
PARALLEL NEWTON-CHEBYSHEV POLYNOMIAL PRECONDITIONERS
FOR THE CONJUGATE GRADIENT METHOD
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Abstract. In this note we exploit polynomial preconditioners for the Conjugate Gradient method to solve large symmetric
positive definite linear systems in a parallel environment. We put in connection a specialized Newton method to solve the matrix
equation X−1 = A and the Chebyshev polynomials for preconditioning. We propose a simple modification of one parameter
which avoids clustering of extremal eigenvalues in order to speed-up convergence. We provide results on very large matrices (up
to 8 billion unknowns in a parallel environment) showing the efficiency of the proposed class of preconditioners.
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1. Introduction. Discretization of PDEs modeling different processes and constrained/unconstrained
optimization problems often require the repeated solution of large and sparse linear systems Ax = b, in
which A is symmetric positive definite. The size of these system can be of order 106 ÷ 109 and this calls
for the use of iterative methods, equipped with ad-hoc preconditioners as accelerators running on a parallel
computing environment. In most cases the huge size of the matrices involved prevents their complete storage.
In these instances only the application of the matrix to a vector is available as a routine (matrix -free regime).
Differently from direct factorization methods, iterative methods do not need the explicit knowledge of the
coefficient matrix. The issue is the construction of a preconditioner which also work in a matrix-free regime.
The most common (full-purpose) preconditioner such as the incomplete LU factorization or most of the
approximate inverse preconditioners rely on the knowledge of the coefficients of the matrix. An exception
is represented by the AINV preconditioner (Benzi et al. (2000)), whose construction is however inherently
sequential. In all cases factorization based methods are not easily parallelizable, the bottleneck being the
solution of triangular systems needed when they are applied to a vector.

Polynomial preconditioners, i.e. preconditioners that can be expressed as Pk(A), are very attractive for
the following main reasons:

1. Their construction is only theoretical, namely only the coefficients of the polynomial are to be
computed with negligible computational cost.

2. The application of Pk(A) require a number, k, of matrix-vector products so that they can be imple-
mented in a matrix-free regime.

3. The eigenvectors of the preconditioned matrix are the same as those of A.
The use of polynomial preconditioner for accelerating Krylov subspace methods is not new. We quote

for instance the initial works in Johnson et al. (1983); Saad (1985) to accelerate the Conjugate Gradient
method and van Gijzen (1995) where polynomial preconditioners are used to accelerate the GMRES Saad
and Schultz (1986) method.

However, these ideas have been recently resumed, mainly in the context of nonsymmetric linear systems,
e.g. in Loe and Morgan (2019); Loe et al. (2019) or in the acceleration of the Arnoldi method for eigenproblems
Embree et al. (2018). An interesting contribution to this subject is the work in Kaporin (2012) where
Chebyshev-based polynomial preconditioners are applied in conjunction with sparse approximate inverses.

The aim of this paper is twofold. We first give a theoretical evidence that a polynomial preconditioner
for the CG method can be developed by starting from the well-known Newton’s method to solve the matrix
equation P−1−A = 0. We will show that with a simple modification this method reveals equivalent, in exact
arithmetics, to the Chebyshev polynomial preconditioner. The second objective of this paper is to show that
polynomial preconditioners of very high degree can be useful to cut down the number of scalar products and
improve consistently the parallel scalability of the PCG method. Minimizing scalar products within Krylov
subspace solvers is currently a matter of research (see e.g. the recent work in Świrydowicz et al. (2020)).

The rest of the paper is organized as follows: In Section 2 we develop a recursion for preconditioners
based on the Newton formula. In Section 3 we review the theory regarding Chebyshev polynomial pre-
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conditioners and show the equivalence between the Newton recurrence and a non standard recurrence for
Chebyshev polynomials. A strategy to avoid clustering of the eigenvalues near the end of the spectrum which
greatly enhances the performance of the proposed preconditioners is described in Section 4. In Section 5 we
report numerical results on both sequential and parallel computing environments obtained in the solution
of very large linear systems (up to 8× 109 unknowns for the largest problem) which we use as tests for our
preconditioned CG. In Section 6 we draw some conclusions and propose topics for future research on the
subject.

2. Newton-based preconditioners. The Newton preconditioner can be obtained as a trivial applica-
tion of the Newton-Raphson method to the scalar equation

x−1 − a = 0, a 6= 0,

which reads

xj+1 = 2xj − ax2
j , j = 0, . . . , x0 fixed.

The matrix counterpart of this method applied to P−1 −A = 0 can be cast as

Pj+1 = 2Pj − PjAPj , j = 0, . . . , P0 fixed, (2.1)

which is a well-known iterative method for matrix inversion (also known as Hotelling’s method Hotelling
(1943)).

If P0 is a given preconditioner for A satisfying P0A = AP0, then {Pj} can be seen as a sequence of
preconditioners converging to A−1 if ‖I − P0A‖ = r < 1. In fact, denoted by Ej = I − PjA we have that

‖Ej‖ ≤ r2j

as it can be easily proved by induction:

‖Ej+1‖ = ‖I − 2PjA+ (PjA)2‖ = ‖E2
j ‖ ≤ ‖Ej‖2≤(r2j

)2 = r2j+1

which implies lim
j→∞

‖Ej‖ = 0.

Sequence {Pj} can not be explicitly formed since it would produce increasingly dense matrices. Actually,
inside the PCG method only the product of Pj times a vector is needed and hence recursively we have

w = Pj+1r⇐⇒

 u = Pjr
v = Au
w = 2u− Pjv

This method, as it is, is never used to form a preconditioner as it requires doubling the computational
work per iteration, while the condition number is reduced by a factor less than 4. In fact, the condition
‖I − P0A‖ < 1, with P0A symmetric, is equivalent to the condition 0 < λ(P0A) < 2. Hence, assuming
1 ∈ σ(P0A) the eigenvalues of P1A = 2P0A− (P0A)2 map a generic eigenvalue µ of P0A in 2µ− µ2 with

µmin 7→ 2µmin − µ2
min ≤ 2µmin

µmax 7→ 2µmax − µ2
max ≤ 1

1 7→ 1

with κ(P1A) ≥ 1

2µmin
>
κ(P0A)

4
. In the next step, however, as the eigenvalues of P1A now lie in the interval

[µ1, 1], they are approximately mapped into [2µ1, 1] with the condition number only halved. Due to the
asymptotic Conjugate Gradient convergence bounds, a halving of the condition number would imply a 1.4
reduction in the iteration number, the cost of a single iteration being doubled.

The efficiency of such a Newton method can however be increased due to the following result:
Theorem 2.1. Let αj , βj be the smallest and the largest eigenvalues of PjA.
If 0 < αj < 1 < βj ≤ 2− αj then [αj+1, βj+1] ⊂ [2αj − α2

j , 1].
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Proof. Every eigenvalue of Pj+1A, λ
(j+1)
i satisfies λ

(j+1)
i = f(λ

(j)
i ) where the function f(t) = 2t − t2

maps the interval [αj , 2− αj ] into [f(αj), 1].
If βj = 2− αj then the reduction in the condition number from PjA to Pj+1A is near 4 provided that αj is
small:

κ(PjA)

κ(Pj+1A)
=

2− αj
αj

(2αj − α2
j ) = (2− αj)2 ≈ 4.

Under these hypotheses each Newton step provides an average halving of the CG iterations (and hence of
the number of scalar products) as opposed to twice the application of both the coefficient matrix and the
initial preconditioner. This idea can be efficiently employed when P0 = I to cheaply obtain a polynomial
preconditioner. This also includes diagonal preconditioning since the original linear system, Âx̂ = b̂
can be symmetrically scaled by the diagonal of Â, D = diag(Â) obtaining the system Ax = b where
A = D−1/2AD−1/2.

At the first Newton stage the preconditioner must be scaled by ζ0 =
2

α0 + β0
in order to satisfy the

hypotheses of Theorem 2.1. Hence the eigenvalues of P1A =
(
2ζ0I − ζ2

0A
)
A will lie in [α1, β1] where β1 = 1

and α1 = (2 − α0ζ0)α0ζ0 and the next scaling factor will be ζ1 =
2

1 + α1
. Analogously, at a generic step

j > 1, αj = (2 − αj−1ζj−1)αj−1ζj−1 and ζj =
2

αj + 1
. Finally, exploiting the relation αj−1ζj−1 = 2 − ζj−1

we can write

ζj =
2

1 + ζj−1(2− ζj−1)
=

2

1 + 2ζj−1 − ζ2
j−1

. (2.2)

Then the recurrence for the preconditioners is obtained from (2.1) by scaling Pj with ζj as

Pj+1 = 2ζjPj − ζ2
jPjAPj , j = 0, . . . , P0 = I (2.3)

This suggests an analogous recurrence for the polynomials of degree k = 2j − 1, j = 0, . . . as

p0(x) = 1

p2j+1−1(x) = 2ζjp2j−1(x)− ζ2
j x p

2
2j−1(x), j = 0, . . . ,

Finally, setting r2j−1(x) = ζjp2j−1(x) we can write a slightly more efficient recursion, as

r0(x) = ζ0

r2j+1−1(x) = ζj+1

(
2r2j−1(x)− x r2

2j−1(x)
)
, j = 0, . . . . (2.4)

Algorithm 1 Newton-based polynomial preconditioner

1: Approximate the extremal eigenvalues of A: α0, β0.
2: Set the number of Newton steps: nlev

3: Set ζ0 =
2

α0 + β0
, ζ1 =

2

1 + 2α0ζ0 − (α0ζ0)2
, ζi =

2

1 + 2ζi−1 − ζ2
i−1

, i = 2, nlev.

4: Solve Ax = b by CG accelerated with the polynomial preconditioner Pnlev.
5: Recursive application of Pnlev to a vector u at each PCG iteration

P0u = ζ0u

Pj+1u = ζj+1 (2Pju− PjAPju) , j = nlev− 1, . . . , 0 (2.5)

Our polynomial preconditioner is then defined as Pj = r2j−1(A). Its application to a vector, in view of
(2.4) is described in Algorithm 1.

We also provide in Figure 2.1 the very simple Matlab function for the application of the preconditioner
within the PCG procedure.

3
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f unc t i on p r e s = applyrec ( zeta , nlev ,A, r e s )
i f n lev > 0

u =applyrec ( zeta , nlev −1,A, r e s ) ;
v = A∗u ;
w = applyrec ( zeta , nlev −1,A, v ) ;
p r e s = zeta ( n lev ) ∗(2 u − w) ;

e l s e
p r e s= zeta (1 ) ∗ r e s ;

end

Fig. 2.1. Matlab recursive function for the application of the Newton-based polynomial preconditioner

3. Chebyshev preconditioners. In this Section we recall the main steps to arrive at the iterative
definition of the polynomial preconditioner based on the Chebyshev polynomials of the first kind. More
details can be found in Saad (2003). The optimal polynomial preconditioner qk(x) for the CG method should
minimize the condition number of PkA for a given degree k. This problem can be formulated as

Find pk ∈ Πk such that pk = argmin
pk∈Πk

max
λ∈σ(A)

|1− pk(λ)λ|,

where Πk is the set of polynomials of degree k at most. Since this problem can not be solved without knowing
all the eigenvalues of A, it is replaced by the following problem

Find pk ∈ Πk such that pk = argmin
pk∈Πk

max
λ∈I
|1− pk(λ)λ| = arg min

qk+1∈Πk+1

qk+1(0)=1

max
λ∈I
|qk+1(λ)| (3.1)

where qk+1(x) = 1 − xpk(x) and I = [α, β] ⊃ [λ1, λn], whose solution requires an approximate knowledge
of the extremal eigenvalues of A. The polynomial that solves (3.1) is the shifted and scaled Chebyshev
polynomial of degree k + 1 Cheney (1966)

qk+1(x) =
Tk+1

(
α+β−2x
β−α

)
Tk+1

(
α+β
β−α

) . (3.2)

The wanted optimal polynomial for preconditioning is therefore pk(x) = x−1 (1− qk+1(x)). Exploiting the
well-known three-term recursion for the Chebyshev polynomials:

Tk+1(x) = 2xTk(x)− Tk−1(x), T1(x) = x, T0(x) = 1, (3.3)

we can develop a recurrence also for the polynomials {pk(x)}. We set

θ =
β + α

2
, δ =

β − α
2

, and σ =
θ

δ

so that we can rewrite (3.2) as

qk+1(x) =
Tk+1

(
σ − x

δ

)
Tk+1(σ)

=
Tk+1

(
σ − x

δ

)
σk+1

, with σk+1 = Tk+1(σ) (3.4)

The qk’s satisfy a recursion analogous to (3.3) as:

qk+1(x) =
1

σk+1

(
2(σ − x

δ
)σkqk(x)− σk−1qk−1(x)

)
, q1(x) = 1− x

θ
, q0(x) = 1. (3.5)

Noticing that the denominator of (3.4) satisfies the recursion, for k ≥ 1,

σk+1 = 2σσk − σk−1, σ1 = σ, σ0 = 1,

4
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and defining ρk =
σk
σk+1

we rewrite (3.5) as

qk+1(x) = ρk

(
2
(
σ − x

δ

)
qk(x)− ρk−1qk−1(x)

)
(3.6)

with

ρk =
1

2σ − ρk−1
, k ≥ 1 and ρ0 =

1

σ
. (3.7)

To obtain an explicit expression for our preconditioner it remains to develop a recursion for the sequence of
polynomials {pk(x)}. To this aim we write qk(x) in terms of pk(x) as qk+1(x) = 1 − xpk(x) and substitute

this expression into (3.6) obtaining p−1(x) = 0, p0(x) =
1

θ
and, for k ≥ 1,

1− xpk(x) = ρk

(
2
(
σ − x

δ

)
(1− xpk−1(x))− ρk−1(1− xpk−2(x))

)
.

From which we obtain the recursion (see e.g. Chen (2005))

p−1(x) = 0

p0(x) =
1

θ

pk(x) = ρk

(
2σ
(

1− x

θ

)
pk−1(x)− ρk−1pk−2(x) +

2

δ

)
, k ≥ 1.

The application of the Chebyshev preconditioner of degree m, Pm = pm(A) within the PCG solver is described
in Algorithm 2.

Algorithm 2 Computation of the preconditioned residual r̂ = Pmr with Chebyshev preconditioner.

1: Compute ρk, k = 1, . . . ,mmax using (3.7)
2: xold = r/θ (if m = 0 exit with r̂ = xold)

3: x =
2ρ1

δ

(
2r− Ar

θ

)
(if m = 1 exit with r̂ = x)

4: for k = 2 : m do

5: z =
2

δ
(r−Ax)

6: r̂ = ρk+1 (2σx− ρkxold + z)
7: xold = x; x = r̂.
8: end for

3.1. Other recursions. The algorithm for the Chebyshev preconditioner can be greatly simplified by
taking into account the following relation involving Chebyshev polynomials:

T2k(x) = 2T 2
k (x)− 1.

Proceeding as before we can define a recursion for the shifted and scaled polynomials as:

q2k(x) =
1

σ2k

(
2σ2

kq
2
k(x)− 1

)
where σ2k = 2σ2

k − 1, and finally a formula for the pk’s as:

p2k−1(x) =
2σ2

k

σ2k

(
2pk−1(x)− xp2

k−1(x)
)
, k ≥ 1, p0(x) =

1

θ
(3.8)

5
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which resembles formula (2.5). Actually the two formulae are mathematically equivalent as proved in the
following Theorem

Theorem 3.1. Let χj =
2σ2

k

σ2k
, j = log2 k, then the sequence (3.8) satisfies the relation (2.4).

Proof. We show that the polynomials p2j−1(x) defined by the recurrence (3.8) coincide with the polyno-
mials r2j−1(x) of (2.4). As p0 = r0, it is sufficient to prove that

ζj =
2σ2

k

σ2k
≡ χj , j ≥ 1, k = 2j .

First, observe that
1

σ
= 1− α

θ
= 1− α0ζ0, then

χ1 =
2σ2

2σ2 − 1
=

2

2− (σ−1)2
=

2

1 + 2α0ζ0 − α2
0ζ

2
0

= ζ1.

Finally, for j > 1,

χj+1 =
2σ2

k

σ2k
=

1 + σ2k

σ2k
=

1

σ2k
+ 1 =⇒ σ2k =

1

χj+1 − 1
(and hence σk =

1

χj − 1
).

Then

χj+1 =
1

σ2k
+ 1 =

1

2σ2
k − 1

+ 1 =
2σ2

k

2σ2
k − 1

=
2

2− (σ−1
k )2

=
2

2− (χj − 1)2
=

2

1 + 2χj − χ2
j

,

which is the (2.2).
We have proved that the scaled Newton polynomials and the Chebyshev polynomials are the same. One

can use either the recursive version (Algorithm 1) or the iterative version (Algorithm 2) with no difference in
exact arithmetics. Due to this equivalence we will call our preconditioner: Newton-Chebyshev (NC in short)
polynomial preconditioner.

4. The optimal parameters are not optimal. Supposing that the extremal eigenvalues are exactly
known, the best performance of the PCG method is not necessarily achieved when the condition number
of the preconditioned matrix is minimized. Actually the NC polynomial preconditioner, while reducing the
spectral interval and the condition number of P (A)A provides a clustering of the extremal eigenvalues.

To clarify the situation we constructed the exact Chebyshev polynomials for the FD discretization of
the Laplacian matrix in the unitary square of size 6084 whose exact eigenvalues are known. In Figure 4.1
we provide the eigenvalue distribution (red circles) of the preconditioned matrix Pk(A)A, k = 3, 7, 15, 31. In
the same picture we also provide the same plots, in which, however, the initial value of θ has been slightly

modified by multiplying it by 1.01 (the same result would have been obtained by reducing ζ0 =
1

θ
in the

Newton-based approach). The eigenvalue distribution is represented with blue stars in this case. The meaning
of the figure is as follows: a circle/star with coordinate (s, y) represents an eigenvalue of the preconditioned
matrix pk(A)A, namely y = λspk(λs), where λs is the s-th eigenvalues of A in increasing order.

Employing the Chebyshev preconditioner with exact parameters, the condition number is minimized but
a clear clustering of the smallest eigenvalues is produced (see the bottom part of the red plots in Figure 4.1
and also Table 4.1, where the values of the indicator l, defined in (4.1), are shown). Slightly increasing the
parameter θ yields an asymmetric spectrum of the preconditioned matrices which avoids clustering especially
of the smallest eigenvalues which are very well separated. This behavior is known to speed-up the PCG
convergence.

Indeed in Table 4.1 the reported results of the run for the polynomial preconditioners of degree 2j −
1, j = 0, . . . , 5 confirm that the scaling the Newton-Chebyshev polynomial preconditioner highly improves
its performance as compared to using the optimal parameters. In the same Table we report the number of
eigenvalues of the preconditioned matrix which are close to the minimum as

l = #

{
λ :

λ

λmin
< 1.1

}
. (4.1)

6
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Fig. 4.1. Eigenvalue distribution of Pk(A)A using the exact parameters (red circles) and modified θ-value (blue stars) for
different polynomial degrees

Table 4.1
PCG iterations for solving the 782 discretized Laplacian in the unit square with polynomial preconditioner of degree

0, 1, 3, . . . , 31. The extremal eigenvalues, the number l of eigenvalues close to the minimum and the condition number of the
preconditioned matrices are also reported.

Original NC algorithm NC with θ scaled by 1.01
m iter µmax µmin l κ(PmA) iter µmax µmin l κ(PmA)
0 223 1.9992 7.9060e-04 1 2528.7 223 1.9794 7.8278e-04 1 2528.7
1 111 1.9968 3.1562e-03 2 632.7 112 1.9584 3.0647e-03 1 639.0
3 115 1.9875 1.2526e-02 188 158.7 61 1.8493 1.1318e-02 1 163.4
7 58 1.9514 4.8580e-02 278 40.2 31 1.5640 3.5202e-02 1 44.4

15 30 1.8268 1.7318e-01 468 10.5 17 1.1891 8.2247e-02 1 14.5
31 15 1.5193 4.8067e-01 874 3.2 11 1.0182 1.6060e-01 1 6.3

With the scaled NC algorithm the smallest eigenvalue is isolated while with optimal parameters the number
l increases with the degree of the polynomial.

5. Numerical Results. We now report the results of numerical experiments to solve very large and
sparse matrices, most of them arising from real engineering applications. In detail,

• Opt Transp arises from the Finite Element discretization of the transient optimal transport problem
Bergamaschi et al. (2019).

• Lap1600: is the Laplacian on the unitary square with 15982 interior grid points.
• Cube 5317k: arises from the equilibrium of a concrete cube discretized by a regular unstructured

tetrahedral grid.

7
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• Emilia 923: arises from the regional geomechanical model of a deep hydrocarbon reservoir Ferronato
et al. (2010). It is obtained discretizing the structural problem with tetrahedral Finite Elements. Due
to the complex geometry of the geological formation it was not possible to obtain a computational
grid characterized by regularly shaped elements.

The size and nonzero numbers of these problems are reported in Table 5.1.

Table 5.1

Size n, number of nonzeros nnz and spectral condition number κ =
λn

λ1
(computed after symmetric diagonal scaling) of the

test matrices. Regarding matrix Opt Trans the condition number has been computed as κ =
λn

λ2
since λ1 = 0.

name n nnz κ(A)
Opt Trans 412417 2 882817 1.04 ×106

Lap1600 2 553604 12 761628 2.42 ×105

Emilia-923 923136 41 005206 3.08 ×105

Cube5317k 5 317443 222 615369 3.30 ×106

In the following results we will employ a polynomial of degree m = 2nlev − 1, with various values of the
parameter nlev which also counts the Newton iterations. The scaling factor was set to 1.001 for all problems.
All matrices are preliminary diagonally scaled before solving the corresponding linear system. We consider
as the exact solution a vector with all ones and computed the right hand side accordingly. Unless differently
stated, we stop the PCG iteration as soon as the relative residual norm is below tol = 10−8.

5.1. Sequential tests. As common when dealing with polynomial preconditioners, the main issue is to
cheaply assess the extremal eigenvalues. In the numerical results reported below we approximated β0 with
few iterations of the power method and α0 with the non preconditioned DACG method Bergamaschi et al.
(1997) up to 10−2 tolerance on the relative residual. The sequential tests have been performed using Matlab
on on an Intel Core 2 Quad at 3.50GHz, each core being equipped with 16Gb RAM.

The results reported in Table 5.2 refer to matrices Opt Transp, Lap1600 and Cube5317k .

Table 5.2
Results of the NC polynomial preconditioner for matrices Opt Transp, Lap1600 and Cube5317k for various degrees of the

polynomial preconditioner. For the Cube5317k matrix the tolerance was set to 10−12.

Matrix Opt Transp Matrix Lap1600 Matrix Cube5317k
m iter ddot A× v ‖rk‖/‖b‖ CPU(s) iter ‖rk‖/‖b‖ CPU(s) iter CPU(s) ‖rk‖/‖b‖
0 3433 10299 3433 9.85e-09 26.39 4517 9.75e-09 203.52 9037 3040.0 9.94e-13
1 1773 5319 3536 9.70e-09 23.25 2313 9.99e-09 176.58 4604 2990.9 9.98e-13
3 879 2637 3516 9.92e-09 20.95 1174 9.87e-09 160.50 2413 3044.7 9.96e-13
7 439 1317 3512 8.85e-09 19.86 589 9.40e-09 151.79 1204 2999.6 9.52e-13

15 222 666 3552 8.39e-09 19.59 295 9.92e-09 147.83 604 2988.5 9.66e-13
31 117 351 3744 7.78e-09 20.33 149 9.50e-09 146.80 304 2996.9 9.97e-13
63 69 207 4416 5.49e-09 23.85 77 7.09e-09 151.17 156 3069.9 8.92e-13

Some comments are in order. The good news are that, apart from an obvious decrease of the number of
scalar products:

1. Assessment of extremal eigenvalues is relatively cheap. It took only 0.69 seconds for the Opt Transp

matrix, 1.33 seconds for the Laplacian and 17.4 seconds for the Cube5317k matrix.
2. The norm of the true residual at convergence decreases with m, confirming the improved conditioning

of the preconditioned matrix.
3. The CPU time decreases by 15% – 25% by increasing the polynomial degree from m = 0 to m = 15.

This does not hold for the matrix Cube5317k for which the cost of the matrix-vector products is
predominant over the scalar products due to the high number of average nonzeros per row.

8
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Remark. We do not claim that our polynomial preconditioner can compare favorably with other well-
known sequential accelerators such as the Incomplete Cholesky preconditioner. We report, however, the
performance of this preconditioner (as implemented by the Matlab function ICHOL(δ), δ being the drop
tolerance) in combination with the CG solver for the three analyzed matrices. We also report the density of
the Cholesky factor as ρ = nonzero(L)/nonzero(A) (which is a measure of the increased storage demand of
this preconditioner).

matrix δ ρ Iter CPU
Lap1600 no fill 0.5 1344 151.02
Opt Transp 10−4 1.87 201 7.32
Cube5317k 10−4 negative pivot encountered
Cube5317k 10−5 out of memory

Number of iterations and CPU times are smaller than with the polynomial preconditioner, which, by contrast,
does not require additional memory, is completely matrix free and easily parallelizable. Moreover we could
not compute the IC factorization of the larger matrix Cube5317k due to memory limitations.

5.2. Numerical Results on a Parallel Platform. The polynomial preconditioner is based on matrix-
vector products and no scalar products. This feature can be successively exploited on parallel architectures
since, as known, when a high number of processors is employed, the dot product, being the only task that
involves a collective communication, reveals a bottleneck for the parallel efficiency.

An efficient implementation of a parallel matrix vector product is obviously mandatory to achieve high
parallel efficiency. In this paper we use an improved MPI-Fortran routine as successfully experimented in
Mart́ınez et al. (2009). We used a block row distribution of the coefficient matrix with complete consecutive
rows assigned to different processors.

All tests have been performed on the new HPC Cluster Marconi at the CINECA Centre, on both the
A1 version (1512 nodes, 2 × 18-cores Intel Xeon E5-2697 v4 (Broadwell) at 2.30 GHz) and the more recent
A2 update (with 3600 nodes and 1× 68-cores Intel Xeon 7250 CPU (Knights Landing) at 1.4GHz). The
Broadwell nodes have 128 Gb memory each, while in the A2 system the RAM is subdivided into 16GB of
MDRAM and 96GB of DDR4. The Marconi Network type is: new Intel Omnipath, 100 Gb/s. (MARCONI
is the largest Omnipath cluster of the world).

Throughout the whole section we will denote with Tp the CPU elapsed times expressed in seconds
(unless otherwise stated) when running the code on p processors. We include a relative measure of the

parallel efficiency achieved by the code. To this aim we will denote as S
(n0)
p , the pseudo speedup computed

with respect to the smallest number of processors (n0) used to solve the given problem:

S(n0)
p =

Tn0
n0

Tp
.

We will denote E
(n0)
p the corresponding relative parallel efficiency, obtained according to

E(n0)
p =

S
(n0)
p

p
=
Tn0 n0

Tpp
.

In Table 5.3 we report the scalability results for matrix Emilia-923 using levels 0, 2 and 5 which corre-
spond to using a polynomial preconditioner of degree 0, 3 and 31, respectively. It is shown that the parallel
efficiency is greatly improved when a high degree of the preconditioner is used. The relative efficiency from
16 to 1024 processors is increased from 25% (lev = 0) to 58% (nlev = 5) by a factor 2.35.
The scalability results for matrix Cube5317k, reported in Table 5.4 show a 1.6 CPU time reduction from
nlev = 0 to nlev = 5.
The different parallel performance is related to the nonzero patterns of the two matrices. In matrix Cube5317k

the nonzeros are more spread far from the diagonal (as a result of a local mesh refinement). This implies
that a given processor must receive/send data with a large number of other processors when performing
the matrix-vector product. This behavior is clearly shown in Figure 5.1. For the Cube5317k matrix the
predominant parallel cost is represented by the matrix-vector product which is the bottleneck of the parallel

9
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Table 5.3
Scalability analysis for the Emilia-923matrix.

nlev = 5 nlev = 2 nlev = 0

p iter Tp E
(16)
p iter Tp E

(16)
p iter Tp E

(16)
p

Tp(lev = 0)

Tp(lev = 5)
16 379 114.44 3008 115.64 11386 117.15 1.02
64 379 33.33 86% 3008 34.43 84% 11382 37.74 78% 1.13

256 379 10.39 69% 3008 12.35 59% 11380 16.75 44% 1.61
512 379 6.15 58% 3008 9.15 39% 11380 14.70 25% 2.35

Table 5.4
Scalability analysis for the Cube5317k matrix.

nlev = 5 nlev = 0

p iter Tp E
(64)
p iter Tp E

(64)
p

Tp(nlev = 0)

Tp(nlev = 5)
64 298 154.79 – 9038 164.7 – 1.06

128 298 85.33 91% 9038 91.30 90% 1.07
256 298 46.60 83% 9038 53.63 77% 1.15
512 298 28.04 69% 9038 35.12 59% 1.25

1024 298 21.23 46% 9038 33.94 30% 1.60

computation for a high number of processors. Clearly, this unvaforable sparsity pattern can be improved by
preprocessing the linear system with a suitable graph partitioning and fill-reducing matrix ordering. However
we consider this test case, as it is, a worst case scenario for our preconditioner, which, however, is shown to
obtain satisfactory speed-ups.
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Fig. 5.1. Number of communicating processors with a given processor in performing the matrix-vector product. Matrices
Cube5317k and Emilia-923with p = 1024.
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5.3. Results on huge matrices. We now report the results in solving huge linear systems arising
from Finite Difference (FD) 3D discretization of the Poisson equation in the unitary cube. These last runs
have been conducted on the new Marconi 100 supercomputer available at Cineca. MARCONI 100 is the new
accelerated cluster based on 980 IBM Nodes, each equipped with 2x16 cores IBM POWER9 AC922 at 3.1
GHz processors.

We consider three very large matrices: lap3d(nx), where nx = 512, 1024, 2048 is the number of subdivi-
sions in each spatial dimension. The size, nonzeros and condition number of these matrices are reported in
Table 5.5.

Table 5.5
Size n, number of nonzeros nnz and condition number κ for the 3 FD-3D matrices.

nx n nnz κ(A)
512 1.3× 108 9.4× 109 1.06× 105

1024 1.1× 109 7.5× 109 4.24× 105

2148 8.6× 109 6.0× 1010 1.70× 106

Table 5.6
CPU times and iterations for the FD-3D(nx) problems for various degree of the polynomial and varying number of processors.

nx p nlev = 5 nlev = 2 nlev = 0 Tp(nlev = 0)

Tp(nlev = 5)iter Tp iter Tp iter Tp
512 64 45 67.0 325 67.4 1300 95.3 1.4

128 45 36.2 325 38.1 1300 50.2 1.4
256 45 21.8 325 21.8 1300 27.7 1.3
512 45 13.8 325 13.3 1300 16.8 1.3

1024 64 88 858.4 637 945.2 2553 1481.7 1.7
256 88 254.3 637 284.3 2553 400.6 1.6

1024 88 97.2 637 101.6 2553 131.5 1.4
2048 512 165 1925.7 – – 5033 3169.8 1.6

2048 165 710.5 – – 5033 1001.5 1.4

The results, reported in Table 5.6, show that we are able to solve very huge size problems with a good
(relative) strong scalability. Moreover the polynomial preconditioner (either with nlev = 2 or nlev = 5)
takes from 1.3 to 1.7 less CPU time than the diagonal preconditioner.

On the huge problem lap3d(2048) the relative efficiency from 512 to 2048 processors is around 70%.
This problem, with eight billion unknowns and 56 billion nonzeros has been solved with 165 iterations, three
times as many scalar products, and 710.5 seconds with 2048 processors.

Weak scalability analysis. We finally perform a sort of weak scalability analysis, weighted by taking
into account that the condition number, and hence the number of PCG iterations, grows with nx. In
detail, doubling the nx parameter the size of the corresponding matrix increases by a factor 8; moreover its
condition number increases by a factor 4 and therefore the PCG iteration number is expected to roughly
double. Summarizing, from a matrix to the subsequent one in the sequence, we may expect an increase of a
factor 16 in the CPU time (with constant number of processors). Defining as Tnx,p the CPU time needed to
solve a FD-3D matrix with nx and p processors a perfect weak scalability would predict a dependence of the
CPU time on nx and p as

Tnx,p = O

(
nx4

p

)
from which, assuming now p = nx:

T2p,2p = 8Tp,p = 64T p
2 ,

p
2
.
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From Table 5.6 we have indeed that, for nlev = 0,
T2048,2048

T512,512
= 59.6 whereas for nlev = 5

T2048,2048

T512,512
= 51.5,

which are both smaller (and hence better) than the theoretically optimal value of 64.

5.4. Comparisons with other parallel preconditioners. The proposed preconditioner has many
pleasant features such as: No additional memory requirements, No need to explicitly store the matrix, It
takes the number of scalar products to a very low value. To show that it is also convenient in terms of
overall efficiency we carried out a comparison with a state-of-the-art parallel preconditioned solver for SPD
linear system. It is the solver chronos, available at the webpage https://www.m3eweb.it/chronos/, which
makes use of an enhanced AMG solver, partially based on a FSAI smoother with dynamical nonzero pattern
selection Franceschini et al. (2019); Paludetto Magri et al. (2019)

In Table 5.7 we reported the results in solving the FD matrix with nx = 512 for the PCG method accel-
erated with either the AMG or the FSAI preconditioners, after some trials to select the optimal parameters.
Since the setup time to evaluate the preconditioner is rather high for this approach we reported this in the
table as Tsetup while the CPU time for the PCG solution is Tsolver. Tp = Tsetup + Tsolver is, as before, the
overall CPU time.

Table 5.7
Results for the solution of the FD-3D problem with nx = 512 using the chronos package.

AMG preconditioner FSAI preconditioner
with FSAI as smoother

p iter Tsetup Tsolver Tp Tsetup Tsolver Tp
64 23 21.5 10.8 32.3 786 5.9 86.4 92.4

128 24 15.3 7.1 22.4 774 2.7 43.7 46.5
256 26 12.4 4.4 16.8 782 1.7 24.4 26.2
512 28 14.3 4.6 18.8 758 0.7 13.8 14.5

Inspection of Tables 5.7 and 5.6 reveals that our polynomial preconditioner compares very well with this
state-of-the-art solver both in terms of scalability and CPU times. Regarding the PCG solution times only,
the AMG approach outperforms the NC preconditioner, however the gap progressively reduces as the number
of processors increases.

6. Conclusions. We have proposed a (potentially high-degree) polynomial preconditioner for the Con-
jugate Gradient method with the aim of greatly reducing the number of scalar products which may represent
a bottleneck especially in parallel computations. By avoiding clustering of extremal eigenvalues, the pre-
conditioner obtains its best performances when the degree m is relatively high (good results have been
obtained with m = 31 or m = 63). Numerical results onto very large matrices reveal that these polynomial
preconditioners may be successfully employed to accelerate the Conjugate Gradient method by drastically
reducing the number of scalar products (and hence the collective communications in parallel environments).
In sequential computations the polynomial preconditioner with degree 31 reduces the CPU time of about
30% with respect to the diagonal preconditioner. Parallel runs with up to 2048 processors on the Marconi
supercomputer show that the important reduction in the number of scalar products (which reduces roughly
to 97% smaller with respect to the diagonal preconditioner, with m = 31) yielding a improvement over the
diagonal preconditioner from 30% to 60% of the total CPU time.

Further study is undergoing to give theoretical setting how to compute the optimal scaling parame-
ter. Moreover, a low-rank acceleration of the polynomial preconditioner will be investigated, following e.g.
Bergamaschi (2020) by exploiting the well separation of the smallest eigenvalues provided by our polynomial
preconditioner. We finally observe that the described approach can be applied whenever a first level parallel
preconditioner is at hand in factored form, say P0 = WWT , to obtain a second level preconditioner applying
the Newton-Chebyshev polynomials to the matrix WTAW .
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for problems arising from PDEs.
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M. Benzi, J. K. Cullum, and M. Tůma. Robust approximate inverse preconditioning for the conjugate

gradient method. SIAM J. Sci. Comput., 22(4):1318–1332, 2000. ISSN 1064-8275. URL https://doi.

org/10.1137/S1064827599356900.
L. Bergamaschi. A survey of low-rank updates of preconditioners for sequences of symmetric linear systems.

Algorithms, 34 (2)(100), 2020.
L. Bergamaschi, G. Gambolati, and G. Pini. Asymptotic convergence of conjugate gradient methods for the

partial symmetric eigenproblem. Numer. Linear Algebra Appl., 4(2):69–84, 1997.
L. Bergamaschi, E. Facca, A. Mart́ınez, and M. Putti. Spectral preconditioners for the efficient numerical

solution of a continuous branched transport model. J. Comput. Applied Math., 254:259–270, 2019.
K. Chen. Matrix preconditioning techniques and applications, volume 19 of Cambridge Monographs on Applied

and Computational Mathematics. Cambridge University Press, Cambridge, 2005. URL https://doi.org/

10.1017/CBO9780511543258.
E. W. Cheney. Introduction to approximation theory. McGraw-Hill Book Co., New York, 1966.
M. Embree, J. A. Loe, and R. B. Morgan. Polynomial preconditioned Arnoldi. arXiv: 1806.08020, math.NA,

2018.
M. Ferronato, G. Gambolati, C. Janna, and P. Teatini. Geomechanical issues of anthropogenic co2 seques-

tration in exploited gas fields. Energy Conversion and Management, 51(10):1918 – 1928, 2010. ISSN
0196-8904.

A. Franceschini, V. A. Paludetto Magri, G. Mazzucco, N. Spiezia, and C. Janna. A robust adaptive algebraic
multigrid linear solver for structural mechanics. Computer Methods in Applied Mechanics and Engineering,
(352):389–416, 2019.

H. Hotelling. Some new methods in matrix calculation. Ann. Math. Statist., 14(1):1–34, 03 1943. doi:
10.1214/aoms/1177731489. URL https://doi.org/10.1214/aoms/1177731489.

O. G. Johnson, C. A. Micchelli, and G. Paul. Polynomial preconditioners for conjugate gradient calculations.
SIAM J. Numer. Anal., 20(2):362–376, 1983. ISSN 0036-1429. doi: 10.1137/0720025. URL https:

//doi.org/10.1137/0720025.
I. E. Kaporin. Using Chebyshev polynomials and approximate inverse triangular factorizations for precondi-

tioning the conjugate gradient method. Computational Mathematics and Mathematical Physics, 52(2):169
– 193, 2012.

J. A. Loe and R. B. Morgan. New polynomial preconditioned GMRES. arXiv: 1911.07065, math.NA, 2019.
J. A. Loe, H. K. Thornquist, and E. G. Boman. Polynomial preconditioned GMRES to reduce communication

in parallel computing. arXiv: 1907.00072, math.NA, 2019.
A. Mart́ınez, L. Bergamaschi, M. Caliari, and M. Vianello. A massively parallel exponential integrator for

advection-diffusion models. J. Comput. Applied Math., 231(1):82–91, 2009.
V. A. Paludetto Magri, A. Franceschini, and C. Janna. A novel amg approach based on adaptive smoothing

and prolongation for ill-conditioned systems. SIAM Journal of Scientific Computing, (41):A190–A219,
2019.

Y. Saad. Practical use of polynomial preconditionings for the conjugate gradient method. SIAM Journal on
Scientific and Statistical Computing, 6(4):865–881, 1985. doi: 10.1137/0906059. URL https://doi.org/

10.1137/0906059.
Y. Saad. Iterative Methods for Sparse Linear Systems. Second edition. SIAM, Philadelphia, PA, 2003.
Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric

linear systems. SIAM J. Sci. Stat. Comput., 7(3):856–869, 1986.
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