introducing the related works on
model segmentation especially for 3D print and
shape design in HMD VR environment in Sec-
tion 2, an overview of our paper is provided in
Section 3. Then, an automatic bounding box
generation method is given in Section 4, fol-
lowed by the description of model segmentation
based on Boolean operations in Section 5. In
Sections 6 and 7, we will detail rotation collision
avoidance and bolt-nut configuration. Finally,
we discuss some experiments in Section 8, and
our paper ends with the conclusion in Section 9.

2 Related Work

Although many works in 3D printing and VR in-
spire us, we will only fucus on the mostly relat-
ed topics of model segmentation especially for
3D print and shape design in HMD VR environ-
ment.

3D Print-oriented segmentation 3D shape
analysis and component reuse requires efficien-
t semantic 3D shape segmentation, and tremen-
dous success in 3D shape segmentation has been
achieved in the past decade [5]. Later, machine
learning promotes the progress of the fundamen-
tal research topic more rapidly [6, 7, 8, 9]. With
the recent population of 3D printing, some spe-
cial segmentation approaches for decomposing
3D models are proposed. Due to transporta-
tion requirements and the limited printing vol-
ume, large models must be separated into small
components for printing and then assembled lat-
er. In [10], an optimization algorithm of parti-
tioning and packing of a printable model is pro-
posed in a multi-phase level-set framework, in
which the specific way of assembly is not dis-
cussed. The Chopper algorithm proposed by Lu-
o et al. [3] decomposes large objects into sub-
components automatically, and places the join-
t rivets between the components automatically
through a simulated annealing algorithm. Song
et. al [4] propose a sub-module interlocking as-
sembly, which supports multiple assemblies and
disassemblies. Their recent CofiFab system [11]
incorporates 2D laser cutting and 3D printing to
produce large-scale 3D models, in which the in-
ternal structure is quickly generated by laser cut-
ting and the surface details are obtained by fine
3D printing, and then the two types of compo-
nents can be finally assembled together.

Immersive 3D model processing in VR Due
to the releases of head-mounted devices such
as the Oculus Rift, HTC Vive and other simi-
lar VR facilities, more and more fields are in-
troducing these VR systems to solve their own
problems. The adoption of immersive 3D in-
terfaces in model processing can be dated from
decades ago. The early immersive 3DM [12]
and FreeDrawer [13] allow users to create poly-
line or spline based surfaces with simple 3D in-

Figure 2: HTC VIVE helmet.

puts. In recent CavePainting [14] and TiltBrush
systems, artists can create colorful art produc-
tions. Both “Drawing on Air” [15] and “Lift-
Off” [16] study intuitive 3D curve inputs and
the latter also allows users to import a refer-
ence image. In [17], visual and haptic feedback-
s are used to provide the sensation of painting
on virtual three-dimensional objects using the
MAI Painting Brush++. To assist young people
with disabilities, an artistic experience of virtu-
al sculpting and 3D printing is proposed in [18].
Mendes et. al use novel mid-air metaphors to
model complex 3D models with Boolean opera-
tion [19] and to select out-of-reach objects with
iterative refinement [20] in virtual reality. As
sketch-based modeling relieves users from te-
dious operating in professional packages, it has
been extended into HMD environments. In [21],
Arora et. al analyze the factors affecting human
ability to sketch freely in a 3D VR environment.
Giunchi et. al present an approach for searching
3D models based on free-form sketches within
a virtual environment [22]. Different from their
works, we are interested in developing an im-
mersive user interface in VR for model segmen-
tation and assembly for 3D printing.

3 Overview

In this paper, a 3D model segmentation for 3D
printing in a HMD VR environment is develope-
d with the HTC VIVE helmet (Fig. 2).

As shown in Fig. 3, for the input Mesh M to
be divided, the user places the section P as need-
ed for segmentation using the dominant hand
(usually the right hand) handle in a VR envi-
ronment. If the user is not satisfied with the

No

Yes

Bounding Box

Generation

Collide?

Section Optimization

Bolt Placement

Screwable components ∑Mi'

Section Placement

Mesh M

Collision Detection

Boolean Segmentation

Section Adjustment

Figure 3: System workflow of a single
segmentation.

position of P , the non-dominant hand (usually
the left hand) handle can be used to adjust it.
Then a bounding box V is automatically calcu-
lated on one side of the section according to the
segmentation plane C, which surrounds the con-
nected part of the model on that side complete-
ly. After that, two model components M1/M2

are generated with the section as the segmenta-
tion interface, and the entire M is composed of
M1 and M2: M = M1 ∪ M2 which are pro-
duced with Boolean intersection/subtraction op-
erations with M and V as input primitives (E-
quation 1): {

M1 = M ∩ V
M2 = M − V.

(1)

Once M is successfully segmented into M1

and M2, the bolt template B will be placed at
the segmentation plane C for the component M1

and the screwing simulation can be previewed.
At the same time, a swept volume S of M1 is
generated for rotation collision detection. If S

(a) Initial placement of the
section

(b) Section adjustment

Figure 4: Place the section with both hands.

intersects with the component M2, the position
and orientation of the section need to be opti-
mized. If not, union and subtraction Boolean
operations will be applied to M1 and M2, re-
spectively, and a pair of screwable components
M ′

i(i = 1, 2) is created.

4 Automatic bounding box
generation

4.1 Initial section placement and
adjustment

For the input mesh M , as shown in Fig. 4a, the
user can edit the scale of the brush and place the
section P directly with the dominant hand han-
dle. Although the calculation of the segmenta-
tion plane C is independent of the brush size, a
user can tune the brush scale for his observation
convenience. In order to obtain a robust segmen-
tation contour, section center should be as close
as possible to the intended segmentation inter-
face. Herein the non-dominant hand handle can
be adopted to edit the position and orientation of
the section P , as shown in Fig. 4b.

4.2 K3M-based section center calculation

Both the bounding box generation and the bolt
location depends on the center and the normal
of the segmentation plane C, which coincides
with the planar polygonal contour in 3D. There-
fore, the normal vector can be obtained directly
by crossing two normalized edges of the contour
polygon, and the central position is determined
as follows.

The three-dimensional planar polygon is first-
ly transformed into a two-dimensional polygon
and discretized into an image (Fig. 5a). Then the

(a) Segmentation interface (b) Simplified K3M

Figure 5: Segmentation center location.

approximate center can be calculated based on
the simplified K3M algorithm [23] (Fig. 5b). Al-
though the K3M algorithm has advantages such
as retaining the right angle at the linear intercon-
nection, producing a single-pixel wide skeleton,
and having a simple and general idea, it is main-
ly used to generate a single-pixel line skeleton.
Here we revise it so that it can be applied for the
bolt-nut placement at segmentation interface in
our system.

Similar to onion peeling, the center of C can
be obtained by gradually eroding the segmen-
tation interface from the outside to the inside.
The boundary pixels are peeled off layer by lay-
er, and the last pixel is served as the center. The
K3M algorithm requires seven steps for each it-
eration. During each iteration, it determines the
number of neighborhood points of its bound-
ary pixels. It can be simplified into two itera-
tions. The image boundary point is obtained in
the first step (Phase0), and the boundary points
are deleted (converted to the background) in the
second step (Phase1). Finally there is only one
pixel left in the image, which is the center.

Phase0: Traverse all foreground pixel-
s pi (i = 1, 2, ..,m) in the image, coun-
t their neighboring foreground pixels ni (i =
1, 2, ..,m; 1 ≤ ni ≤ 8), and set nmin =
min {ni}mi=1, nmax = max {ni}mi=1.

Phase1: If nmin < nmax, traverse all fore-
ground pixels and convert these with ni < nmax

into background pixels. Otherwise, convert all
pixels into background ones except the last one.

Judgement: Stop looping when there is on-
ly one pixel in the image, otherwise return to
Phase0.

4.3 Flooding-based bounding box
generation

In our system, Boolean operations are utilized to
segment the initial model, and the second prim-
itive in a Boolean operation is the half-mesh a-
gent which consists of the surface triangles of a
compact bounding box.

It is nontrivial for a user to manually place a
suitable bounding box given a complex model
to be segmented. Therefore, we present an auto-
matic component bounding box creation method
after a cut plane placement. The procedure takes
the cut position and its normal vector as input,
and performs a flooding algorithm to recursive-
ly produce a compact bounding surface, which
avoids users’ complicated interactions.

Our automatic generation approach is in-
spired by the literature [24]. First, the bounding
box enclosing the model M is initialized, which
is voxelized with a preset resolution. Then the
voxels are classified into three categories, that
is, the outer voxels outside M , the feature voxel-
s intersecting mesh surface, and the inner voxels
in M . Finally, the bounding box V is generated
by extracting the outer faces of the feature vox-
els.

The classification of voxels is derived from
the signed distance field [25] of the voxel ver-
tices to M . For each voxel corner c, there is a
closet point p on M . When p lies in some facets
of M , the normal of p can be directly calculated.
Otherwise, if p is at the vertices or edges of M ,
an angle weighted pseudonormal nA is applied
[25]. Therefore, the sign of c can be represent-
ed by Equation 2. If all vertices of a voxel are
inside M , the voxel is an inner voxel with sign
value -1. If only part of the vertices of a voxel
are inside M , the voxel is a feature voxel with
sign value 0. If all vertices of a voxel are outside
M , the voxel is an outer voxel with sign value 1.
They together make up the tri-values distance
field [24]:

c


outside M, if nA · (c− p) > 0
inside M, if nA · (c− p) < 0
on M, if nA · (c− p)=0

(2)
Actually, the feature voxels F of the model

component M1 are the main source for produc-
ing bounding box, and a voxel flooding algorith-

Figure 6: Flooding algorithm.

m is utilized for finding all inner voxels and fea-
ture voxels Y of M1, from which F is selected.
Firstly, a local coordinate system is constructed
by taking the center of the segmentation inter-
face C as the origin and its normal vector as the
y-axis (Fig. 6). After that, a searching for in-
ner voxels and feature voxels of the first layer is
performed by starting from the center voxel of C
as a seed. It is followed by recursive searching
in the x-axis and z-axis directions, from which
all inner voxels and feature voxels Y1 from the
first layer right above C are found and marked
to avoid repeated lookups. Then, we regard the
inner voxels and feature voxels right above Y1
as seeds, search for inner and feature voxels re-
cursively in the x-axis, y-axis, and z-axis direc-
tions, and find all other inner voxels and fea-
ture voxels Y2 of M1 from all remaining layers,
Y = Y1 ∪ Y2. Therefore, F is finally obtained
by combining the feature voxels F2 in Y2 and
Y1, that is, F = Y1 ∪ F2.

The bounding box V is essentially the outer
faces of F , which are adjacent to an outer voxel
and a feature voxel. So the extraction and gen-
eration of V can be carried out by checking the
voxel values adjacent to each face of each fea-
ture voxel based on the tri-values distance field
(Fig. 7).

5 Model segmentation based on
Boolean operations

Figure 7: The final bounding box.

5.1 Model segmentation principle

Although the user can segment the input model
M at any position and in any direction, in order
to ensure the validity of the model segmentation
and the convenience of subsequent assembly, the
principles for users to follow are provided as fol-
lows:

1. Segmentation position: The segmentation
position of the model M should be as close
as possible to its skeleton, preventing the
model from being segmented into too many
parts, which is also not conducive to as-
sembly. At the same time, segmentation
should be placed at these positions with lo-
cally similar cylindrical shapes, which is
beneficial to the bolt-based assembly and
reinforcement.

2. Segmentation direction: Although the
model can be segmented in any direction in
principle, the two segmented components
M1 and M2 should be located in different
half space with the segmentation interface
as the boundary to reduce the possibility of
collision during screwing.

5.2 Robust Boolean operation

Three phases of our system are based on
Boolean operations. That is, the Boolean-based
segmentation of the model (Fig. 8), the use of
Boolean operation on testing whether the swept
volume S of one component intersects with an-
other component for collision detection, and in-
tegrating bolts and nuts to the segmented com-
ponents in the subsequent sections.

Figure 8: Boolean operation.

Due to the importance of Boolean operations
in our system, we chose a rather robust method
for mesh intersection calculation and Boolean
operation in libigl [26]. To perform the Boolean
operations of two triangle meshes TriMeshA
and TriMeshB , the unified “mesh configura-
tion” [27] is firstly calculated to find the inter-
sections of all triangles, and the new edges and
vertices will be added at the intersection lines
accurately. Then the voxels surrounded by the
configured surface are marked according to their
“winding number vectors”. Finally, the bound-
aries of the corresponding voxels are extracted
using specific Boolean operations (Union, Inter-
section, etc.).

6 Collision detection and
optimization

6.1 Rotation simulation and collision
detection

After placing an improper segmentation, two
of the components may collide with each other
when screwing. To this end, we provide a so-
lution for rotation collision detection and opti-
mization. Moreover, the process of screwing the
bolt are displayed with a previewing animation.

In order to simulate the screwing process of
the components and to detect the collision, the
bolt needs to be placed in the expected position
temporarily. For components M1 and M2 shar-
ing the same segmentation interface, the bolts
and nuts can be assembled normally on either
side. But in general, users are used to cut a s-
mall part of the model, so we place the bolt B at
the segmentation center O of M1 regularly, and

Figure 9: Screwing process simulation.

(a) Swept volume (b) Collision region

Figure 10: Collision detection.

the normal vector of the bolt is aligned with the
normal vector nP of the segmentation interface.
The component M1 with a bolt is represented as
M ′

1.
The simulation of the component screwing

process is rotating and moving M ′
1 with time t

forth and back along the normal of the segmen-
tation interface, similar to the process of screw-
ing the bolt by hand in reality, as shown in Fig. 9.

The swept volume S is generated by screwing
M1. Using the swept volume algorithm provid-
ed in libigl [26], S is essentially the union of a
moving solid object M1 [28] (Equation 3):

S =
∪

t∈[0,1]

f(t)M1, (3)

where f(t) is a rigid motion over time t of M1.
Since the surface of the swept volume gener-

ated by M1 and f(t) is a piecewise-ruled sur-
face, which cannot be represented exactly by a
triangle mesh. An approximate swept volume
can be computed based on signed distances [28]
(Fig. 10a), and an offset parameter can be set to
approximate the exact swept volume.

Whether an intersection I between S and
another component M2 exists can be deter-
mined by a Boolean intersection operation (E-
quation 4), where I is the potential 3D collision
region (Fig. 10b). The existence of I means that

Figure 11: Section optimization diagram.

Figure 12: Optimized section.

the position of the section is not proper, and the
segmented components cannot be assembled af-
ter 3D printing. Therefore, the position and ori-
entation of the section needs to be optimized.
If there is no collision between the segment-
ed components during the screwing process, the
bolt can be placed at the segmentation interface
directly for 3D printing:

I = S ∩M2. (4)

6.2 Segmentation optimization

As mentioned above, if the collision region I ex-
ists, the position and orientation of the section P
need to be optimized. We provide two optimiza-
tion schemes, an intelligent one and a manual
one.

The intelligent optimization scheme focuses
on optimizing the orientation of section P . The
normal vector of the section is the same as the
normal vector of the segmentation interface, nP .
As shown in Fig. 11, a four-step algorithm is
employed to rectify the failed section direction:

1. Compute the line l coinciding with nP as

its direction which passes the center O of
the segmentation interface.

2. Find the closest point pc and the farthest
point pf away from line l in the collision
region I .

3. Calculate the angle γ between
−−→
Opc and−−→

Opf as the rotation angle of P , taking v =
−−→
Opc−

−−→
Opf as the rotating orientation of P .

4. Transform the section center to the center
O of the segmentation interface, and rotate
the section with angle γ along v, thus ob-
taining an optimized section P ′, as shown
in Fig. 12.

Since the intelligent optimization scheme
above can only avoid the current collision step,
which means the optimized segmentation of a
new section may still cause a new collision in
other regions, the intelligent optimization can
be performed iteratively until no collision oc-
curs any more. Or users can place the section at
a new location manually to satisfy the require-
ments with the non-dominant hand handle.

7 Bolt-nut configuration

Based on the segmentation interface center O,
we can get the minimum distance R from O to
the interface boundary. The radius r of the bolt
and the nut should satisfy

r

R
∈ [α, β], (5)

where α is used to avoid creating too small bolt-
s, and β is used to avoid too thin wall of the nut
hole, which may lead to collapse during screw-
ing. In practical applications, we set r

R = 2
3 in

most cases. Users can adjust the value according
to different requirements. In our experiments we
empirically set α = 1

5 , β = 4
5 , which have satis-

factory results.
Attaching bolts and nuts onto the components

Mi (i = 1, 2) by Boolean union and subtraction
operations will create a pair of screwable com-
ponents (Equation 6):

M ′
1 = M1 ∪B,

M ′
2 = M2 −B.

(6)

(a) Leg with a bolt (b) Body with a nut

Figure 13: Bolt and nut placement of a dog
model.

(a) Partial sequence of segmentation

(b) Segmentation interface with its center

(c) Segmented components

Figure 14: Armadillo segmentation.

The example of a dog model with r
R = 1

3 is
shown in Fig. 13.

8 Experiments and Discussion

To validate the effectiveness of the proposed al-
gorithm, we developed a prototype system based
on OpenVR using HTC Vive helmet. Our exper-
iments are performed on a desktop PC, with 4.0
GHZ Intel i7-6700K CPU, 8G memory and N-
vidia GTX 1070 graphics card. In addition to
the dog model above, another example of the
Armadillo model segmented using our system

(a) Dog components (b) Assembled dog

(c) Armadillo components (d) Assembled
Armadillo

Figure 15: 3D printing and assembly of model
components.

is shown in Fig. 14. Fig. 14a shows a part of
the segmentation. After each pair of componen-
t segmentation, the center of the segmentation
interface is calculated automatically (Fig. 14b),
which will be used for the placement of bolt-
s and nuts. Components after segmentation can
be seen in Meshlab [29], as shown in Fig. 14c.

As shown in Fig. 15, a single model can be
segmented multiple times as needed, and al-
l 3D printed models can be repeatedly disas-
sembled and assembled. The assembled com-
ponents with very tiny gaps are firmly connect-
ed with each other. According to our tests, if
the model is too small, the screw threads of the
generated bolts and nuts are so fine that they
may collapse easily during the screwing assem-
bly. The larger the model is, the better the result
will be by using our system, which is just the re-
quirement for large model segmentation before
printing. Since we use robust Boolean operation
based on “mesh configuration” and swept vol-
ume algorithm in the libigl library, our method
is not real-time. But it does not matter as in our
interactive system, a single Boolean operation
takes only about 1∼2 seconds, which only oc-
curs when the user places a suitable segmenta-
tion interface. Although the calculation of swept
volume may take several seconds, it is only cal-
culated once so it has little effect on the user’s

experience.

9 Conclusion

We have presented a VR-based segmentation
and assembly approach for printing 3D models,
which is suitable for dividing large-size models
into small components and printing them sepa-
rately. Paires of bolt fasteners will be generated
at the segmentation interfaces, which supports
repeated seamless and firm assembly. In the seg-
mentation procedure, users wear a VR helmet
with high immersive experience, which provides
convenient user interaction. Non-professional
users can segment a 3D model on demand di-
rectly with VR handles.

Some steps in our system are based on
Boolean operations using libigl library, which
may affect our performance. In order to achieve
a real-time performance, an approximate GPU
parallel Boolean operation can be used for in-
teractive display in our future interaction system
[30], and its final processing of the model can
use robust Boolean operations based on “mesh
configuration”.

Our system also provides collision detection
and optimization of the segmented components,
which guarantees successful assembly of com-
ponent pairs with bolts and nuts.

However, there are still some limitations in
our current approach, which can be further op-
timized in the future. First of all, in order to
increase the robustness of the bolt assembly, the
bolt can be scaled appropriately according to the
size of segmentation surface. A slightly larger
bolt can be placed on a smaller segmentation in-
terface to prevent the bolt from breaking during
the screwing process. Secondly, the optimiza-
tion schemes for the section in the case of col-
lision can be improved. For the intelligent opti-
mization scheme, it takes too long time to com-
pute the swept volume. Therefore, the optimal
orientation and position of the section should be
automatically searched locally. For the collision
detection during the screwing, we can refer to
the 2D projection method in [31].

References
[1] Juraj Vanek, Jorge A. Garcia Galicia, Bedrich Benes,

Radomı́r Mech, Nathan A. Carr, Ondrej Stava, and

Gavin S. P. Miller. Packmerger: A 3d print volume
optimizer. Comput. Graph. Forum, 33(6):322–332,
2014.

[2] Ruizhen Hu, Honghua Li, Hao Zhang, and Daniel
Cohen-Or. Approximate pyramidal shape decom-
position. ACM Trans. Graph., 33(6):213:1–213:12,
2014.

[3] L. Luo, I. Baran, S. Rusinkiewicz, and W. Matusik.
Chopper: partitioning models into 3d-printable parts.
ACM Trans. Graph., 31:1–9, 2012.

[4] P. Song, Z. Fu, L. Liu, and C. W. Fu. Printing 3d
objects with interlocking parts. Computer Aided Ge-
ometric Design, 35-36:137–148, 2015.

[5] Rui S. V. Rodrigues, Jos F. M. Morgado, and A-
bel J. P. Gomes. Part-based mesh segmentation: A
survey. Computer Graphics Forum, 37(6):235–274,
2018.

[6] Zhenyu Shu, Chengwu Qi, Shi-Qing Xin, Chao Hu,
Li Wang, Yu Zhang, and Ligang Liu. Unsupervised
3d shape segmentation and co-segmentation via deep
learning. Computer Aided Geometric Design, 43:39–
52, 2016.

[7] Truc Le, Giang Bui, and Ye Duan. A multi-view
recurrent neural network for 3d mesh segmentation.
Computers & Graphics, 66:103–112, 2017.

[8] Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao
Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing
Huang, Alla Sheffer, and Leonidas J. Guibas. A s-
calable active framework for region annotation in 3d
shape collections. ACM Trans. Graph., 35(6):210:1–
210:12, 2016.

[9] David George, Xianghua Xie, and Gary K. L. Tam.
3d mesh segmentation via multi-branch 1d convolu-
tional neural networks. Graphical Models, 96:1–10,
2018.

[10] Miaojun Yao, Zhili Chen, Linjie Luo, Rui Wang,
and Huamin Wang. Level-set-based partitioning and
packing optimization of a printable model. ACM
Trans. Graph., 34(6):214:1–214:11, 2015.

[11] P. Song, B. Deng, Z. Wang, Z. Dong, W. Li, C. W.
Fu, and L. Liu. Cofifab: coarse-to-fine fabrication of
large 3d objects. ACM Trans. Graph., 35:1–11, 2016.

[12] Jeff Butterworth, Andrew Davidson, Stephen Hench,
and Marc Olano. 3dm: A three dimensional modeler
using a head-mounted display. In Proceedings of the
1992 Symposium on Interactive 3D Graphics, SI3D
’92, pages 135–138, 1992.

[13] Gerold Wesche and Hans-Peter Seidel. Freedrawer: a
free-form sketching system on the responsive work-
bench. In VRST, pages 167–174, 2001.

[14] Daniel F. Keefe, Daniel Acevedo Feliz, Tomer
Moscovich, David H. Laidlaw, and Joseph J. LaVi-
ola Jr. Cavepainting: a fully immersive 3d artistic
medium and interactive experience. In Proceedings
of the 2001 Symposium on Interactive 3D Graphics,
SI3D, pages 85–93, 2001.

[15] D. F. Keefe, R. C. Zeleznik, and D. H. Laidlaw.
Drawing on air: input techniques for controlled 3d

line illustration. IEEE Trans. Vis. Comput. Graph.,
13:1067–1081, 2007.

[16] Bret Jackson and Daniel F. Keefe. Lift-off: Using
reference imagery and freehand sketching to create
3d models in VR. IEEE Transactions on Visual-
ization and Computer Graphics, 22(4):1442–1451,
2016.

[17] Mai Otsuki, Kenji Sugihara, Azusa Toda, Fumihisa
Shibata, and Asako Kimura. A brush device with
visual and haptic feedback for virtual painting of 3d
virtual objects. Virtual Reality, 22(2):167–181, 2018.

[18] Leigh McLoughlin, Oleg Fryazinov, Mark Moseley,
Mathieu Sanchez, Valery Adzhiev, Peter Comninos,
and Alexander A. Pasko. Virtual sculpting and 3d
printing for young people with disabilities. IEEE
Computer Graphics and Applications, 36(1):22–28,
2016.

[19] Daniel Mendes, Daniel Medeiros, Maurı́cio Sousa,
Ricardo Ferreira, Alberto Raposo, Alfredo Ferreira,
and Joaquim A. Jorge. Mid-air modeling with
boolean operations in VR. In 2017 IEEE Symposium
on 3D User Interfaces, 3DUI 2017, Los Angeles, CA,
USA, March 18-19, 2017, pages 154–157, 2017.

[20] Daniel Mendes, Daniel Medeiros, Maurı́cio Sousa,
Eduardo Cordeiro, Alfredo Ferreira, and Joaquim A.
Jorge. Design and evaluation of a novel out-of-reach
selection technique for VR using iterative refinemen-
t. Computers & Graphics, 67:95–102, 2017.

[21] Rahul Arora, Rubaiat Habib Kazi, Fraser Anderson,
Tovi Grossman, Karan Singh, and George W. Fitz-
maurice. Experimental evaluation of sketching on
surfaces in VR. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing System-
s, Denver, CO, USA, May 06-11, 2017., pages 5643–
5654, 2017.

[22] Daniele Giunchi, Stuart James, and Anthony Steed.
3d sketching for interactive model retrieval in virtu-
al reality. In Proceedings of the Joint Symposium
on Computational Aesthetics and Sketch-Based In-
terfaces and Modeling and Non-Photorealistic Ani-
mation and Rendering, Expressive ’18, pages 1:1–
1:12, 2018.

[23] K. Saeed, M. Tabedzki, M. Rybnik, and M. Adamski.
K3m: a universal algorithm for image skeletoniza-
tion and a review of thinning techniques. Int. J. Appl.
Math. Comput. Sci., 20:317–335, 2010.

[24] C. Xian, H. Lin, and S. Gao. Automatic generation of
coarse bounding cages from dense meshes. In IEEE
International Conference on Shape Modeling & Ap-
plications, pages 21–27, 2009.

[25] J. A. Baerentzen and H. Aanaes. Signed dis-
tance computation using the angle weighted pseudo-
normal. IEEE Trans. Vis. Comput. Graph., 11:243–
253, 2005.

[26] A. Jacobson, Daniele. Panozzo, C. Schller, O. Dia-
manti, Q. Zhou, S. Koch, and et al. libigl: a sim-
ple c++ geometry processing library. http://
libigl.github.io/libigl/, 2017.

[27] Q. Zhou, E. Grinspun, D. Zorin, and A. Jacobson.
Mesh arrangements for solid geometry. ACM Trans.
Graph., 35:1–15, 2016.

[28] A. Garg, A. Jacobson, and E. Grinspun. Computa-
tional design of reconfigurables. ACM Trans. Graph.,
35:1–14, 2016.

[29] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane,
F. Ganovelli, and G. Ranzuglia. Meshlab: an open-
source mesh processing tool. In Eurographics Italian
Chapter Conference, pages 129–136, 2008.

[30] H. Zhao, C. C. L. Wang, Y. Chen, and X. Jin. Paral-
lel and efficient boolean on polygonal solids. Visual
Computer, 27:507–517, 2011.

[31] T. Sun and C. Zheng. Computational design of twisty
joints and puzzles. ACM Trans. Graph., 34:1–11,
2015.

