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Human Posture Tracking with Flexible
Sensors for Motion Recognition

Abstract
The integration of conventional clothes with flexible electronics is a promising solution
as a future-generation computing platform. However, the problem of user authentica-
tion on this novel platform is still under-explored. This work uses flexible sensors to
track human posture and achieves the goal of user authentication. We capture human
movement pattern by four stretch sensors around the shoulder and one on the elbow.
We introduce the Long Short-Term Memory Fully Convolutional Network (LSTM-FCN),
which directly takes noisy and sparse sensor data as input and verifies its consistency with
the user’s pre-defined movement patterns. The method can identify a user by match-
ing movement patterns even if there are large intra-personal variations. The authentica-
tion accuracy of LSTM-FCN reaches 98.0%, which is 10.7% and 6.5% higher than that
of Dynamic Time Warping (DTW) and Dynamic Time Warping Dependent (DTW-D).

Keywords: user authentication, smart clothes, flexible sensor

1 Introduction
Smart clothes are gaining a wide range of interest due to the fast progress of flexible
electronics. They are expected to empower people to inter-connect with the world while
introducing minimal intervention to their daily activity. Before smart clothes serve as a
personal device, user authentication arises as an open challenge. However, explicit au-
thentication approaches (e.g., pattern locks) suffer from several limitations including the
requirement of visual display. Therefore, an authentication mechanism for smart clothes
users is in need.

Existing methods explored the use of a variety of biometric data, e.g., fingerprint,1 iris,2
face,3 ECG.4 However, specialized (often rigid and bulky) sensors are required to capture
these biometric data. Our work proposes the use of flexible stretch sensors, as a low-cost
and user-friendly solution, to track human posture. The captured sequence of postures
is used for user authentication. However, different from finger stroke patterns on mobile
phones, human postures in 3D present large intra-personal variation, i.e., multiple attempts
of the same posture sequence may largely differentiate from each other.

Our work directly addresses the problem of user authentication on the platform of smart
clothes. The authentication is defined as two key sub-problems: 1) to track human posture
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with flexible sensors, 2) to verify the consistency between the current attempt of motion
trajectory with the pre-stored ones. The contribution of this work is two-fold:

• We present a complete solution of both hardware and software for human posture
tracking and trajectory authentication. The use of flexible sensors introduces minimal
intervention to the user’s activity and ensures the maximal comfort of user experience.

• We introduce LSTM-FCN which directly takes noisy and sparse sensor data as input
and matches pre-defined movement patterns. Compared with the representative
methods in the time-series analysis (DTW,5 DTW-D6) and CNNs, our method shows
advantages in both the authentication accuracy and alleviation of parameter tuning.

2 Related Work
2.1 Wearable Motion Tracking
The recent development of sensing technology has paved the way for using wearable sensors
to monitor human motion. Mainstream systems used optical, acoustic, and electromag-
netic sensors for this task. Readers could refer to an overview7 of using different sensors
and techniques to estimate human upper limb motion. Optical-based systems for human
motion tracking8 are relatively expensive, require adequate illumination, and suffer from
the problem of occlusion. Acoustic-based systems9 have poor real-time performance and
are vulnerable to ambient interference. Electromagnetic-based systems10 are prone to be
interfered with by the magnetic field since the metal objects around the site will cause
magnetic field distortion ,which seriously affects the accuracy.

Motion tracking using inertial measurement units (IMUs) has gradually attracted peo-
ple’s attention.11 presented a method to estimate the human whole-body pose with appli-
cation to bicycle riding using the fusion of gyroscopes, accelerometers and force sensors.12

proposed a method that combines a single hand-held camera and a set of IMUs attached
at the body limbs to estimate 3D poses in the wild. However, the two methods above
have to adopt extra constraints or filtering algorithm to correct the drift of the IMU sen-
sors. Another work13 tried to fuse IMU data with Kinect to provide stable hand position
information with no long-term drifts. Although the direct integration of the gyroscope
signal can ensure the accuracy of the output angle in a short time, the output error also
accumulates with time elapse.13

More recent works used soft sensors for motion tracking. Researchers used a wearable
sensing suit with flexible sensors for motion capture of full-body,14 elbow,15 finger,16 and
upper body.17 A recent work introduced silicone-based strain and force sensors composed
of a novel biocompatible conductive liquid for motion capture.18 Researchers proposed
a stretch-sensing soft glove to interactively capture hand poses with high accuracy and
without requiring an external optical setup.16 Wearable soft sensors are non-intrusive and
can accurately track human posture in an unrestricted environment. Currently, one of the
common features of smart clothes is motion tracking. This accessible feature offers the
direct solution of user authentication, i.e., to verify user identifies with the user-defined
motion trajectory.

Our human motion tracking system shows the advantages of convenient wearing, unlim-
ited movement space, and low cost. Since the flexible sensors can be seamlessly integrated
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on the clothes, this offers users the maximum convenience. However, the problem of user
authentication on smart clothes is yet to be explored.

Figure 1: (a) The developed prototype and a close-up view of Sensor 3. (b) Sensor layout.

2.2 Biometric Authentication
Biometric authentication refers to the use of human physiological and/or behavioral char-
acteristics for identification. At present, the mainstream methods for biometric recognition
using physiological characteristics are: fingerprint,1 iris,2 palm,19 facial,3 finger20 and oth-
ers. A variety of behavioral features, including voice, handwriting,21 keystroke22 are also
adopted by the mainstream methods. In addition to these conventional biometric tech-
nologies, recent years saw emerging modalities for authentication, such as ear imaging,23

movements of arm,24 head,25 and gait.26,27 Especially, Gait recognition has attracted exten-
sive attention from institutes and researchers,28,29 utilized the convolution neural network
(CNN) to extraction feature expression and trained a classifier to authenticate human.
Researchers first proposed to fuse coarse-grain minute-level physical activity (step counts)
and physiological data (heart rate, calorie burn, and the metabolic equivalent of task) for
the task of user authentication.30 Although there is a large collection of works on body
part movement recognition for authentication, the existing equipment is expensive or not
small enough to be convenient.

Our work uses arm movement data to authenticate whether a movement matches the
password (the pre-stored movement pattern). Our prototype is low-cost, convenient, and
not affected by light or a cluttered background. The authentication introduces minimal
intervention. Although motion tracking is similar to monitoring the stroke trajectory on
the touchscreen, motion execution in an unconstrained 3D world presents significantly
larger variations than pattern locks on a 2D screen.
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3 Method
3.1 Hardware and Software Implementation
We developed a prototype of smart clothes (Fig. 1) with flexible sensors to complete this
study. In life, we are used to using arms to manipulate and express. The movement of the
arms mainly depends on the movement of elbow joint and shoulder joint. The prototype
is integrated with five flexible stretchable sensors: four around the shoulder joint and one
on the elbow joint. The sensors are manually sewed onto the garment with the technique
of flat stitching. The clothes style is tight sportswear, which ensures that the sensors are
sufficiently and consistently stretched at different attempts. The clothes fabric is made of
80% polyester and 20% polyurethane. We use the conductive rubber cord stretch sensor
fabricated by Adafruit 1. Each sensor is 10cm in length, 2mm in diameter and made of
carbon-black impregnated rubber. In a relaxed state, the sensor resistance is about 350
Ohms per inch. The joint rotation is tracked by monitoring the change in the resistance
value of the stretchable sensors. For example, when the user bends his/her elbow joint, the
sensor is stretched and its resistance value increases accordingly. The sampling frequency
of the stretch information is 32Hz.

The server computer receives the sensor data, authenticates it, and shows the results.
The server computer is equipped with Intel Core i7 (6-core), 16G memory, and NVIDIA
GTX 1080Ti. This server is also used for training and testing of the prediction model in
the following text.

Figure 2: The collected seven movement patterns.

3.2 Data Collection
Participant: Experiments were performed on a volunteer whose age is 28, and this

participant is a doctoral student. We explained the experimental design to this participant
and obtained his written consent. He was given sufficient instructions before the experiment
and became familiar with the experimental procedures.

Procedures: Before the experiment began, the participant was informed of the experi-
ment purpose. After putting on the prototype system, he conducted a few moves to get
familiarized with the system. Then, he can freely perform the movement according to
his preferences. To indicate the start and stop of an attempt, the experimenter vocally
informed the participant. These activities were repeated in a short period of time. Fig. 2
shows the seven patterns designed by the participant. If the participant is tired, the capture

1Product link: https://www.adafruit.com/product/519
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process can be terminated at any time. The data collected from each session was auto-
matically uploaded to our server and manually annotated with the corresponding pattern
tags. A complete collection took about 1.5 hours, including the participant’s breaks.

3.3 LSTM Fully Convolutional Network
In this work, we use the LSTM-FCN31 as a two-class (positive or negative) classification
tool. Each pattern is associated with a separate classifier. After our system has been
configured with a password pattern, the network will judge whether the authentication is
successful according to the classification result of the new movement input. The input is
the human posture trajectory captured by flexible sensors and the output is whether the
current trajectory belongs to the pattern to be authenticated.

LSTM-FCN is formed by a full convolution block and an LSTM block (Fig. 3). The
input time series go through the convolution block and the LSTM block simultaneously.
The full convolution block is composed of three stacked temporal convolution blocks, and

Figure 3: The LSTM-FCN architecture.

the size of the filter is 128, 256, and 128, respectively. Each convolutional block consists of
a temporal convolution layer, batch normalization, and a ReLU activation function. The
global average pooling is applied after the last convolution block. The LSTM block is
composed of a conventional LSTM layer and a dropout layer. The outputs of the global
pooling layer and the LSTM block are concatenated and passed to the softmax classification
layer.

In convolutional layers, a set of 1D filters is applied to capture the evolution of input
signals throughout the course of an action. The filters for each layer are parameterized by

Page 10 of 21

http://mc.manuscriptcentral.com/cavw - For Peer Review

Computer Animation and Virtual Worlds

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



the tensor W (l) ∈ R
Ll×d×Ll−1 and biases b(l) ∈ R

Ll . L is input feature vector length and is
set to 146 in this work. l ∈ {1, . . . , 3} is the layer index and d is the filter duration. For the
l-th layer and each time t, the i-th component of the (unnormalized) activation Ĉ

(l)
t ∈ R

Ll

is a function of the incoming (normalized) activation matrix C(l−1) ∈ R
L
l−1 × Tl−1 from the

previous layer:

Ĉ
(l)
i,t = f

(

b
(l)
i +

d
∑

t′=1

⟨

W
(l)
i,t′,., C

(l−1)
.,t+d−t′

⟩

)

f(·) is a Rectified Linear Unit.
Data Processing and Flow: Our smart clothes have five sensors, and all data are padded

to a length of 146. Therefore, one sample in the collected data is a time series of shape
(146, 5). The fully convolutional block views the time series as a univariate time series
with multiple time steps and receives the data in 146-time steps. And LSTM block receives
the multivariate time series after a masking operation.

Min-Max scaling: One method of normalization is the so-called ”min-max” scaling. Min-
Max scaling scales data to a fixed range-usually 0 to 1. Compared with standardization,
the cost of having this bounded range is that we will eventually get a smaller standard
deviation, which can suppress the effect of outliers. Min-Max scaling is typically done via
the following equation:

Xnorm =
X −Xmin

Xmax −Xmin

.

The existing work31 normalized the input data along each feature dimension using Min-Max
scaling. We define this strategy as Feature Normalization (FN). Different from existing
work, we normalize the input data at each time point and define this as Temporal Normal-
ization (TN). TN does not require the prior knowledge of the complete dataset in order to
compute the minimum an maximum values for each feature.

Training & Testing: The collected dataset contains NP = 7 patterns and each pattern
contains NS = 20 samples. We train seven separate classifiers. For the classifier K (K ∈
[1, NP ]), it verifies whether the current motion attempt belongs to Pattern K, and returns
true or false. To build the training dataset for classifier K, we randomly select NTR

samples from all patterns. NTR samples from Pattern K are labeled as positive ones, while
NTR*(NP -1) samples from the excluding patterns are labeled as negative ones. The rest
samples ((NS−NTR)∗NP ) are testing ones. Again, NS−NTR samples from Pattern K are
labeled as positive ones, while (NS − NTR)*(NP -1) samples from the excluding patterns
are labeled as negative ones. We choose NTR = 3. The intuition is that to initialize the
authentication system on smart clothes, the user needs to perform the password trajectory
for three times. The repetition aims to maximally capture the intra-personal variation
when the user conducts the same trajectory.

Training Hyperparameters: The number of training epochs is 1000. The batch size and
initial learning rate are 128 and 1e-3, respectively. A high dropout rate of 80% is used after
the LSTM layer to address the issue of overfitting. Our models are trained using the Keras
library with the TensorFlow backend and the Adam optimizer. All convolution kernels are
initialized with the approach proposed by He et al.32 The learning rate was reduced by a
factor of 1/ 3

√
2 every 100 epochs if there is no improvement in the validation score, until

its value reached 1e-4.
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4 Results
4.1 Dataset Statistics

Figure 4: The resistance distribution of five sensors in Pattern 1 and Pattern 5.

Here, we visualize the distribution of the sensor resistance values across different sensors
and patterns. The resistance distributions of the five sensors in Pattern 1 and Pattern 5
are shown in Fig. 4. Pattern 1 (Fig. 4 (a))is a movement of arm elevation in the coronal
plane. Sensor 3 and 4 locate on the shoulder joint and demonstrate considerable variations
caused by the shoulder rotation. This pattern also comes with a noticeable secondary
movement on the elbow joint (Sensor 5). Pattern 5 (Fig. 4 (b))is a movement of arm
forward bending. The resistances of Sensor 1, Sensor 2 (on the shoulder joint) and Sensor
5 have great changes due to arm forward bending. The sensor 4 (under the shoulder joint)
is hardly stretched, and the resistance change is small. This figure confirms the large
intra-personal variations when the user performs the same movement pattern.

The sample duration is between 2.788s and 4.998s, and the statistics for the duration
of these samples are shown in Fig. 5. Even for the same pattern, the duration of different
attempts could vary to a large extent of >10%. We address this issue by padding and
converting the signal to segments of fixed durations.

The results confirm the large intra-personal variations of the sensor signal. The causes
could be two-fold: the temporal factor is rooted in the varying duration for different at-
tempts of the same pattern, and the spatial factor is due to the unconstrained 3D trajectory.
These two factors are inherently correlated with the freedom on the user side when design-
ing and performing the pattern. Our method proves to be effective in robustly handling
this variation and does not require manual efforts of feature engineering.

4.2 Analysis of Authentication Results
We use the following three evaluation criteria to evaluate our experiment results:

• True Positive (TP): a true password passes the authentication.
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Figure 5: The statistics of movement duration in each pattern.

• True Negative (TN): a forged password fails to match.

• False negative (FN): a true password fails to match.

• False positive (FP): a forged password passes the authentication.

• Pattern Accuracy: (TP+TN)/(TP+TN+FN+FP) for Pattern i

• Overall Accuracy: (TP+TN)/(TP+TN+FN+FP) for all patterns.

Figure 6: Confusion matrix of authentication.

Fig. 6 shows the matching result of our method. If the actual pattern is classified to the
same class as the predicted one, the match is successful and the count is increased by 1.
The number in each grid is the matching result of samples in a pattern and the current
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password. The numbers in the bottom row are the number of samples for each pattern in
the testing dataset.

As depicted in Fig. 6, we get 15 FNs and four FPs in total. We tried 833 matches and
failed 19 times. The overall accuracy of our method reaches 97.72%. Pattern 1, 2, 3, 4, 5,
6 are associated with two, three, four, one, three and two FNs, respectively. This indicates
that the true password is identified as false. The potential reason is the large deviation
from the training dataset. When Pattern 7 is the password, all the samples in the testing
dataset are matched successfully. However, one sample in Pattern 2 are mis-identified as
Pattern 4, one sample in Pattern 3 are mis-identified as Pattern 2, and two samples in
Pattern 4 are mis-identified as Pattern 3, creating the defect of four FPs.

We also perform an inter-person authentication experiment. We collect data on seven
patterns of three users, and each pattern was repeated 20 times by each user. The single-
person authentication accuracy rate reaches 97.74%. While, when one of a user’s patterns
is set as password, we only select samples from this user for training, all actions attempts
by the other users cannot pass the authentication.

4.3 Comparison with DTW/DTW-D
Dynamic time warping (DTW)5 is one of the baseline methods for time-series signal process-
ing. DTW-D6 enhances the correlation of five features in the time series during matching
and improves the matching accuracy. However, their performance is subject to threshold
values, which will be further analyzed in Sec. 4.4. We here first compared our method with
DTW and DTW-D of the highest matching accuracy.

Figure 7: Accuracy of LSTM-FCN, DTW, and DTW-D.

Success condition for DTW & DTW-D: For DTW, if the distance of each channel to a
sample in the password set is within a threshold, the match is successful. For DTW &
DTW-D, once there are multiple passwords in a password set, the match is successful as
long as the distance between the testing sample and one of the password set is less than
the threshold.

Fig. 7 shows the comparison results of three methods: DTW, DTW-D and LSTM-FCN.
Our LSTM-FCN model consistently outperforms DTW and DTW-D, regardless of the
number of samples in the training dataset NTR. Increasing the value of NTR steadily
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improves the authentication accuracy to 98.0%. More details of using different values of
NTR are discussed in Sec. 4.5.

Figure 8: The performance sensitivity of DTW/DTW-D algorithms given different thresh-
old values.

In terms of time performance, LSTM-FCN spent about 27.10s for training. However, it
is trained only once and it costs 0.26s for authentication. DTW and DTW-D do not need
offline training and cost 0.74s and 0.001s respectively for online authentication.

4.4 Threshold Sensitivity of DTW/DTW-D
DTW algorithm matches each of the five channels in a sample separately, while the DTW-
D algorithm directly matches a sample using the five channels at the same time. However,
both methods face the challenge of determining the appropriate threshold value. The
experimental results are shown in Fig. 8.

Both DTW and DTW-D show a similar trend when increasing the threshold value: FP
decreases and FN increases. Once the threshold is small, negative samples cannot be
matched easily. As a result, the FP is relatively small. At the same time, positive samples
which are in the password pattern fails to pass the authentication successfully, and the FN
will be large. As the threshold increases, FP continues to increase, while FN continues to
decrease. This is equivalent to reduce the authentication stringency so that samples with
larger deviations could pass. Therefore, choosing an appropriate threshold value is the
prerequisite for using DTW and DTW-D.

When using the different values of NTR, the threshold chosen to get the balance of FP
and FN changed irregularly. This is particularly true for DTW-D, where the curves of
FP and FN cross at different threshold values for different values of NTR. This implies
the difficulty to use these two algorithms in practice. For the best performance (NTR=3),
DTW and DTW-D use a distance threshold of 0.6 and 5.75, respectively.

4.5 Number of Password Samples
The number of samples in the training dataset NTR impacts the authentication capability
and this subsection investigates the performance of our method when NTR increases from
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one to six. We selected the threshold value of DTW and DTW-D with the highest matching
accuracy during the matching process above to compare with LSTM-FCN. Fig. 9 illustrates
the changes of FP and FN with the value of NTR.

Figure 9: The relationship between the percentage of FP and FN and the number of sam-
ples in the training dataset

Figure 10: The trajectories of P6S1, P6S10, and P7S4. P6S1 indicates Pattern 6 Sample
1.

From the results in Fig. 9, the FN of DTW and DTW-D becomes smaller as NTR

increases. This means that more positive samples in the pattern can be correctly authenti-
cated. The reason should be that the increase of training samples enlarges the state space
and included the sample which was previously excluded from this space. However, this
leads to the side effect: the FP increases accordingly, i.e., samples that are not belonging
to this pattern are also matched incorrectly. This is consistent with the finding from Fig. 7:
The increase of NTR does not contribute much to the authentication accuracy for DTW
and DTW-D. As a matter of fact, when increasing NTR from 4 to 5, the accuracy of DTW
drops by a moderate extent (around 2%). The results show that increasing the number of
training samples is not an effective strategy to improve the accuracy of DTW and DTW-D.

In comparison, both FP and FN of LSTM-FCN are decreasing when NTR increases. This
indicates that our LSTM-FCN can effectively extract the consistent latent features from
the newly-added samples without introducing outlier information. This ensures that the
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positive samples are authenticated while the negative ones are denied. This performance
boost is significant when increasing NTR from 1 to 3, and this boost is moderate when
NTR is 4 and over. Compared with DTW and DTW-D, LSTM-FCN produces a higher
authentication accuracy when only one sample is used as the password. The advantage will
further improve with the increase of NTR and the accuracy of LSTM-FCN reaches more
than 98%. Unlike DTW and DTW-D, we do not need to choose the value of NTR in order
to find the trade-off between FP and FN.

4.6 Failure Case
When Pattern 6 is set to the password, Pattern 6 Sample 10 (short-named as P6S10
in Fig. 10 (b), this convention applies to the following paragraphs) can not be matched
correctly regardless of the number of training samples. In order to find the reason, we
changed our two-class network into a seven-class network. When the number of training
samples for each movement pattern increased from one to five, P6S10 was classified as
Pattern 7 in 4 out of 5 cases. From the visual demonstration (Fig. 2 (f) and (g)), Pattern
6 is numerically similar to Pattern 7 if the shoulder is not vertically elevated to a sufficient
extent. We also used DTW-D to measure the distance between the P6S10 and the rest
samples in Pattern 6, and all the samples in Pattern 7. The sample with the minimal
distance to P6S10 is P7S4 (Fig. 10 (c)). The distance (7.99) of P6S10-P7S4 is less than
the average distance value (9.36) of P6S10 with its intra-pattern samples. This finding
actually proves that our method can robustly identify the outliers in a password set.

4.7 Comparison with Learning-based Methods
Recently, some works use CNN for authentication, such as27 (Ryohei-CNN) and28 (Matteo-
CNN). However, these CNNs cannot obtain a higher classification accuracy under the
condition of a small number of samples. We compared our method with these two CNNs
using collected data.(Fig. 11).

Figure 11: Accuracy of Ryohei-CNN, Matteo-CNN, and LSTM-FCN.

From the results in Fig. 11, when only one sample is configured as a password for training,
LSTM-FCN can achieve better classification accuracy than CNNs. And with the increase
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of training samples, the accuracy of LSTM-FCN has improved significantly. While, the
classification accuracy of CNNs has not improved much. This finding shows that the fully
convolutional network with LSTM module can get better classification accuracy in this
experiment.

4.8 Comparison of two type data normalization methods
We compared two data normalization methods Feature Normalization (FN), and Temporal
Normalization (TN). The result is shown in Fig. 12. From the comparison result, the
classification accuracy of TN is much higher than that of FN. In this method, temporal
normalization instead of feature normalization can enable our network to obtain a higher
classification accuracy.

Figure 12: Accuracy of FN, TN.

5 Conclusion
Our work developed a hardware prototype of smart clothes with flexible stretchable sen-
sors. The sensors monitor human joint motion when people are wearing smart cloth and
conducting specific movements. We introduce the Long Short-Term Memory Fully Con-
volutional Network (LSTM-FCN), which directly takes noisy and sparse sensor data as
input and matches the user’s pre-defined movement patterns. The experimental results
confirm the advantage of our method surpasses the representative time-series classification
methods (DTW and DTW-D) and CNNs.

This work opens up a few directions for our future work. The first is to deploy our system
in a real-world scenario, such as unlocking a mobile phone with our system. our current
implementation only deals with the problem of motion pattern recognition, and does not
consider identifying a specific person. Achieving the goal of authentication by combining
pattern-specific and person-specific information could further improve the security of our
system. The other is to validate our method for more subtle activities (e.g., the finger
movement). This may require more complex sensor set-up and more powerful sensing
algorithms. These applications could further validate the efficacy of our method in practical
scenarios of human-computer interaction.
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6 Data Availability Statement
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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