
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

RESEARCH ARTICLE

Target-Driven Cloud Evolution using Position-Based Fluids

Zili Zhang1,2 | Yunfei Li1 | Bailin Yang3 | Frederick W.B. Li4 | Xiaohui Liang*1

1State Key Laboratory of Virtual Reality
Technology and Systems, Beihang
University, Beijing, China

2Department of Computer Science and
Engineering, Shijiazhuang University,
Shijiazhuang, China

3Department of Computer and Electronic
Engineering, Zhejiang Gongshang
University, Zhejiang, China

4Department of Computer Science,
University of Durham, Durham, United
Kingdom

Correspondence
*Xiaohui Liang, State Key Laboratory of
Virtual Reality Technology and Systems,
Beihang University, Beijing, China. Email:
liang_xiaohui@buaa.edu.cn

Present Address
Beihang University, No.37, Xueyuan Road,
Beijing, China

Summary

To effectively control particle-based cloud evolution without imposing strict position
constraints, we propose a novel method integrating a control force field and a phase
transition control into the Position-based Fluids (PBF) framework. To produce real-
istic cloud simulation, we incorporate both fluid dynamics and thermodynamics to
govern cloud particle movement. The fluid dynamics is simulated through our novel
driving and damping force terms. As these terms are only formulated based on cloud
particle density and position, they simplify the inputs and make our method free
from artificial positional constraints. The thermodynamics is implemented by our
phase transition control, which can effectively simulate cloud evolution between dis-
crepant initial and target shapes, producing plausible results. Uniquely, our method
can also support target shape change during cloud simulation. Experiment results
have demonstrated our method surpasses existing methods.
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1 INTRODUCTION

Controlling fluid animation, such as smoke, clouds, and water, has been widely studied in computer graphics and related areas.
The non-linear nature of fluid simulation makes it challenging to drive fluid matching with a target shape while maintaining
natural fluid motions using fluid dynamics. Without a high-level control system, an artist may need to manually manipulate a
lot of physical parameters to make a fluid animation following a desired shape, which is tedious and time-consuming. Some
previous works have been proposed to control water and smoke motions in order to form user-specified shapes. They may be
classified into grid-based methods1–4 and particle-based approaches5–7.
Cloud is an important element in synthetic outdoor scenes, training simulators, movie visual effects, etc. In this paper, we focus

on controlling cloud evolution from an initial shape to a target one. It is difficult to simply extend previous fluid control methods
to solve our problems, since they only simulate fluid dynamics without incorporating thermodynamics which plays an important
role in cloud evolution. To provide cloud simulation control, Dobashi et.al. 8 proposed a feedback based framework using the
grid-based method to control cloud formation, closely matching with the top contour of a cloud specified by users. This was
achieved by controlling the latent heat and water vapor supply according to the height difference between the simulated cloud
and the target contour during simulation. However, such a control was not sufficient for controlling cloud evolution accompanied
by a series of evaporation and condensation. Moreover, it did not consider the constraints of given initial shapes. Combining
fluid dynamics and thermodynamics, we present a novel method using Position-Based Fluid (PBF)9 for controlling animated
clouds matching with desired shapes.
Existing particle-based methods5–7, 10 proposed to select some particles from the source model as control particles and deter-

mine their corresponding particles in the target model. The transformations between these particles formed strict positional
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constraints guiding other fluid particles to fill the target shape. Obviously, such artificial positioning of control particles con-
tradicted natural fluid motion characteristics. This approach is also not favorable for user interaction. For instance, if animators
want to change the target shape during a simulation, recalculation of the target positions of control particles is then required,
which will take time and suppress user interaction. Instead of using artificial positional constraints to control fluid motions, we
simulate fluid motions by determining a control force for each particle based on its position, velocity and density at each frame
as well as combining the signed distance field generated from the target shape in a pre-computation process. This both frees
our method from using positional constraints and simplifies the inputs, making our method simple and suitable for interactive
graphics applications. We have also developed a phase transition control method to determine the transition between water
vapor in the environment and liquid water in cloud particles, which is crucial for reducing the volume discrepancy between the
simulated cloud and the target.
Our method samples particles from the source model and generates a signed distance field from the target shape as inputs.

During the simulation, we use the negative gradient direction of the signed distance field and a color field to determine the
directions of control forces. The control force for each particle is determined by a composition of multiple feedbacks, taking
into account of particle position and density to preserve the fluid nature. We assume that the simulated cloud and the target
have the same rest density. Inspired by the density constraints of PBF, we control the phase transition between water vapor and
liquid water according to cloud particle position and density. We have evaluated our method on various evolution scenes, namely
between two cloud models reconstructed from cloud images, from cloud object to animal shape, from multi-model to a single
model and so on. These results demonstrate that our algorithm can robustly control cloud evolution between different objectives
while preserving natural fluid motion. Our main contributions include:

• An effective PBF-based cloud animation control framework supporting cloud evolution between twomodels with different
shapes and volumes.

• A novel particle-based fluid control approach, which determines the control force for each particle by using its position,
density and velocity as control parameters and combines a signed distance field generated from the target shape. This
avoids the use of positional constraints, making our method simple and suitable for interactive graphics applications.

• An adaptive phase transition control method, which smoothly adjusts the amount of water vapor and liquid water during
simulation to preserve the target feature and keep constant rest density. This also makes our control method being able to
effectively integrate into the PBF framework.

In the following, Section 2 presents existing work in fluid simulation, cloud simulation and fluid control. Section 3 describes
the physical framework of our method. Section 4 elaborates the proposed control method. Section 5 then describes the
implementation. Finally, Section 6 and 7 showcases several visual results and concludes the paper with future work, respectively.

2 RELATED WORK

This section reviews previous works on fluid simulation, cloud simulation and fluid control.
Fluid simulation is a popular research in computer graphics. Early work have introduced stable and efficient grid-based

solvers11–14. Bridson15 has presented an excellent overview of grid-based methods. In contrast, our method relies on PBF9,
which belongs to particle-based methods16–18. To maintain incompressibility, some methods19–24 proposed to construct a lin-
ear complementarity problem using linearized constraint functions. PBF solves the problem by formulating and solving a set of
positional constraints. To improve the computational efficiency of particle-based methods, some adaptive particle frameworks
have been proposed25, 26. For instance, Adams et al.26 introduced a sampling condition based on geometric local feature size.
Horvath et al.27 used the adaptive method to simulate the two-scale fluid while preserving mass.
There are two major approaches for cloud simulation, namely procedural approach and physically based approach. Lots of

methods have been proposed tomodel clouds based on procedural techniques28–30. Procedural approachmay generate cloud with
a desired shape, yet being difficult to create realistic cloud animations since a lot of parameters are required to adjust through trial
and error. In contrast, physically based approaches can eliminate the need of adjusting parameters manually. Miyazaki et al.31
used a grid-based method to formulate the cloud generation process. Harris et al.32 proposed a similar method by using slightly
different definitions for the phase transition. Recently, Barbosa et al.33 developed a particle-based method for cloud simulation.
These methods govern a cloud simulation by solving the Navier-Stokes equations. Hence, it is impossible to manually adjust
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many physical parameters for controlling cloud evolution to match with given targets. To solve the problem, Dobashi et.al. 8

proposed a feedback control based method to make clouds form desired shapes. However, it is difficult to extend this method to
solve the problem of controlling cloud evolution, since the technique only addresses the cloud formation process without taking
the constraints of a given initial shape into consideration.
In terms of fluid control, Treuille et al.34 proposed a keyframe control technique to drive a smoke simulation matching with

a desired shape, yet being computationally expensive for solving a non-linear optimization problem. Mcnamara et al.35 used
the adjoint method to solve the gradient-based nonlinear optimization for finding optimal control forces. It can deal with both
smoke and water control. Pan and Manocha3 proposed a space-time optimization solver, computing a dense sequence of control
force fields to drive smoke matching with several keyframes. Ma et al.4 presented a simulator to control a 2D coupled system
with fluid bodies and rigid objects using deep reinforcement learning. To avoid expensive optimization over the entire fluid
sequence, Hong and Kim1 used a geometric potential field creating from a target shape to control smoke forming a desired
shape. Shi and Yu36 controlled fluid to follow rapidly changing target objects by applying a feedback control force field and the
gradient field of a potential function. Fattal and Lischinski37 designed a new driving force using smoke density to carry smoke
towards a particular target. To prevent smoke from diffusing too much, a gathering term was added in the advection equation.
Raveendran et al.38 controlled fluid motion with the guidance of a dense sequence of control meshes generated by a volume
preserving morph. These methods can effectively control fluid deforming between different target shapes.
However, the above methods are grid-based simulation, being computationally expensive and limited with fixed simulation

area. The amount of work in particle-based fluid control methods aremuch less than that of the grid-basedmethods. Since Thürey
proposed the pioneering work10, several methods have been proposed5? , 6. Thürey et al.10 proposed a detail-preserving fluid
control method. It first generated control particles, following by determining attraction forces and velocity forces to pull fluid
towards the control particles. Control forces were only applied to coarse-scale components of the flow to preserve small-scale
details. Zhang et al.6 used control particles automatically sampled from a target mesh to attract fluid particles to a desired shape
with fast movement or large deformation. These generated control particles are deformed with skeleton motion data specified
by an animator. To solve clustering and clumping at the center of control particles, Zhang et al.6 proposed a density constraint
method. Springs between fluid particles and control particles were added to solve the problem that a target shape moves or
deforms rapidly. Madill et al.5 proposed a particle-based target driving control method for smoke simulation, where the number
of source control particles and that of target control particles must be the same. Feng and Liu7 improved the matching process
between control particles to preserve fluid details.
All these particle-based methods commonly required the use of control particles and corresponding target particles, imposing

strong positional constraints on particles. Also, as they mainly focused on water and smoke simulation, their implementations
did not include certain thermodynamics processes, such as the phase transition between water vapor and liquid water, this
significantly limits their capability of simulating cloud evolution properly.

3 THE PHYSICAL FRAMEWORK

Our physical framework takes an initial cloud shape and a target cloud shape as inputs, simulating cloud evolution through cloud
motion and cloud microphysics equations. The cloud motion process is evaluated through the Navier-Stokes equations, which
models the conservation of momentum and mass continuity. The cloud microphysics evaluates the interaction between the cloud
and the environment during the motion process.

3.1 Cloud Motions
Realistic cloud animations are typically governed by numerically approximating the Navier-Stokes or the Euler equations.
Assuming the atmosphere to be incompressible and inviscid, the motion of cloud can then be expressed as follows:

du
dt

= −1
�
∇p + f (1)

∇ ⋅ u = 0 (2)



4 AUTHOR ONE ET AL

FIGURE 1 Phase transition between water vapor and liquid water.

where u denotes the fluid velocity vector. � is the density. p is the pressure. f accounts for the external forces affecting fluid flow,
such as buoyance and wind force. Equation 1 is obtained by the conservation of momentum, and Equation 2 is the continuity
equation.
The external force term in Equation 1 provides an important means of control over the fluid simulation. In this paper, we

utilize the force term in order to drive the simulated cloud matching with a target shape from a given initial state. According
to the method36, the fluid control method should meet four criteria, namely control capability, ease of use, fluid-like motion
and stability. Moreover, the force should be smooth among neighboring particles to maintain the motion consistency of fluid
particles. Hence, we introduce a driving force term, which depends only on the instantaneous state of each particle, including
its density and position. It is formulated as an explicit yet simple function f1 = Fdrv(�,p) as described in Section 4.1, where p
is particle position. Meanwhile, the gradual accumulation of momentum could result in unstable movement of fluid. We also
introduce a damping force term for each particle depending on its velocity, denoting as f2 = Fdam(u), and will be discussed in
Section 4.2. Putting the two external forces into Equation 1 gives a new momentum equation as follows:

du
dt

= −1
�
∇p + Fdrv(�,p) + Fdam(u) (3)

3.2 Cloud Microphysics
The droplets in a natural cloud interact with their environment andwith each other droplets inmanyways, which affect the droplet
sizes and condensation39 during the entire motion process. According to the Kessler scheme40, which describes the warm cloud
including water vapor and cloud water, cloud formation and dissipation are estimated through condensation and evaporation
(see Figure 1). Droplets grow by condensation if the environment has an excessive amount of vapor over the equilibrium value,
as would be produced by chilling in pseudo adiabatic ascent. They evaporate if dry environmental air in sufficient amount is
mixed with the cloudy air.

Condensation: In this process, water vapor (qv) in the air is changed into liquid water (qw). This links to cloud formation and
evolution. The expression for condensation is implemented as:

Cv→w = min{qv,
qv − qs

1.0 + f (�)qs
} (4)

where � is the potential temperature of water vapor, f (�) is a function of the potential temperature. The saturation mixing rate
qs is implemented as:

qs =
380.16
p

⋅ exp(17.25
∏

� − 273
∏

� − 36
) (5)

where p is the pressure, and Π is the Exner function which is a non-dimensional pressure quantity.
Evaporation: The evaporation process turns liquid water (qw) in the cloud into water vapor (qv). When the air becomes

unsaturated, the process occurs to maintain a balance between liquid water in the atmosphere and water vapor. Hence, the rate
of evaporation is regulated timely to keep the air at the saturation mixing ratio. Evaporation is calculated as follows:

Cw→v = min{−Cv→w − qw, �
qs − qv
�qs

} (6)

where � is the control parameter determined experimentally.
Note that the phase transition between water vapor in the environment and liquid water in the clouds essentially controls the

elements forming a cloud, determining the cloud volume. In order to solve the volume difference between the initial and the
target cloud shapes, we therefore introduce a phase transition control method as in Section 4.3. This effectively maintains the
physical nature and the constant rest density of a cloud evolution process.
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FIGURE 2 Shape and volume (indicated by different number of green circles) distinctions between initial and target shapes.

3.3 Position Based Fluids
We use the Position Based Fluids which is a particle-based method to solve the motion equations of cloud. Similar to SPH, a
physical value(x) at location x is calculated by a weighted sum of contributions(xj) from its neighboring particles j.

(x) =
∑

j
mj

(xj)
�j

W (x − xj , ℎ) (7)

where mj and �j are the mass and density of particle j, respectively. The function W (x, ℎ) is called the smoothing kernel,
where ℎ is the core radius. To solve the problem of fluid incompressibility, PBF proposes a density constraint for each particle
associated with its neighbors. The density constraint on the particle i is defined using an equation of state:

Ci(pi,ℙi) =
�i
�0
− 1 (8)

where ℙi is the position list of the neighbors of particle i. �0 denotes the rest density of fluid, and �i corresponds to the fluid
density defined by using Equation 7 as follows:

�i =
∑

pj∈ℙi

mjW (pi − pj , ℎ) (9)

4 CONTROL METHOD

As shown in Figure 2, in a cloud evolution scene, there are usually two kinds of distinctions between the initial and the target mod-
els, namely shape and volume, due to cloud-environment mixing41. We assume that the state of the environment is maintained
during a simulation. Hence, the rest density of cloud should keep constant, which is also necessary for enforcing incompress-
ibility using the PBF framework. Our method aims at controlling cloud evolution to reduce the difference between the target
and the original models to zero, while ensuring that the simulated cloud keeps constant rest density during the simulation.
The core of our method is a position-based control solver, which consists of two major stages, namely driving and damping

force generation and phase transition control. Figure 3 depicts an overview of our algorithm. We first sample an initial
shape by voxelization to generate fluid particles and then compute a signed distance field from the target shape as input. For
the control force generation stage, we design proper driving and damping forces to control particles matching with the target
shape while preserving plausible fluid motions. We combine particle current position, velocity, the signed distance field and
the density difference between its density and the rest density to generate the control force. For the phase transition control, we
choose particle density and position as control parameters to determine whether the physical process occurs. It facilitates the
preservation of target feature when the volume of the target is different from that of the initial model.

4.1 Driving Force
In this section, we develop an appropriate formulation of the driving force term Fdrv(�,p). As the force only depends on the
particle density and position, which are two essential parameters in the PBF framework, it is intuitive and simple for users to use.
To control the driving force, we design two parameters, namely the direction and the amount of driving forces, to be applied.



6 AUTHOR ONE ET AL

FIGURE 3Overview of our algorithm. (a) shows the inputs to our system, namely the source and target shapes. The source shape
is transformed into particles and a signed distance field is generated from the target shape. (b) shows our control mechanism. We
choose particle density, position and velocity as control parameters, computing a driving and damping force for each particle to
update its position and velocity. The phase transition controls the dynamical transitions between the water vapor in the air and
the liquid water in cloud particles according to these parameters, simulating the processes of condensation and evaporation. The
process will adjust the number of particles to keep constant rest density and preserve the details of the target shape.

Direction of Driving Force: We determine the initial direction using the gradient of the signed distance field generated from
the target shape as in the method1. The gradient of the color field17 is then used to update the initial direction.
For a three-dimensional domain B ⊂ ℝ3, the unsigned distance is usually defined as the Euclidean distance from a given

point x = (x, y, z)T in space to the nearest point on the boundary )B:

dt(x) = inf
x∗∈)B

‖x − x∗‖ (10)

Let the sign of the distance to be determined by whether a given point x is in B. The signed distance function �(x)42 is then
defined as follows:

�(x) =
{

−dt(x) x ∈ B
dt(x) otherwise (11)

If the cloud particle is outside the target shape, the generated force should drag the particle with a direction towards the target
shape and vice versa. Therefore, we propose the initial direction of the driving force as:

Ĝ(x) =
{ ∇�(x)

‖∇�(x)‖ x ∈ B
− ∇�(x)

‖∇�(x)‖ otherwise
(12)

where ∇�(x) is the gradient of �(x). Ĝ(x) is pre-computed according to the target shape, which is constant during a simulation.
Practically, motion conflict situation may occur, as illustrated by the red cloud particle in Figure 4. This particle is inside

the target shape and the initial driving force moves the particle towards the target shape boundary. On the contrary, some of its
neighbors are outside the target shape and their initial driving forces move them back to the target shape. We tackle this situation
based on the color field idea, which assigns 1 to each target cloud particle positions and 0 to else were. We apply the negative
gradient of smooth color field17 to solve the problem as follows:

N(pi) = −
∑

j
mj
1
�j
∇W (pi − pj , ℎ) (13)

According to the signed distanceΦ(x) and the dot product betweenN(x) and Ĝ(x), we update the initial direction as follows:

G(x) =
{

Ĝ(x) N(x) ⋅ Ĝ(x) ≥ 0 or Φ(x) ≤ 0
−Ĝ(x) otherwise

(14)
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FIGURE 4 Determining the direction of driving force. The black contour is the initial shape and the orange one denotes the
target shape. The dotted box shows a local part of the simulated domain. The red and yellow circles are two particles at different
positions.

If the angle between vectorN(x) and vectorG(x) is larger than �∕2, it shows that the initial direction of control force collides
with the desired movement of the fluid particle. We use the gradient of the color field to update the initial direction of the control
force (ref. the red particle in Figure 4).

Amount of Driving Force: In the following, we will describe the way to determine the amount of driving force. Simply
setting a constant will lead to obvious artifacts and result in gradually growing momentum. Hence, the simulated fluid may not
reach a rest state with u = 0, even the target has been reached. To make the controlled movement of the fluid stable and natural,
we use particle density and position as the control parameters to determine the driving force.
The amount of driving force is the product of the signed distance and the density difference between the particle’s density

and the rest density. To avoid obtaining an excessive driving force, we use the sigmoid function to clamp the product. Hence,
the amount of control force is calculated as follows:

fi(�i,pi) = � ⋅ sigmoid(|�(pi)(�i − �0)|) (15)

where � is the scaling parameter. To achieve smooth evolution, we usually set � = 0.16 in our experiments. �i and �0 are the
density of fluid particle i and the rest density, respectively. The difference between �i and �0 controls the volume distinction
between two shapes. If the particle density is higher than the rest density and the difference between them is also large, the
driving force is then large, driving particles to meet incompressibility quickly. According to the definition of function �(pi), the
farther the fluid particle drifts away from the target shape, the larger the driving force becomes.
When the target shape is reached, the density of each particle inside the target shape nears the rest density, i.e., |�i−�0| = 0+�,

where � is a minimum. Hence, the driving forces acting on the particles will become zero. Meanwhile, the signed distance, �(x),
is close to zero at the boundary of the target shape, and that the particles at the boundary will not be driven further by the control
forces. It shows that the simulated object will reach a rest state when it reaches the target shape. Finally, the driving force for
particle i is calculated as follows:

Fidrv(�i,pi) = fi(�i,pi)G(pi) (16)
The proposed driving force is similar to but different from the control forces, including the boundary control force and the

shape control force, presented by Yang et al.43. The gradients of the sign distance field is employed to estimate the boundary
control force. The shape control force is based on the medial axis point clouds, which are extracted using the Laplacian criteria
after computing the signed distance field of the target shape. Due to the lack of the density constraints in the control forces of43,
their method produces unevenly distributed cloud particles, with more cloud particles gathering around the medical axis and
areas away from the medical axis becoming hollow because of lacking cloud particles, which is undesirable. Meanwhile, we use
the signed distance field of the target shape to calculate the driving force controlling both the boundary and the shape, which is
a much easier way of implementation for users than the approach in43.
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FIGURE 5 Example for phase transition from vapor to cloud.

4.2 Damping Force
To avoid the accumulation of momentum, which may keep fluid away from reaching the rest state, we design a damping force
using the velocity of particles. It is calculated as follows:

F i
dam(ui) = −� ⋅ sigmoid(||ui||

2)
ui

||ui||
(17)

where � is the gain for proportional control. The larger the value of � is, the larger the damp force becomes. To drive particles
filling the target more rapidly while restricting the fast-growing of momentum, we usually set � = 0.76 in our experiments. Note
that the force follows the opposite direction of ui to decrease the momentum of the simulated fluid.

4.3 Phase Transition Control
To preserve the fluid nature of the constant density during evolution, we simulate the microphysics processes of clouds, which
formulate the interaction between clouds and their environment, to solve the volume discrepancy between the initial and the
target shapes.
If the volume of the target shape is larger than the initial one, we then assume that there are lots of vapor parcels in the

environment. This means some water vapor in the air parcels should be condensed into cloud droplets to make the cloud grow.
To make such growth more natural, only those vapor parcels which are either inside or at the boundary of the cloud are involved
in the process. If the volume of the target shape is smaller than the the initial one, we assume that the air is unsaturated. Hence,
some liquid water in cloud droplets is evaporated into air parcels, which reduces the volume difference. Since the two processes
only change the state of the water in air parcels and cloud droplets, the total mass of the air and the cloud is remained the same
during evolution.
According to Equations 4 and 6, both the rate of condensation Cv→w and that of evaporation Cw→v are nonlinear functions of

the latent temperature � and saturation mixing rate qs. However, it is difficult to adjust these parameters manually, making cloud
evolutionmatchwith a user-specified target shape. Therefore, we present two phase transition controllers, including condensation
controller and evaporation controller, based on the shape feedback to automatically adjust the two phase transition rates.

Condensation Controller: In order to control the condensation, we need to determine the location where there are more
saturated water vapor. As all cloud particles need to meet the incompressibility constraint at each frame, if the density of one
cloud particle is smaller than the rest density, it will mean there are more water vapor around it. Hence, we can use the difference
between the particle density and the rest density as the criterion to determine such a location. According to the density difference,
we design the method to determine the potential locations.
Given that a density threshold � ranges from 0 to 1, if the density of particle i, denoted as �i, is lower than the rest density

(1 − � )�0, the vapor parcels around the particle i are then potential particles forming part of the cloud. To make particles better
preserve the constant rest density and reduce the fluctuation of the density, the parameter � should be assigned with a low value.
We therefore set � to 0.1 in our experiments. The position pi is regarded as a potential location around where particles may transit
into vapor, and these potential locations constitute a set, denoted as Lc . Meanwhile, new cloud particles should not conflict with
other particles, as illustrated in Figure 5. Note that there are potentially many potential valid positions, from which we pick some
random air parcels.
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For those particles located at the boundary of the target shape, the phase transition rate should be smaller in order to stop the
growth. When the ith fluid particle’s density is much smaller than the rest density, we should make the cloud grow to match
with the target shape. Meanwhile, the cloud density of new fluid particle turned from air parcel should be near to the particle’s
cloud density in order to get smoothed cloud density, which is similar to33. Finally, the condensation controller is defined as:

Cv→w = KcM(−�(pi))M(�0 − �i)(
wi

wi + vi
)qv (18)

M(r) =
{

1 r > 0
0 r ≤ 0 (19)

where wi and vi are the liquid water density and the vapor density in cloud particle i, respectively. According to the method
calculating cloud density33, the different distributions of the two parameters influence the cloud density and hence the rendering
results. Kc denotes the smooth control parameter and is set to 0.6 in our experiments. When the surface of the original cloud
reaches the boundary of the target shape, �(pi) of the particle i on the surface is zero. So the termM(−�(pi)) becomes zero,
meaning that the phase transition will be stopped.

Evaporation Controller: Evaporation can be considered as an inverse process of condensation. We use the physical process
to solve the gathering of particles which makes the particle density higher than the rest density. If the density of particle i is
larger than the rest density �0, and the difference between �i and �0 is larger than ��0, i.e., �i − �0 > ��0, its neighbor particles
could be turned into vapor. Consequently, the neighborhood of the particle i is considered as a potential region and its location
is set to be the position of the particle i, i.e., pi. Finally, all these potential locations form a set Lv.
To rapidly make fluid particles meet the rest density, the larger the density difference is, the larger the condensation rate could

be. So we define the evaporation controller for the phase transition from cloud to vapor as:

Cw→v = Kv ⋅ max(0, sigmoid(�i − �0))wi (20)

where wi is the cloud density of particle i, and Kv is scaling parameter, which is usually set to 0.8 in our experiments. We pick
some random neighbors of particle i, e.g., p̂1, p̂,⋯ , p̂l, to apply the physical process with the same phase transition rate ci. We
then choose two particles, p̂m and p̂n, whose distance is the smallest than any pairs of particles in the neighborhood, to merge
into a fluid particle and an air parcel iteratively. The new fluid particle is placed in the middle between the neighboring particles.
Meanwhile, the mass of the new fluid particle is set to the average of the original fluid particles, and its cloud density is set to the
sum of cloud density of the two particles. Similar to the phase transition from vapor to cloud, we use the same density constraint
criteria to control the amount of phase transition.

4.4 Density Constraints
As the phase transition will influence the number of neighbors of some particles, it could result in density fluctuations in some
local regions. The problem can be solved by controlling the amount of phase transition. Hence, we propose a criterion according
to the density constraint of PBF to control the two processes.
When a particle pi does not satisfy the density constraint, Ci(pi,ℙi) ≠ 0, the phase transition will be performed to adjust the

number of its neighbors. This aims to update the neighborhood ℙ̃i, generating the density correction Δ�i to turn Ci(pi, ℙ̃i) to
zero. Hence, the density correction Δ�i should satisfy:

Δ�i = |�i − �0| (21)

5 IMPLEMENTATION

To properly parallelize the process of evaporation control, we construct individual small sets, denoted as L̃1v, L̃
2
v,⋯ , L̃mv from the

set Lv. For each set L̃nv, the distance of any two regions in the set should be larger than 2×ℎ, as shown in Figure 6. The initial set
shown in the left sub-figure is divided into three sets, colored in purple, yellow and blue, respectively. Therefore, the merging
process can be implemented on each set L̃nv in parallel.
To control the phase transition between water vapor in the air and liquid water in the fluid particles, we construct two neighbor

lists, namely water vapor list Nv and liquid water list Nc , for each fluid particle. Integrating control force and phase transition
control into the PBF framework, the simulation loop is outlined in Algorithm 1. Our control solver is from line 2 to line 17. As



10 AUTHOR ONE ET AL

FIGURE 6 Parallelizing the process of evaporation control. Left sub-figure shows regions tagged to evaporate. Right sub-figure
displays new sets constructed from the initial set on which the evaporation control can be parallelized. The three sets are colored
in purple, yellow and blue, respectively.

density controlling could not make all particles fulfill incompressibility, the last step of our control step performs the position
updating process according to the density constraints of PBF.

Algorithm 1 Control flow.
1: for all particles i do computeNc(pi) and �i
2: for all patiles i do
3: compute force F i

con = F
i
drv + F

i
dam using Eqns.16 and 17

4: update velocity vi ← vi + ΔtF i
con and pi

5: end for
6: for all particles i do computeNc(pi) and �i
7: generate the two sets Lv and Lc
8: for all potential locations pj ∈ Lc do
9: for all air parcel k ∈ Nv(pj) do

10: apply the process of condensation using Eqn. 18
11: end for
12: end for
13: for all potential locations pj ∈ L̃iv do
14: for all fluid particle k ∈ Nc(pj) do
15: apply the process of evaporation using Eqn. 20
16: end for
17: end for
18: for all particles i do
19: update pi by using density constraints of Eqn.8
20: end for

6 RESULTS

In the following, we will describe the examples that we have run and compare with existing works. We implement our method
using the C++ programming language. All results are obtained on an IntelⓇ XeornⓇ CPU with 64GB memory and a NVIDIAⓇ

Quadro M4000 GPU.
We now demonstrate how our method can efficiently control cloud evolution between two non-volume-preserving models

through a variety of scenes. In all of the examples shown in this section, we choose some mesh models as initial and target
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FIGURE 7 Cloud models (bottom row) reconstructed from cumuliform cloud images (top row).

FIGURE 8 Evolution between two cumulus clouds models generated from given images.

models. For our system, we first sample particles uniformly from the initial shape as inputs and set all particles with the same
radius and their mass to be 0.0512g. We set the density of each air parcel to the rest density of 1kg∕m3. The initial values of
the liquid water densityw and the vapor density v in each cloud particle are set to 0.8kg∕m3 and 0.2kg∕m3, respectively. As the
signed distance field generated from the target shape is used to determine the driving force, its accuracy will affect the control
results. Consequently, we generate the signed distance field (SDF) from the given target shape using the method42, which can
efficiently construct a grid-based SDF using hierarchical ℎp−refinement based on piecewise polynomial fitting. Our system is
implemented in CUDAⓇ, and we use a kd-tree for finding neighboring particles. The final rendering is done using Mitsuba44.
The fluid density field is generated by splatting fluid particles onto a regular grid with the Poly6 kernel function.
Image can easily capture real clouds and is highly accessible. Hence, as in the first example (ref. Figure 8), we have simulated

a cloud evolution between two given cloud images. First, we reconstructed the cloud models from user-specified cumuliform
cloud images using the method45. The initial model and the target model are named as cloud1 (left) and cloud2 (right) as shown
in Figure 7, respectively. Number of particles filled into the two models are shown in the first row of table 1. Note that cloud1
has a smaller volume than cloud2. Hence, condensation control will be performed during the simulation. The cloud gradually
evolved from one shape (cloud1) to another (cloud2) with plausible visual effect, as shown in video demonstration.
In Figure 9, we demonstrate our method by controlling the dragon model to match with the bunny model. Despite having a

very different and complex target model, our method manages to well approximate the target shape. Meanwhile, as shown in
the second row of table 1, the dragon model contains more particles than the bunny model. Therefore, evaporation control is
effective to adaptively reduce the number of particles during the evolution in this example.
Figure 10 shows that our method can support interactive user intervention. During the simulation, a user can change the target

shape at any frame and the simulation can continue to be executed without any additional operating procedure. At the beginning,
we control cloud3 (1st picture) to match with cloud1. At frame 30 (2nd picture), we choose the bunny model as the new target
shape. Consequently, the evolving cloud at this frame becomes a new initial shape. Results demonstrate that our method can
adapt target shape changes without any extra input or interruption. It also shows the scalability of our control method.
Figure 11 shows an example with a large source and target volume difference, with the source shape being a box (see the

small inset of the 1st picture) and the target being cloud2. As shown in table 1, the box only contains less than one-half of the
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FIGURE 9 A dragon model deforms to a bunny model.

FIGURE 10 User intervention example. We first control cloud3 (1st picture) to match with cloud1. At frame 30 (2nd picture),
the evolving cloud becomes a new initial shape, as the target shape is changed to the bunny model.

FIGURE 11 Examples with large source and target volume difference. The initial shape shown at the top right corner of the left
image contains nearly half of the fluid particles for the target model.

number of fluid particles of the target model. As more air parcels around the cloud participate the condensation process during
the simulation, we observe that the box can better transform into the given target shape and preserve the constant rest density.
Since each cloud particle is featured with liquid water density w and vapor density v, these density parameters consequently

affect the control results. Also, according to33, the cloud rendering result will be affected by different w and v value settings.
We have conducted an experiment by lowering the value of w and increasing the value of v of the cloud simulation as shown in
Figure 8, with w = 0.4 and v = 0.6. As shown in Figure 12, we then obtain a cloud with lower density.
To demonstrate the effectiveness of our method, we compare our method with one of the existing control particle based

method5. We choose the two scenes as shown in Figures 8 and 9 to be the test examples, and show their results in Figure 13
and Figure 14, respectively. As control particles play an important role for methods based on control particles, we respectively
choose 10, 000 and 13, 000 control particles, as well as their target particles by using the method5 for the two scenes. Figure 13
shows a comparison of results generated by different methods. Particularly, comparing with method5 (left picture), our method

FIGURE 12 Comparison of results obtained using the different values for the parameters w and v. In each pair, the left one is
obtained by using a larger w than the right one.
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FIGURE 13 Comparison of results obtained by Madill’s method5 (left), Yang’s method43(middle) and our method (right) for
the scene1. The red line is the top contour of the target shape.

FIGURE 14 Comparison of results obtained by Madill’s method5 (left), Yang’s method43(middle) and our method (right) for
the scene2. The red line is the contour of the target shape in each image. The ears and legs are highlighted with the yellow and
purple squares in each images.

(right picture) produces a better cloud simulation, as the resulting cloud can better fit the target shape boundary (highlighted
by the yellow box). As shown in Figure 14, our method can also better preserve details, such as the ears (highlighted by the
red box) and legs (highlighted by the yellow box) of the bunny. The improvement made by our method comes from the control
force as well as the shape and the density feedbacks. Specifically, as the control particle based method5 overstrains the control
particles into the target positions, the control particles are then moved roughly along straight lines. We have demonstrated such
an unnatural motion in the supplementary video.
To compare our method with the unified smoke control method43, which is based on the Eulerian approach, we have imple-

mented the method using the PBF. We then simulate the two scenes as shown in Figures 8 and 9 using43. As the control forces
in43 only contain two terms, namely the medial axis point cloud constraints and the target boundary constraints, it results that the
particle density is higher among these medial axis points than other particles. Moreover, due to the volume difference between
the initial shape and the target model, the resulting shapes from the target-driven method lack details and make the structures
appear some hollows as shown in the middle pictures of both Figure 13 and Figure 14.
Our method involves the phase transition control to meet the assumption of keeping the rest density constant during evolution.

Figure 15 shows the change of average density of all particles at each frame for the scene as shown in Figure 8. In the example,
we set the rest density to be 1000g∕m3. Figure 15 shows that the proposed method can make the average density of particles
near the rest density. Our method performs better comparing to the control particle based method5.
We choose particle density and position as control parameters to determine the driving force for each particle. Hence, the

amount of momentum generated by the driving force will decrease as the initial shape approaches the target shape. Figure 16
shows that the change of the average momentum for the example as shown in Figure 9. To test the system stability, we continue
running the simulation process even when the simulated object have matched with the target. We use the strength of the average
momentum as the test’s recorded values. The orange curve shows the average momentum change for the method when using only
geometric potential to determine forces, while our own result is depicted with the blue curve. Note that with the method using
only geometric potential as control parameters, the average momentum could still fluctuate when the initial shape has already
matched with the target. It demonstrates that our method can make the simulated fluid better satisfy the rest state requirement.
Table 1 summarizes the timing of our control algorithm in different scenarios. The shape and volume differences between

two models are the two main factors affecting the performance of our control solver. We show the particle numbers of the initial
shapes and the target shapes in column 1 and 2, respectively. Column 3 shows the particle number of the final generated target
models.
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FIGURE 15 Comparisons of fluid rest density. It shows the change of average density for scene1.

FIGURE 16 Momentum comparison between our method and the method of using geometric potential as control parameters
to determine driving forces.

TABLE 1 Performance results for all the presented cases. Note that the rendering time is not included in the total time.

Scene Initial Model
Particles

Target Model
Particles

Generated Target Model
Particles Time[msec/frame]

cloud1-cloud2 91,800 102,000 101,650 71.48
dragon-bunny 106,200 104,600 103,920 72.34
one box-cloud2 50,500 102,000 101,930 71.06
two boxes-cloud2 101,000 102,000 102,100 71.51

cloud3-cloud1-bunny 83,600 91,800/104,600 104,430 72.18

Figure 17 is an example demonstrating that we can support two initial shapes transforming into one single target. We choose
two boxes as initial shapes and the cloud2 shown in the right of Figure 8 as the target shape. The number of particles for the two
models are shown in the third row of table 1. The driving force is very effective at directing the two shapes to accurately form
the cloud2.
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FIGURE 17 The cloud2 model is formed by two squares.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a simple and effective target-driven cloud evolution method based on the PBF framework, enabling
the simulated cloud to match with a given target and keep constant rest density. Our method only requires a user to provide two
mesh models as the initial and the target shapes, respectively. Different from the control particles based method, our method
assigns a control force to each particle by taking into account its position, density and velocity as well as a signed distance field
generated from the target. Uniquely, this new approach allows our method to support interactive user intervention.
The control force will reduce when the simulated cloud approaches to the target, fulfilling the rest requirement. To solve

the difference in volumes and integrate the proposed control method with the PBF framework, we present the phase transition
control to adjust the cloud particle number by applying phase transition between vapor and cloud under the density constraints.
The control force and the phase transition controller enable our method to preserve the details and keep constant rest density.
Integrating PBF frameworkmakes themethod fast and stable. It can be easily integrated into existing fluid simulation frameworks
and will only add a small ratio of computation time to the original simulation.
The major limitation of this work is that the signed distance field generating from the target shape must be pre-computed.

Particularly when supporting interactive user intervention, such a pre-computation allows our method to revise the driving force
interactively. In future work, it might be interesting to develop a method to drive the simulated fluid to match with a moving
target by updating the signed distance field along with the motion of the target. Combining with the rapidly changing target
matching method6 to improve our method for supporting path control and shape matching may be a promising direction.
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