
Developing LHCb Grid
Software: Experiences

and Advances
Ian Stokes-Rees

University of Oxford
Department of Particle Physics

2 September 2004

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

60 second version

 LHCb Particle Physics Experiment developed a computational grid
infrastructure, starting in 2002

 Deployed on 20 “normal”, and 30 “LCG” sites
 Effectively saturated LCG and all available computing resources

during 2004 Data Challenge
 Supported 3500 simultaneous jobs across 50 sites
 Produced, transferred, and replicated 58 TB of data, plus meta-data
 Consumed over 400 CPU years during last 3 months
 Achieved by

 lightweight Services and Agents
 developed in Python
 with XML-RPC interfaces
 and, of course, a lot of blood, sweat, and tears

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Overview

 Requirements
 Architecture
 Integration with LCG
 Project Management
 OGSI/GT3 Flop
 Instant Messaging
 Future

DIRAC Agent Network, July 2004

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Background

 LHCb experiment
 particle physics

detector at CERN
 will generate data at

40 MB/s from 2007
• that’s 3.4 TB/day

 500 physicists
 100 institutes/sites
 simulations already

running
 software development

and testing underway artists impression by Tom Kemp

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Requirements

 Required simple integration with existing
computing centres
 support different batch systems
 easy for LHCb site representatives to install,

configure, and run “Grid Software”
 little or no intervention while running

 Needed to support LHCb computing
 Existing data management and simulation software

and services
 Regular software updates
 Large data files with associated meta-data and

replication

Requirement Metrics

100,000 queued jobs
10,000 running jobs

100 sites
We think this is what

computational grids look like
Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

LCG?

 But why not just use EDG or LCG?
 In 2002, EDG was not ready for serious use
 Lots of existing computing resources still not

(yet) tied in to LCG
 LHCb sought to develop a stepping stone to

LCG computing

 ... and LHCb had some ideas on how to do
“grid computing” a bit differently ...

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Architecture

DIRAC: Distributed Infrastructure with Remote Agent Control

 Service Oriented Architecture
• Services exposed via simple XML-RPC interface
• accessible over HTTP

 99% Python
 DIRAC Agents deployed at computing centres
 Job Pull Paradigm, similar to Condor

• in fact, using Condor ClassAds, and Condor
Matchmaker

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Architecture

Services
Agents
Clients

Users
Jobs
Data

Sound Familiar?

 DIRAC architecture followed:
OGSA/OGSI direction towards “grid services”
 Direction of ARDA proposal to EGEE

• Now implemented as gLite

 DIRAC was meant to fit into this brave new
world of Grid Services
 ... and we tried (GT3, OGSI, pyGridWare,

Clarens)

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Aside: ARDA

 Dream was that ARDA, possible successor to EDG
architecture, would propose a service
decomposition and simple, clear, interfaces
 Allow alternative/pluggable/replaceable service

implementations
• For competition

• For bug fixing

• For different feature/performance emphasis

 Allow extension of “Grid Functionality” through
new services

 Allow rapid development of services
Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Architectural Aspects
of DIRAC

Python

 LHCb Experiment Standardized on Python wherever possible

 I had serious doubts about the performance of an interpreted
language for a production grid system
 Proved wrong! Python worked just fine.

 Facilitated rapid development and bug fixing

 Good object oriented construction

 “Dynamic Typing” (aka not type safe) is a challenge and
requires careful coding

 “Batteries Included” meant that DIRAC Agents and Clients were
super lightweight and only required:
 1.2 meg tarball (Python code and associated libraries)
 Python 2.2 interpreter installed
 Outbound internet connection

Service Oriented
Architecture

 Allowed reconfiguration of overall system
 Encouraged rapid development
 Automatic paralellism
 Easy deployment and maintenance
 Forced separation of functionality
 Scaled well
 Significant complexity of co-ordinating

configuration and location of services

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Multi-threaded XML-RPC

 Fast
 40 queries per second

 Easy
 3 lines of Python

 server = ThreadingXMLRPCServer(...)
 server.register_instance(service)
 server.serve_forever()

 Didn't need anything
more complicated
 SOAP, WSDL, etc.

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

XML-RPC

POST /RPC2 HTTP/1.0
User-Agent: Frontier/5.1.2 (WinNT)
Host: betty.userland.com
Content-Type: text/xml
Content-length: 181

<methodCall>
 <methodName>examples.getStateName</methodName>
 <params>
 <param>
 <value><i4>41</i4></value>
 </param>
 </params>
</methodCall>

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

SOAP

POST /InStock HTTP/1.1
Host: betty.userland.com
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<soap:Envelope
 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
 <soap:Body xmlns:m="http://userland.com/examples">
 <m:GetStateName>
 <m:Index>41</m:Index>
 </m:GetStateName>
 </soap:Body>
</soap:Envelope>
Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Pull Scheduling

 Unreasonable to ever expect a single machine to schedule
all jobs in the grid, or even all jobs for a VO
 Assumes complete view of system
 Assumes up to date information

 Push scheduling introduces single point of failure and
overloading in presence of 1000s of jobs (NP hard)

 Pull scheduling is Obviously Better
 Resources ask for jobs when they are ready
 Job serves “next best job” for that resource

Match Time

 Averaged 420ms match
time over 60,000 jobs
 Using Condor ClassAds

and Matchmaker

 Queued jobs grouped
by categories

 Matches performed by
category

 Typically 1,000 to
20,000 jobs queued

 We still suffered from
single point of failure

Instant Messaging on
the Grid

 Lots of Agents, Clients and Services
 Changing location
 Restricted network access
 Need for reliable two-way communication

 Idea: Use asynchronous, buffered, reliable
messaging framework – Jabber/XMPP IM

Jabber

 “Chat Rooms” provide ad hoc broadcast messaging
hubs, and dynamic list of “active” jobs, services,
agents, clients.

 Information/Query mechanism can be used to expose
RPC API

 Presence can be used for component status
 Connection based:

 “tunnel” back to component, even if on NAT and/or behind
firewall

 Authenticate once

 Humans can interact with components using standard
IM client – just open a chat session!

Experiences

OGSI and GT3

 Initial plan for DIRAC v2 was to implement all services
with OGSI
 ideally pyOGSI or pyGridWare (stay 100% Python)
 ... but GT3 and maybe Jython would do in a pinch

 Conceptually, OGSI was excellent

 In practice, it was too complicated

 And GT3 was impossible to work with
 Insufficient documentation
 Buggy implementation
 Performance was terrible
 Development was arduous

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Grid Library Shopping List

1. Robust libraries
2. Good documentation

tutorials, APIs, installation,
developers guide, FAQ

3. Conceptually simple
4. Ease of installation
5. Ease of development
6. Smooth integration with existing tools

Tomcat, Axis, Globus
7. Performance
8. Scalability
9. Portability
10. Lightweight clients
11.Operation in unprivileged user space

Of course we expect it to work with:
expert administrator, "root" access
2 gigs free hard drive space
512 megs of RAM
100% "default" install
10-100 services deployed
No firewall
Access only from other systems and

users who are similarly
equiped

But will it work with:
1000 services on one machine
5000 connections to one service
10,000 grid jobs running at once
jobs interacting with 100 services
services distributed across 20

machines at 5 sites
20,000 users, many novice

Integration with LCG

 Transition from “classic” computing centres to
“grid” computing was achieved
 Started 100% classic, 0% LCG (600-1200 jobs)
 Soon moved to 80% classic, 20% LCG (1000-1500 jobs)
 Finished at 20% classic, 80% LCG (2500-3500 jobs)

 Initial efforts to utilise LCG were plagued by
endless problems:
 Jobs aborted mysteriously
 Jobs disappearing
 Queue times not as reported
 Difficult to submit large numbers of jobs

Integration with LCG

 LCG were very supportive
 Assigned two support contacts
 Provided 3 dedicated LHCb Resource Brokers
 Arranged weekly phone conferences

 But it was still difficult to run 3000+ jobs a day on LCG
 Resource Broker couldn't cope
 Commands not designed for large numbers of jobs
 Difficult to diagnose problems

 Heroic efforts by Ricardo Graciani (LHCb member from
Barcelona) and collaboration with LCG team got new RB in
place and running 4000+ jobs at >95% success.

Transition to LCG

Specific Issues with LCG

 Queue time
normalisation
 Hyper Threading
 Overloading

 Job scratch space
 Not enough

 Output files erased
 Made debugging

impossible

 Security certificates
 RB used wrong ones

 Working with large
numbers of jobs
 Almost impossible

 Major problems with RB
 Largely resolved now

 Lack of API
documentation

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Expect The Worst

 On the grid, if something
can go wrong, it will:
 Network failures

 Drive failures

 Systems hacked

 Power outage

 Bugs in code

 Flaky memory (parity errors)

 Time outs

 Overloaded machine/service

 Simultaneous operations
(mutex, thread safety) o

Fault Tolerance

 Everything must be fault
tolerant, because faults
are guaranteed to
happen
 Retries
 Duplication
 Fail-over
 Caching
 Watchdogs

 runit package was
incredible
 Watchdog
 Auto-restart
 Daemons
 Auto-logging with

timestamps
 Setuid
 Log rotation
 Dependency mgmt

 Sending signals

Human Factors for a
Successful Grid Project

DIRAC and DC04 Project
Management

 Project management was key to success of DIRAC
development and DC04 grid computing

 Three interest groups
 Core DIRAC developers
 Physicists and managers for simulation
 Computing site representatives

Project Management

 Weekly phone meetings
 Between developers and simulation managers
 Between site reps and simulation managers

 Two mailing lists
One for developers and planning
One for discussing ongoing simulations

 Quarterly “LHCb Software Weeks” at CERN

Web Tools

 Use of CVS from outset (and WebCVS)
 Tied in to CERN Savannah System

 Bug Tracking
 Task Tracking
 Support Requests
 Excellent Software Project Mgmt Tool!

 Project Wiki for workbook and notes
 Now using GridSite

Savannah Bug Tracker

Web Based Job Monitoring

Results of DC04

 Typical Job
 2 GB local storage
 300-600 MB

transferred at end
 15-24 hours execution

 58 TB of data produced
 175M events
 50+ sites
 400 CPU years

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Future

 Increased integration with LCG
 Investigation of gLite
 May look at WSRF and GT4 (no promises)
 Expose services via Apache, mod_python,

and mod_gridsite
 (much) better security mechanisms
 Explore Instant Messaging opportunities

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Questions?

For further information
on DIRAC and LHCb:

GridSite:
http://dirac.cern.ch

email:
Ian Stokes-Rees
i.stokes-rees1@physics.ox.ac.uk

... or talk to me at the break

DIRAC and the results from DC04 are the result of
many peoples efforts and the support of
numerous participating institutions:

