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This paper deals with simulations of real-time to anticipate and simulate the world behavior.
interactive character behavior. The underlying For that purpose, we propose a conceptual
idea is to take into account principles from framework where the entity possesses an au-

cognitive science, in particular, the human ability tonomous world of simulation within simulation,
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in which it can simulate itself (with its own
model of behavior) and the environment (with
an abstract representation, which can be learnt,
of the other entities behaviors). This principle
is illustrated by the development of an artificial
juggler, which predicts the motion of balls in the
air and uses its predictions to coordinate its own
behavior while juggling. Thanks to this model it
is possible to add a human user to launch balls
that the virtual juggler can catch whilst juggling.
Keywords: anticipation, real-time interac-
tion, decision making, behavioral model, virtual

juggler, virtual character, computer animation

1 Introduction

This study is focused on the real-time interaction
between a virtual character, or agent, and a dy-
namic open world. In this world, real users are
able to disturb, at any time, the behavior of the
virtual character. In this case, using a precise rep-

resentation of the behavior of the world is impos-

sible. However, it is a very important challenge
to develop such a kind of behavior in order to
address complex sensorimotor interactions with
humans for video games, virtual theater, sport or
any application implying improvisation, adapta-
tion or co-evolution between human and virtual
creatures. Despite the availability of numerous
propositions for interactive behavior in computer
animation (see section 2), our goal is to use ideas
and concepts from cognitive science to enhance
credibility about interactions. To be more pre-
cise, focus is on the simulation theory, the hu-
man’s anticipation ability and capacity to learn
the world with which it is interacting. The re-
sult is that interactive characters can improve, in
real-time, their behavior adaptation ability. This
paper is organized as follows: an overview on in-
teractive animation of virtual characters, and on
main challenges in this field, is presented in sec-
tion 2. It points out that, usually, the dynamics
of the environment is pre-given and steady. Sec-

tion 3 gives three concepts from cognitive sci-
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ences considered as important in human ability
during interactions within an uncertain and vari-
able environment. These concepts are antici-
pation, simulation and attention. Then, section
4 proposes a conceptual framework based on 3
parts: i) general knowledge about the environ-
ment which can be learnt during interactions, ii)
simulation world, which allows the anticipation
of the current interaction and the definition of the
object of attention of the character and iii) con-
trol of the virtual agent in interaction with its own
world, but based on the prediction issued from
the simulation. An illustration of this model is
provided in section 5 through implementation of
an interactive juggling game. It shows the abil-
ity of the virtual juggler to adapt its reaction to

various disturbances, to play with other virtual

jugglers and also with a human player.

2 Interactive characters

Numerous investigations have been aimed at sim-

ulating the behavior of virtual characters in real-

time. Several approaches dealt with the devel-
opment of algorithms dedicated to the synthesis
of the gesture quality [1, 2]. But, none of them
took into account interaction abilities of the char-
acter. At the opposite, some models developed in
robotics are interaction oriented and rely on cog-
nitive science, but the problem of animation real-
ism is not addressed [3]. In-between hybrids ar-
chitectures can describe high level real-time rea-
soning, thanks to state machines, planning algo-
rithms and synchronization mechanisms [4, 5].
Some other ones are rule-based [6], but, gener-
ally, the management of interactions introduces
a bottleneck in term of the capabilities to take
into account all possibles scenarios. In the do-
main of animated and conversational agent, in-
teraction is more generally addressed. For in-
stance, JACK is an architecture able to manage
the dialog between two agents [7], REA [8] al-
lows the inclusion of the user’s gaze and provides
algorithms to link voice to gestures. GRETA [9]

communicates with complex emotions and MAX
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[10] recognizes the hand gestures thanks to the
treatment of data issued from a motion capture
glove. [11] identify some subtle interactively
contingent phenomenas during human interac-
tion which lead to a social resonance. For in-
stance, [12] presents a system for authoring inter-
active characters. ELCKERLYC [13] is an adap-
tation of SAIBA which is able to anticipate the
behavior of a user to change the animation from a
set of precomputed possibilities. Because it relies
on anticipation, it is close to our work but limited
by the use a predefined animations. Finally, close
to our applicative example, [ 14] propose an archi-
tecture for the hand coordination of a virtual jug-
gler. However, as these authors focused on im-
portant technical issues, some essential features
of human interaction, addressed in cognitive sci-
ence, were neither considered, nor made explicit
by these numerous approaches. These features
would be able, in the long run, to enhance cred-
ibility of the dynamics of interactive behaviors.

In a first step, they can improve the adaptabil-

ity of a virtual character to different types of dis-
turbances issued from a poorly known world be-
cause of it’s variability and its opening on hu-

mans.

3 Three notions from cognitive

sciences

Cognitive science is a wide domain, enriched by
many points of view. Here, focus is only on the

three key concepts addressed in this study.

1. Anticipation: animals and humans use their
memories of the past so as to anticipate the
consequences of their actions and the behav-
ior of those around them. Some philoso-
phers put the anticipation at the basis of cog-
nition [15, 16]. The phenomena of anticipa-
tion are held parallel to the reasoning and
they allow active correction of the action

[17].

2. Simulation: this concept is close to anticipa-

tion, but it explains how anticipation is per-
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formed. Some psychologists and neurosci-
entists claim that the brain is a simulator for
action in the environment [18, 19, 17, 20].
With simulation theories, anticipation is not
a disembodied abstract and rational reason-
ing, but rather an active process based on
the imagination of interaction with an imag-
inary world: it is an explicit internal simula-

tion.

3. Attention: sensory anticipation includes the
use of predictive environmental models to
orient the entities’ perceptions more effec-
tively, especially in order to process ex-
pected event rather than to take into account

the whole environment [18, 21]

4 Conceptual Framework

Our models are part of a conceptual framework
described in Figure 1. It takes into account no-
tions like anticipation and explicit internal simu-

lation. To take a decision and to control its inter-

action into a virtual world (at the bottom of the
Figure), an autonomous agent uses predictions
provided by a simulation (the imaginary world in
the middle of Figure 1), performed from approx-
imate knowledge, i.e. this simulation is not the
result of an analytic calculus from accurate phys-
ical features of the environment. These features
are approximated in an abstract world (at the top
of the Figure) and hence, some variations in the
future of the virtual world are possible. Hence,
the agent needs to perpetually correct its control
through comparison of approximated anticipa-
tions against real perceptions (when they exist).
The result is a possibility of error of estimation
and then of failure during an interaction. More-
over, these failures are not arbitrary because they
realize a natural feature: an approximation dur-
ing anticipation. For instance, the more surpris-
ing a disturbance is, the less efficient the behavior
is. In addition, section 5 shows that these approx-
imations can be used to perform active perception

by the virtual juggler, and thus reflect the concept
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of attention (see section 3).

Finally, the abstract world is a sum of approxi-
mative knowledges about the dynamical features
of the world. Theses knowledges are learnt dur-
ing interactions. Thus, the agent can adapt its
worldview through experience. For that, different
techniques from machine learning can be used
(reinforcement, lazy learning, etc). This idea was
used to define the behavior of virtual sheepdogs
able to anticipate and to learn the decision mak-
ing of virtual sheeps by the use of fuzzy cognitive
maps [22]. Now, we will show that the concep-
tual framework presented here can be applied in

a sensorimotor interaction context with humans.

Global Knowledges on world behavior
(abstract world)

Model of the world dynamics .
learning

Simulation of interaction with the
world
(imaginary world)

T actuation lprediclions

sensation i i
__ Interactive behavior
(virtual world)

Action control

Anticipative architecture

Figure 1: Conceptual framework for anticipative

agents.

5 Example : interactive

Juggler

The problem of virtual juggler was discussed
in [23, 14]. But, in these approaches, neither
the modeling of approximative anticipation nor
the theory of simulation was taken into account.
More generally, the relationships between cogni-
tive sciences and character’s behavior were not
addressed. Here, we will show that the pro-
posed conceptual framework can account for not
only adaptation, but also plausible errors, through
more or less predictable interactions, especially,
with a real human character. An illustration of its
application is presented in Figure 2. This appli-
cation is called JABU: Juggler with Anticipatory

Behavior in virtual Universe (see Figure 3).

The virtual world of the juggler has physical
properties (inertia, gravity, wind, etc.) through
the use of the ODE! physics engine. Of course,

these quantities are not explicit in the model of

'Open Dynamic Engine, http://www.ode.org/
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General approximer of balls behavior
(abstract world)

Model of the world dynamics
(neural network weights) Learning (gradiant

Retropropagation)

-Next ball ? Next position ?
-(imaginary world)

actuation

ga“_st_ Interactive behavior Action control
osition (virtual world) Attention | Hand positi
Orientation [ >{ On one ball Fand posttion
speed | ]

Application to virtual juggler

Figure 2: Instantiation of the framework for a vir-

tual juggler.

. .
£ #

f

Figure 3: The JABU application.

control. This control is adjusted through an atten-
tional process focused on the next (anticipated)
ball (actually one ball by hand). The approxi-
mate position of the balls is made by their sim-
ulation in the imaginary world of juggling. The
function approximation properties of this imagi-
nary world come from different neural networks.
The abstract world corresponds to the weights of
the arcs of these networks. Since they are uni-
versal approximators, we will see later that they
allow real-time adaptation of the juggler gestures
to different types of disturbances (this is also il-
lustrated by the video associated with this arti-
cle). The implementation of these principles is

described hereafter.

5.1 Decision-making process

The hands have independent functions: this
means that there are neither complex juggling
moves nor tricks, but simply a succession of ball
catches and throws, where each movement is in-

dependent of the others. As soon as a ball comes
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at the same height as the hands, it must be caught
and thrown back. Hence, at this stage, the goal is
not to get a realistic dynamics of gesture; no com-
plex arm control model is used. Nevertheless, the
time taken for a hand to move is not negligible
and makes the juggler at risk of delayed move,
which means missing the ball; this is also ampli-
fied by prediction errors. As mentioned above,
the precise reproduction of the movement is not
our priority and the hand’s movement time is an
empirically adjustable variable which reflects the
delay between the decision being made and the
action being carried out. In the following section,
to facilitate the readability while keeping things
brief, any reference to some hand activity means
that the theoretical model was implemented for

the anticipatory decision-making applied to our

juggler.

The different phases of juggling are as follows.
The juggler begins by looking for a ball in the air.
Once the ball has been spotted, the hand has to be

at an estimated reception point (prediction T1).

Then, this reception point can be refined. In or-
der to do so, the hand must estimate and correct
the anticipated trajectory of the target ball (pre-
diction T2) which is the object of attention. Each
hand will therefore be able to catch or miss the
target ball. If the ball is caught, the juggler will
be able to throw it in the air. Whatever the future
of the first ball (caught or missed), the juggler’s
hand once again starts looking for the next flying

ball.

5.2 Predictions

Within the context of juggling, information must
be gathered quickly in order to maintain the jug-
gling dynamics. The use of perceptron-type neu-
ral networks (NNs) to make predictions about the
trajectory is adequate. Indeed, NNs are quickly
executed, and online learning occurs both quickly
and effectively. Furthermore, NNs correspond to
the need to manipulate (both spatial and tempo-
ral) digital data. It is, of course, also possible to

use deterministic equation models of movement
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to make predictions. However, such precise pre-

©CoO~NOUTA,WNPE

10 dictions would be extremely noise-sensitive (dis-
12 ruption of the environment as the ball falls) and
would not account for the use of approximations

17 and readjustments in real-time which seem to be

19 the basis of the anticipatory mechanisms that we
20 Inputs | Outputs | Parameter | Objectives

aim to respect [17].

Va At h Temporal

25 e classification
26 5.2.1 Prioritizing the balls (T1)
27 Vy Az Vague

29 NN T1 provides the estimated temporal and spa- .
30 Vz Ay spatial

31 tial data for each ball at the moment it is thrown o
32 prediction

(see Figure 4). These data are used to catego-

35 Table 1: Inputs/Outputs of NN T1.Vz,Vy,V
36 rize the balls and attribute them priorities so as to able - nputs’uipts o nLYy.ve

the ball ds along the th -
38 trigger the attentional process on the priority ball. afe Hle Datl Specds atong e titee spa

L tial axes, At is the time at which the ball
40 The data required to calculate these estimations

42 is supposed to reach the point Ax and
43 are the current speed of the ball and the height i upp P v

Ay at the height of the hand.
45 at which the ball has to be caught (see Table 1). y at the height ot the han

49 5.2.2 Refining the prediction of the

52 target ball (T2)

55 NN T2 refines the spatial prediction about the

57 place where a ball will fall while it is falling down
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Figure 4: T1 estimates the position at which it . .
Figure 5: At any given time as the ball falls, T2

will cross the hand plane (represented o )
makes a more accurate estimation of its

with circles) and how long it will take. o
position in At seconds (represented by

blurred ball).

(see Figure 5 and Table 2). Information can be . .
5.3 Interaction between virtual

obtained at different temporal levels (according
jugglers and with the human

to At).

The general features of this proposition allow

interactions between several jugglers. To do
Inputs | Outputs | Parameter | Objectives
that, the only change is the direction of the ball
Vz Az At Refined
launched by each juggler (see Figure 6).
spatial
predictions
Vy | Ay
Vz Az

Table 2: Inputs/Outputs of NN T2.

Figure 6: Multiple-jugglers.

10
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The juggler can also catch a new ball thrown
by a human user (Figure 7). This is useful for
evaluating the believability of the virtual jug-
gler (real-time decision-making, online adapta-
tion, etc.). Introducing a human user also re-
quires the introduction of a new type of predic-
tion (T3). One should note that T3 is similar
to the prediction T1, except that the ball is not
thrown by the virtual juggler. The human user
interacts with the virtual juggler by using a Wi-
imote (remote game controller from the Nintento

Wii console). This peripheral device measures

the movements of the human user’s hand.

Figure 7: A human can juggle with virtual jug-

glers using the Wiimote.

11

5.4 Learning

The abstract world is represented by the functions
encoded in the NN T1, T2 and T3. They are up-
dated in line from the observation of several vari-
ables. In its example base, NN T1 has access
to throws made by the juggler itself (low speed
along = and y axes) whereas NN T3 records the
balls thrown at a distance by a third person (much
greater speeds). Each hidden layer has 19 neu-
rons, which leads to 3x19x19x3 multilayer per-
ceptrons. Learning is, thus, conducted with a
maximum of 100 iterations using the FANN?Z.

The parameters to be determined for the NN of

T1 and the NN of T2 are h and At, respectively.

In the example under study, h 2.5cm and

At = 0.1s.

ZFast Artificial Neural Network (FANN) library available

at http://leenissen.dk/fann/
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5.5 Disturbing the environment

online

This section will deal with the evaluation of the
anticipatory mechanism with its qualities and im-
pact on decision-making and the final result: the
juggler animation. The generalization abilities of
NN allow the in line adaptation of the juggler’s
motion to disturbances. For the tests, the initial
conditions are varied over a given time. More-
over, 42 balls are thrown towards the virtual jug-
gler (one ball every 0.75 seconds). The purpose
is to observe the number of balls missed by the
juggler (i.e. which fall below its knees and which
itis unable to catch). Two other experiments con-
sist in disturbing the juggler to validate its robust-
ness to variability in the environment. At first,
jerks are introduced in the projectile trajectories
because they become maces rather than balls (see
Figure 8). In this case-study, through the predic-
tion by NN T1 is less accurate, NN T2 is able to
correct it properly, and the juggler continues to

juggle when balls are transformed in maces.

Second, gravity in the virtual environment is
varied, and wind is added (see Figure 9). The

juggler is not informed of these changes.

Figure 8: Juggling with maces.

Figure 10 shows the result for gravity varia-
tions. In abscissa, the different values of gravity
in m/s%. In ordinate, the number of balls which
are dropped is an average over 10 tests of one
minute each for each gravity value. One can ob-
serve that juggling is possible for gravitational
values between 6 and 15 (normal gravity: 9.81).
In cases of extremely low gravity, few balls are
recorded as dropped, as they have not time to fall
to the ground during the short simulation time.
Figure 11 shows results for wind variations. The

acceleration according to wind speed (in m/s?,

12
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with direction indicated by positivity or negativ-
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10 ity) is in abscissa. The number of dropped balls 45

40

12 is in ordinate. The average values are taken for 5
13 35 |

30

simulations for each wind value. About juggling,

25 |

nb Balls

17 the range of speeds in which the juggler contin- i

19 ues to juggle correctly is much smaller (between 5 v

20 10

70‘2m/52 and +02m/82) 16.45 13.16 9.87 6.58 3.29 0
22 gravity

Figure 10: Average number of dropped balls ac-

cording to gravity.

35 Figure 9: Disturbing the environment conditions

37 in line (wind, gravity). 39

N
'_\
nb Balls
[
=N

44 6 Conclusion

48 This study was based on the assumption that the wind speed
30 behavioral believability of a virtual entity can be

51 Figure 11: Average number of dropped balls ac-

increased by integrating an anticipatory ability
cording to wind.

55 enabling the prediction of the behavior by other

57 entities and their impact upon the environment.
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This led us to develop a conceptual framework
taking into account some results from cognitive
science. Its relevance was tested on the case-
study of juggling: a virtual juggler anticipates the
trajectory of balls without calculating them ac-
curately. Indeed the juggler hypothesizes within
an open and uncertain environment with variable
properties, that is to say, that are unknown from
an analytical standpoint. Universal approxima-
tors obtained through learning are used. One
problem is that this type of approximator is well
adapted to trajectories prediction but is certainly
worst to address more complex behavior like the
anticipation of human activity for instance. In
such a case, it is important to address other pre-
dictive model without losing the general features
of our proposition. For example, in [22], we pro-
pose an algorithm to learn a fuzzy cognitive map.
Such kind of models are able to take into account
behavior including decision choice and memory.
Of course, using such model implies to define the

link between the perception of the character and

the set of symbols which can represent the behav-

ior in the imaginary world.

Of course, this study address neither the qual-
ity of gestures, nor the comparison with real data
from juggling. To do that, we have in perspective
the improvement of this proposition with realis-
tic models of gesture by integrating works like
[24]. For the moment, the purpose was to show
that it is possible to exhibit plausible failures in
the task when taking into account simulation and

anticipation.

We are currently orienting our investigations
towards the addition of different juggling strate-
gies. The imaginary world of a simulation within
a simulation could be used to test many differ-
ent possibilities. The results of such simulations
would help to provide strategies which are bet-
ter adapted to the virtual world. In addition, we
would also like to work on a new kind of pre-
diction dealing with the behavior of the human

interacting with the juggler.

14
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