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Abstract 

We develop a new automated markerless motion capture system for the analysis of walking people. We employ global 
evidence gathering techniques guided by biomechanical analysis to robustly extract articulated motion. This forms a basis for 
new deformable contour models, using local image cues to capture shape and motion at a more detailed level. We extend the 
greedy snake formulation to include temporal constraints and occlusion modelling, increasing the capability of this 
technique when dealing with cluttered and self-occluding extraction targets. 

This approach is evaluated on a large database of indoor and outdoor video data, demonstrating fast and autonomous 
motion capture for walking people. 
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Introduction 
 In recent years, interest in human motion analysis has increased rapidly, due mostly to the large number of potential 
applications for this technology [1, 2]. Fields such as computer animation, film and TV production, model-based video coding 
and smart surveillance would benefit immensely from an improved ability to automatically extract human motion from video 
data. However, the variability in appearance, and range of motion possible in typical human activities, make this problem very 
difficult to solve. 
 Current motion capture systems operate at the cost of attaching markers to the subject. These markers are then tracked using 
optical or electro-magnetic sensing systems, avoiding the issues involved in tracking people themselves. While successful in 
some applications, marker-based systems suffer from a number of disadvantages which limit their deployment. The most 
obvious is their often prohibitive cost, but additionally, the markers employed can restrict the range of motion of the subject. The 
cooperation of the subject is also required, making such systems useless for surveillance applications. 
 These limitations motivate the development of markerless motion capture systems. Current approaches typically fall into one 
of two categories; those that attempt to recover general, full-body motion, and those that focus on specific, limited activities. 
 Recovering full body motion is naturally more difficult, due to the increased range of possible motions and the greater 
incidence of self-occlusion. Many recent approaches to this problem have employed multiple cameras [3, 4, 5, 6] to resolve pose 
ambiguities. However, this approach is more expensive in monetary terms and computational complexity, and is still unsuitable 
for some applications. No markerless system has yet demonstrated fast, reliable capture of unconstrained full-body motion. 
 Although this capability is our eventual goal, it can be beneficial to solve more constrained problems first, applying the 
techniques learned to unconstrained motion. Most research to date following this approach has focused on people walking and 
running [7, 8, 9, 10], as these activities account for the majority of everyday human motion. 
 Regardless of approach, almost without exception recent approaches have utilised some form of anatomical shape model to 
aid the motion capture process. For constrained motion, it is often possible to apply models of motion as well. Model-based 
approaches incorporate knowledge of the shape and dynamics of human motion into the extraction process, ensuring that only 
image data corresponding to allowable human shape and motion is extracted. However, models present their own problems. The 
more accurate a model is required to be, the greater the number of parameters are required to define the model. In general, 
computational complexity increases exponentially with model complexity. 
 This paper extends research presented in [11] to automatically extract walking persons for the purpose of identification by 
gait. The model-based methodology presented is fast, robust and completely automated. However, computational concerns limit 
the models used to simple geometric shapes with low degrees of freedom. We work round this problem by using shape and 



motion models to initialise a deformable contour model. We use the model prediction as an approximation of the actual data, and 
allow small deviations from the model based on local image cues. 

We assume that a single subject is present in the scene, moving at an approximately constant speed parallel to the camera 
view plane, against a cluttered background. Although these are relatively constrained capture conditions, our extraction method 
is capable of operating autonomously, in outdoor conditions with high degrees of clutter. 

Global motion of the subject is determined by temporal accumulation, applying anatomical constraints in a hierarchical 
fashion to extract body shape parameters. We establish gait period and phase independently of shape parameters, limiting 
computational demands and possible initialisation errors. This motion information is combined with prior knowledge of mean 
joint motion during normal gait, to create an approximate model of the subject’s leg motion. Finally we use this model to 
initialise a deformable contour model, allowing local adaptation to fit the contours to observed data. We present results of the 
motion capture process on clean data filmed within the laboratory, and on real-world data, showing reasonable extraction 
performance even in adverse conditions. 
 

Global Motion and Shape Extraction 
 For walking people, motion is dominated by velocity in the horizontal plane. This naturally motivates a hierarchical 
decimation of motion, determining first the largest motion components and subsequently smaller motion components (Fig. 1). 
 

 

Global 
Velocity 

Gait Period Articulated 
Motion 

Non-rigid 
Deformation and Phase 

Figure 1: Motion Extraction Hierarchy 
 

Our first step is to apply edge detection and background subtraction to the raw video data, in order to reduce its inherent 
redundancy (Fig. 2a). For simplicity, our background model is computed as a temporal median of neighbouring frames, although 
more sophisticated modelling strategies are possible. This pre-processing simplifies analysis by reducing the scene to moving 
edges only, including the person of interest. 

We may determine horizontal motion independently of shape parameters by temporally accumulating edge data according to 
expected velocity [11]: 
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Where Av is the accumulation for velocity v (in pixels per frame), Et is the edge strength image at frame t, i and j are coordinate 
indices, N is the number of frames in the gait sequence and dyt defines the vertical oscillation of the subject. This vertical motion 
is initially unknown and set to zero. However, after determining gait period and phase this motion can be estimated (Eqn.  3), 
permitting an improved temporal accumulation (Fig. 2e). At the correct accumulation velocity for a moving object, its edges at 
each frame will accumulate to a coherent global average view (Fig. 2b). 
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Figure 2: Global tracking and shape estimation from temporal accumulation 
 



Each moving object in the scene will appear as a peak in a plot of maximal accumulation intensity against velocity. If the 
subject is the most significant moving object in the scene (in terms of edge strength and visibility), their velocity can be inferred 
by selecting the highest peak in this plot. However, for outdoor imagery this assumption is often violated. In these cases, we can 
use the expected shape of the subject to disambiguate them from other moving objects (Figs. 2c, 2d). This shape expectation is 
computed a priori from mean anatomical data [12] scaled to the subject’s apparent height (as measured from their bounding 
box). The optimal subject velocity is then the velocity that maximises correlation of the subject’s shape template (Fig. 2d) with 
the accumulated edge intensity image (Av). 
 By this process we derive an initial estimate of the subject’s starting position, velocity and size, sufficient for estimation of 
their gait period. We can further improve our shape model by template matching ellipses against the temporal accumulation (Fig. 
2e), thus estimating coarse shape in a robust fashion. Leg parameters are initially set to fixed proportions of the person’s height. 
 

Global Articulated Motion Extraction 
 The motion of the leg during normal gait is periodic, and this motion may be estimated by general methods for periodicity 

detection, avoiding the use of complex models. Motion periodicity is determined by measuring some quantity related to shape 
over time and analysing this signal for periodicity. Cutler et al. [13] present a general method for periodicity detection by 

measuring silhouette self-similarity over time, using autocorrelation-based 
analysis to extract the gait period. However, this method has relatively high 
computational demands, particularly for long video sequences. Other 
common methods involve analysing periodicity in silhouette width or 
height [14], which result in far lower computational requirements. We 
employ a similar strategy [11], measuring instead the sum of edge intensity 
within the outer region of the subject’s legs throughout the gait sequence 
(Fig. 3). 

  
Figure 3: Gait period estimation 

We use data collected from clinical gait studies [15, 16] to build 
prototypical models for hip, knee, ankle and pelvis rotation. Fig. 4 shows 
these mean rotation models for a single gait cycle, from right heel-strike to 
right heel-strike. 

 

(a) Hip rotation (b) Knee rotation (c) Ankle rotation (d) Pelvic list 
Figure 4: Mean joint rotation patterns 
 

Movement of the pelvis includes both axial rotation and list (resulting in horizontal and vertical oscillation respectively in the 
sagittal plane), but pelvic axial rotation is simple enough to be modelled by a single sinusoid, with a minimal degree of error: 

( hpp wtAt )φθ += cos)(                              (2) 

Where θp is pelvic axial rotation, Ap is the amplitude of rotation (approximately 5° for normal gait), w is the gait frequency and 
φh is the starting gait phase. Although the magnitude of pelvic rotation is small, accounting for this source of variation in hip 
joint position can significantly reduce errors in the estimation of hip joint rotation. 

The vertical oscillation of the subject’s upper body is also modelled by a single sinusoid, with parameters in fixed proportion 
to the subject’s height and gait motion: 

( )82sin πφ ++= hyt wtAdy                             (3) 

Where dyt is the y-displacement of the centre of the torso at frame t (see Eqn. 1), Ay is the amplitude of oscillation, w is the gait 
frequency and φh is the starting gait phase. 

Using our estimates of the subject’s gait frequency and starting phase these models are scaled to fit the subject, using 
Hermite spline interpolation. This yields an initial estimate of the subject’s leg motion, providing a good basis for local 



adaptation. Arm motion is not included in our models at the present time, although it should be possible in the future to include 
it in a similar manner as for leg motion. 

The use of a parametric model of motion increases the robustness of motion capture through multiple averaging processes. 
However, this averaging also decreases accuracy. We effectively assume identical motion for each leg and identical motion 
across gait cycles, which causes mismatch because motion will vary under normal conditions. There is also mismatch due to 
individual variation in gait patterns (which forms the basis for recognition by gait). It is possible to retain these assumptions and 
adapt these models to better fit the observed data [17]; however, rigid models will never match observed data exactly without an 
implausibly large number of parameters. In this work we attempt to solve this problem through the use of local adaptation 
processes. The rigid model extraction is used as a robust, though not highly accurate, initialisation for a deformable contour 
model. We can then allow the contours to deform according to local image cues, under spatio-temporal continuity constraints. 
 

Global Leg Shape Extraction 
Before initialising our deformable contours, it is desirable to improve the shape of our model, reducing the amount of (less 

robust) local adaptation required. Using a global estimation technique means that shape can be estimated from the whole 
sequence of images of the person, avoiding errors due to localised noise or occlusions. 

This re-estimation process is necessary because our initial estimate of leg shape based on the height of the person may not be 
appropriate for certain types of clothing (baggy trousers, shorts or skirts for example). An improved estimate is obtained by 
computing a line Hough transform for each frame within the upper and lower leg regions (above and below knee level). Within 
each Hough space we find the pair of accumulation peaks satisfying constraints on the expected line orientation and the distance 
between the two lines (leg width), yielding an estimate of leg shape for that frame. Final estimates of leg width are computed as 
the mean of the best parameters from each frame, weighted by accumulation intensity: 
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Where wm is the mean width of the leg (at the hip, knee or ankle) over N frames, and wt and pt are the estimated leg width and 
the peak accumulation intensity respectively at frame t. This process yields estimates of width at the hip and ankle, and two at 
the knee (from upper leg and lower leg estimation), allowing for discontinuity in leg width at the knee (caused by a skirt or 
shorts). 
 

Local Model Deformation 
We use our initial rigid model fit as the starting point for a deformable contour model. To adapt the contour shape to fit the 

image data, we employ a relatively simple gradient descent formulation based on the greedy snake [18], whereby contour shape 
adaptation is expressed as a process of energy minimisation. Snake energy incorporates internal constraints on local curvature 

and contour point spacing, and external (image) constraints used to attract 
the snake to image features (edges in our case): 
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Where E*snake is the minimal snake energy, v(s) is the snake contour, Eint is 
the internal snake energy, and Eext is the external energy. Internal energy for 
all contours is described by: 
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Where Econt corresponds to normalised first-order continuity of the snake, 
Ecurv corresponds to normalised second-order continuity of the snake and 
Etemp corresponds to normalised first-order temporal continuity. The 
weighting coefficients α, β and γ control the balance of these three energy 
contributions. 

The upper body and leg contours differ greatly in shape and expected 
level of occlusion. In order to account for this difference, we use slightly 

different external energy terms to optimise snake evolution. For the upper body contours the external energy is described by: 

 
(a) Rigid geometric 

model 

 
(b) Deformable contour 

model 
Figure 5: Contour model initialisation 
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Where It is the image attraction term for the contour (smoothed edge intensity), and λ is a weighting term. For the leg contours 
we add an occlusion weighting term o[v(s),θh], and an additional constraint Eside forcing the front and back leg contours to 
remain within an expected distance: 

[ ] [ ] [ ] [ )()(),()( svEsvIsvosvE sidethleg ext, ]ρλθ +=                      (8) 

Where o[v(s), θh] is the occlusion model prediction for the contour v(s) at hip phase (pose) θh and Eside is equal to the difference 
between the expected and measured distance between the front and back contours of the leg: 

[ ] [ ] )()()()( svsvsvwsvE backfrontmside −−=                        (9) 

Where wm defines the expected leg width at each contour point, vfront and vback are the front and back contours of the leg. All 
snake control parameters were determined empirically; optimal values will vary depending on the specific application.  

We compute the occlusion model a priori, assuming mean gait motion and leg shape. This model (Fig. 6) defines the 
expected level of occlusion at each contour point for each leg position 
during a gait cycle. This is computed by assigning 0 to the model if the 
point is occluded, or 1 if it is not, followed by an appropriate degree of 
spatial and temporal smoothing to yield a continuous model. The 
purpose of the occlusion model is to reduce the contribution of image 
features at points in the gait cycle where the legs occlude each other. 
At these points we would not expect to see reliable edge information, 
and so we force the snake to rely more on initialisation, and on internal 
and temporal constraints (the temporal constraint effectively allows 
some degree of interpolation over occluded frames). The snake 
contours are driven to a minimal energy state by an iterative process of 
gradient descent. Note that due to the inclusion of a temporal 

constraint, the order of iteration in performing the minimisation is important. We perform a single iteration of gradient descent 
for each frame in the sequence, before repeating the process for subsequent iterations. 

  
Figure 6: Leg occlusion model 

 A final point on this adaptation process is that due to its local nature, if the initial contour is too far from the correct solution, 
it will get stuck in local minima (irrelevant edges). This problem is partially avoided by re-estimating a global (skeletal) motion 
model from our extracted contours, relying on the averaging process to eliminate poor contour extractions. We then repeat the 
local adaptation process using this improved initialisation. However, errors are still possible if the initial model is not accurate 
enough for the observed motion. 
 

Results 
The performance of the motion capture process was evaluated on the Southampton HiD database [19]. Each subject was 

filmed from a fronto-parallel viewpoint, in controlled laboratory conditions and in outdoor conditions. The database is encoded 
in Digital Video (DV) format at a resolution of 720x576 pixels, recorded at a rate of 25 frames per second with approximately 
90 frames per gait sequence. The database includes 2163 indoor and 2661 outdoor gait sequences split over 115 subjects. A 
2.4GHz Pentium 4-based PC was used for all testing, requiring approximately 15 hours in pre-processing and 20 hours in gait 
extraction for the whole database, equivalent to an overall processing rate of approximately 3 frames per second. The system is 
fully automated, requiring no human intervention to aid the analysis. 
 Figs. 7-10 show examples of the extraction obtained on indoor and outdoor data: 
 

  
Figure 7: Subject 13 (indoor dataset example) Figure 8: Subject 13 (outdoor dataset example) 



 

   
Figure 9: Subject 37 (indoor dataset example) Figure 10: Subject 37 (outdoor dataset example) 
 
 Extraction performance is generally good on the indoor data, with accuracy dropping slightly on the outdoor data due to the 
decreased reliability of edge cues. This problem may be ameliorated by using colour cues in addition to edges, or by employing 
more sophisticated background modelling strategies in pre-processing. Self-occlusion of the legs is generally handled well, but 
there are some artefacts caused by occlusions from the arms. This problem may be mitigated by connecting the leg and body 
contour end-points, forcing them to converge. Alternatively, arm motion could be incorporated into the occlusion model, 
applying the same principles used in modelling the motion of the legs. 

In order to generalise our analysis to the whole database, we measure the variation of mean leg shape over all sequences of 
each subject: 
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Where σ is the standard deviation of mean leg width, i is a leg length 
index, xn is the mean leg width measured over sequence n, N is the 
number of sequences featuring the subject and µ is the mean leg width 
measured over all sequences of the subject. 

This analysis allows us to make comparisons between the indoor 
and outdoor datasets. For robust extraction performance we would 
expect a similar extracted leg shape for each sequence, and so variance 
should be low. High variance in extracted leg shape would suggest 
inconsistencies in extraction on some sequences. Fig. 11 depicts the 
average leg shape variation for each dataset, as a function of leg length 

(0% at the hip to 100% at the ankle). This analysis reinforces the conclusions drawn from a visual examination of extraction 
performance, showing that leg shape is generally less reliable at the hip (where the arms occlude the legs), and at the ankle 
(where the foot joins the leg). The reduced reliability of motion capture on the outdoor database is also clear from this analysis. 

Figure 11: Leg shape consistency 

 

Conclusions 
We have presented a new fully automated model-based method of motion capture for walking persons, based on the 

hierarchical application of rigid models and locally deformable models. This yields fast and reasonably accurate operation, and 
has proven capable of handling a large database of indoor and outdoor data without human intervention. Mixing rigid models 
with deformable models goes some way to alleviate the conflict between accuracy of extraction and model complexity. 
However, our current approach separating the two models may not be ideal; performance may be improved by combining the 
two processes. 

Although there are some issues concerning the reliability of edge cues in noisy outdoor data, extraction performance at this 
early stage is encouraging. Future research will focus on improving performance on outdoor data, aiming to reduce the need to 
perform motion capture in restrictive studio environments. 
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