
Developing LHCb Grid
Software: Experiences

and Advances
Ian Stokes-Rees

University of Oxford
Department of Particle Physics

2 September 2004

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

60 second version

 LHCb Particle Physics Experiment developed a computational grid
infrastructure, starting in 2002

 Deployed on 20 “normal”, and 30 “LCG” sites
 Effectively saturated LCG and all available computing resources

during 2004 Data Challenge
 Supported 3500 simultaneous jobs across 50 sites
 Produced, transferred, and replicated 58 TB of data, plus meta-data
 Consumed over 400 CPU years during last 3 months
 Achieved by

 lightweight Services and Agents
 developed in Python
 with XML-RPC interfaces
 and, of course, a lot of blood, sweat, and tears

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Overview

 Requirements
 Architecture
 Integration with LCG
 Project Management
 OGSI/GT3 Flop
 Instant Messaging
 Future

DIRAC Agent Network, July 2004

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Background

 LHCb experiment
 particle physics

detector at CERN
 will generate data at

40 MB/s from 2007
• that’s 3.4 TB/day

 500 physicists
 100 institutes/sites
 simulations already

running
 software development

and testing underway artists impression by Tom Kemp

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Requirements

 Required simple integration with existing
computing centres
 support different batch systems
 easy for LHCb site representatives to install,

configure, and run “Grid Software”
 little or no intervention while running

 Needed to support LHCb computing
 Existing data management and simulation software

and services
 Regular software updates
 Large data files with associated meta-data and

replication

Requirement Metrics

100,000 queued jobs
10,000 running jobs

100 sites
We think this is what

computational grids look like
Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

LCG?

 But why not just use EDG or LCG?
 In 2002, EDG was not ready for serious use
 Lots of existing computing resources still not

(yet) tied in to LCG
 LHCb sought to develop a stepping stone to

LCG computing

 ... and LHCb had some ideas on how to do
“grid computing” a bit differently ...

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Architecture

DIRAC: Distributed Infrastructure with Remote Agent Control

 Service Oriented Architecture
• Services exposed via simple XML-RPC interface
• accessible over HTTP

 99% Python
 DIRAC Agents deployed at computing centres
 Job Pull Paradigm, similar to Condor

• in fact, using Condor ClassAds, and Condor
Matchmaker

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Architecture

Services
Agents
Clients

Users
Jobs
Data

Sound Familiar?

 DIRAC architecture followed:
OGSA/OGSI direction towards “grid services”
 Direction of ARDA proposal to EGEE

• Now implemented as gLite

 DIRAC was meant to fit into this brave new
world of Grid Services
 ... and we tried (GT3, OGSI, pyGridWare,

Clarens)

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Aside: ARDA

 Dream was that ARDA, possible successor to EDG
architecture, would propose a service
decomposition and simple, clear, interfaces
 Allow alternative/pluggable/replaceable service

implementations
• For competition

• For bug fixing

• For different feature/performance emphasis

 Allow extension of “Grid Functionality” through
new services

 Allow rapid development of services
Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Architectural Aspects
of DIRAC

Python

 LHCb Experiment Standardized on Python wherever possible

 I had serious doubts about the performance of an interpreted
language for a production grid system
 Proved wrong! Python worked just fine.

 Facilitated rapid development and bug fixing

 Good object oriented construction

 “Dynamic Typing” (aka not type safe) is a challenge and
requires careful coding

 “Batteries Included” meant that DIRAC Agents and Clients were
super lightweight and only required:
 1.2 meg tarball (Python code and associated libraries)
 Python 2.2 interpreter installed
 Outbound internet connection

Service Oriented
Architecture

 Allowed reconfiguration of overall system
 Encouraged rapid development
 Automatic paralellism
 Easy deployment and maintenance
 Forced separation of functionality
 Scaled well
 Significant complexity of co-ordinating

configuration and location of services

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Multi-threaded XML-RPC

 Fast
 40 queries per second

 Easy
 3 lines of Python

 server = ThreadingXMLRPCServer(...)
 server.register_instance(service)
 server.serve_forever()

 Didn't need anything
more complicated
 SOAP, WSDL, etc.

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

XML-RPC

POST /RPC2 HTTP/1.0
User-Agent: Frontier/5.1.2 (WinNT)
Host: betty.userland.com
Content-Type: text/xml
Content-length: 181

<methodCall>
 <methodName>examples.getStateName</methodName>
 <params>
 <param>
 <value><i4>41</i4></value>
 </param>
 </params>
</methodCall>

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

SOAP

POST /InStock HTTP/1.1
Host: betty.userland.com
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<soap:Envelope
 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
 <soap:Body xmlns:m="http://userland.com/examples">
 <m:GetStateName>
 <m:Index>41</m:Index>
 </m:GetStateName>
 </soap:Body>
</soap:Envelope>
Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Pull Scheduling

 Unreasonable to ever expect a single machine to schedule
all jobs in the grid, or even all jobs for a VO
 Assumes complete view of system
 Assumes up to date information

 Push scheduling introduces single point of failure and
overloading in presence of 1000s of jobs (NP hard)

 Pull scheduling is Obviously Better
 Resources ask for jobs when they are ready
 Job serves “next best job” for that resource

Match Time

 Averaged 420ms match
time over 60,000 jobs
 Using Condor ClassAds

and Matchmaker

 Queued jobs grouped
by categories

 Matches performed by
category

 Typically 1,000 to
20,000 jobs queued

 We still suffered from
single point of failure

Instant Messaging on
the Grid

 Lots of Agents, Clients and Services
 Changing location
 Restricted network access
 Need for reliable two-way communication

 Idea: Use asynchronous, buffered, reliable
messaging framework – Jabber/XMPP IM

Jabber

 “Chat Rooms” provide ad hoc broadcast messaging
hubs, and dynamic list of “active” jobs, services,
agents, clients.

 Information/Query mechanism can be used to expose
RPC API

 Presence can be used for component status
 Connection based:

 “tunnel” back to component, even if on NAT and/or behind
firewall

 Authenticate once

 Humans can interact with components using standard
IM client – just open a chat session!

Experiences

OGSI and GT3

 Initial plan for DIRAC v2 was to implement all services
with OGSI
 ideally pyOGSI or pyGridWare (stay 100% Python)
 ... but GT3 and maybe Jython would do in a pinch

 Conceptually, OGSI was excellent

 In practice, it was too complicated

 And GT3 was impossible to work with
 Insufficient documentation
 Buggy implementation
 Performance was terrible
 Development was arduous

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Grid Library Shopping List

1. Robust libraries
2. Good documentation

tutorials, APIs, installation,
developers guide, FAQ

3. Conceptually simple
4. Ease of installation
5. Ease of development
6. Smooth integration with existing tools

Tomcat, Axis, Globus
7. Performance
8. Scalability
9. Portability
10. Lightweight clients
11.Operation in unprivileged user space

Of course we expect it to work with:
expert administrator, "root" access
2 gigs free hard drive space
512 megs of RAM
100% "default" install
10-100 services deployed
No firewall
Access only from other systems and

users who are similarly
equiped

But will it work with:
1000 services on one machine
5000 connections to one service
10,000 grid jobs running at once
jobs interacting with 100 services
services distributed across 20

machines at 5 sites
20,000 users, many novice

Integration with LCG

 Transition from “classic” computing centres to
“grid” computing was achieved
 Started 100% classic, 0% LCG (600-1200 jobs)
 Soon moved to 80% classic, 20% LCG (1000-1500 jobs)
 Finished at 20% classic, 80% LCG (2500-3500 jobs)

 Initial efforts to utilise LCG were plagued by
endless problems:
 Jobs aborted mysteriously
 Jobs disappearing
 Queue times not as reported
 Difficult to submit large numbers of jobs

Integration with LCG

 LCG were very supportive
 Assigned two support contacts
 Provided 3 dedicated LHCb Resource Brokers
 Arranged weekly phone conferences

 But it was still difficult to run 3000+ jobs a day on LCG
 Resource Broker couldn't cope
 Commands not designed for large numbers of jobs
 Difficult to diagnose problems

 Heroic efforts by Ricardo Graciani (LHCb member from
Barcelona) and collaboration with LCG team got new RB in
place and running 4000+ jobs at >95% success.

Transition to LCG

Specific Issues with LCG

 Queue time
normalisation
 Hyper Threading
 Overloading

 Job scratch space
 Not enough

 Output files erased
 Made debugging

impossible

 Security certificates
 RB used wrong ones

 Working with large
numbers of jobs
 Almost impossible

 Major problems with RB
 Largely resolved now

 Lack of API
documentation

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Expect The Worst

 On the grid, if something
can go wrong, it will:
 Network failures

 Drive failures

 Systems hacked

 Power outage

 Bugs in code

 Flaky memory (parity errors)

 Time outs

 Overloaded machine/service

 Simultaneous operations
(mutex, thread safety) o

Fault Tolerance

 Everything must be fault
tolerant, because faults
are guaranteed to
happen
 Retries
 Duplication
 Fail-over
 Caching
 Watchdogs

 runit package was
incredible
 Watchdog
 Auto-restart
 Daemons
 Auto-logging with

timestamps
 Setuid
 Log rotation
 Dependency mgmt

 Sending signals

Human Factors for a
Successful Grid Project

DIRAC and DC04 Project
Management

 Project management was key to success of DIRAC
development and DC04 grid computing

 Three interest groups
 Core DIRAC developers
 Physicists and managers for simulation
 Computing site representatives

Project Management

 Weekly phone meetings
 Between developers and simulation managers
 Between site reps and simulation managers

 Two mailing lists
One for developers and planning
One for discussing ongoing simulations

 Quarterly “LHCb Software Weeks” at CERN

Web Tools

 Use of CVS from outset (and WebCVS)
 Tied in to CERN Savannah System

 Bug Tracking
 Task Tracking
 Support Requests
 Excellent Software Project Mgmt Tool!

 Project Wiki for workbook and notes
 Now using GridSite

Savannah Bug Tracker

Web Based Job Monitoring

Results of DC04

 Typical Job
 2 GB local storage
 300-600 MB

transferred at end
 15-24 hours execution

 58 TB of data produced
 175M events
 50+ sites
 400 CPU years

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Future

 Increased integration with LCG
 Investigation of gLite
 May look at WSRF and GT4 (no promises)
 Expose services via Apache, mod_python,

and mod_gridsite
 (much) better security mechanisms
 Explore Instant Messaging opportunities

Developing LHCb Grid Software
UK e-Science AHM, Sept 2004

Questions?

For further information
on DIRAC and LHCb:

GridSite:
http://dirac.cern.ch

email:
Ian Stokes-Rees
i.stokes-rees1@physics.ox.ac.uk

... or talk to me at the break

DIRAC and the results from DC04 are the result of
many peoples efforts and the support of
numerous participating institutions:

