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Abstract

In query-based wireless sensor networks (WSNs), the 
system must perform data sensing and retrieval and 
possibly aggregate data as a response at runtime. Since a 
WSN is often deployed unattended in areas where 
replacements of failed sensors are difficult, energy 
conservation is of primary concern. While the use of 
redundancy is desirable in terms of satisfying user queries 
to cope with sensor faults, it may adversely shorten the 
lifetime of the WSN, as more sensor nodes will have to be 
used to answer queries, causing the energy of the system 
to drain quickly. In this paper, we analyze the effect of 
redundancy on the mean time to failure (MTTF) of a WSN 
in terms of the number of queries the system is able to 
answer correctly before it fails due to either sensor faults 
or energy depletion. In particular, we analyze their effect 
of redundancy on the MTTF of cluster-structured WSN for 
energy conservations. We show that a tradeoff exists 
between redundancy and MTTF. Furthermore, an optimal 
redundancy level exists such that the MTTF of the system 
is maximized. 

1 Introduction 

Applications such as security and surveillance 
monitoring, battlefield command and control, and wildlife 
or medical monitoring rely on the correct functioning of 
the underlying WSN in data sensing and retrieval in 
response to application queries. We consider two major 
sources of faults that could cause the system to fail. One 
source is energy depletion of sensor nodes such that the 
WSN simply exhausts its energy to be able to answer 
queries. In such applications, the WSN is often deployed 
in an area where replacements of sensors are difficult or 
impossible. Another source is sensor faults including 
measurement faults.  

To conserve energy of sensor nodes, a well accepted 
approach is for the WSN to self-organize itself into 
clusters. Within a cluster, a cluster head is elected to 
perform more data aggregation and relay duties than 
normal sensor nodes and is rotated among sensor nodes in 
the cluster for balancing energy consumption. An intra-
cluster routing tree is maintained dynamically in response 
to sensor faults. For long-haul networks, cluster heads 
may relay data cluster-by-cluster to reach a processing 
center (e.g., where a user query is issued). Moreover, for 
applications concerned with sensor readings such as the 
minimum/maximum/average of sensor data, cluster heads 
can also perform in-network data aggregation and 

compression functions to reduce energy consumption [6].  
A cluster can be reconfigured globally by the system for 
optimization purposes or in a distributed manner on a per-
sensor-node basis [5]. To cope with the second source of 
faults, i.e., sensor faults, a general approach is to 
incorporate redundancy to allow sensor faults to be 
detected, isolated, and corrected so that the system can 
continue to function correctly in data sensing and 
retrieval. However, the use of redundancy impacts the 
energy consumption rate of the system since more sensor 
nodes would need to be used as redundancy to achieve 
sensor fault tolerance. Therefore, there is a tradeoff 
between these two sources of faults. On the one hand, we 
like to incorporate redundancy to deal with sensor faults. 
On the other hand, redundancy should be used only as 
needed so as not to quickly deplete the energy of the 
system.  

Current research work on fault tolerance mechanisms 
to cope with sensor faults in WSNs can be classified into 
hardware redundancy, time redundancy and information 
redundancy [1, 2, 6, 7, 8]. This paper concerns with 
hardware redundancy which utilizes extra hardware for 
fault detection or masking. A sensor can be made to 
disambiguate a sensor measurement fault from a true 
event by using a distributed Bayesian algorithm [6, 7] 
after comparing readings obtained from its neighbor 
sensors of the same type. At the processing center (i.e., 
user query) end, more than one sensor reading responding 
to a query can be propagated back to the processing center 
via multiple paths, from which a voting can be performed 
using the first three readings. A majority reading, if it 
exists, will be passed to the application as the legitimate 
response. This approach was suggested in [2] for data 
fault tolerance of data propagation in WSNs.  

In this paper, we investigate the effect of redundancy 
on the mean time to failure (MTTF), which is used as a 
metric to measure the effectiveness of the underlying 
WSN to answer user queries. We consider hardware 
redundancy in this paper, specifically, path redundancy 
[2, 3, and 4] and source redundancy to cope with sensor 
faults. We consider a WSN as having experienced a 
failure when it fails to deliver sensor data correctly in 
response to an application-level query, either due to 
energy depletion (i.e., the first source of faults) or due to 
sensor faults (i.e., the second source of faults). We show 
that using excessive redundancy to achieve fault tolerance 
toward sensor faults will have detrimental effects on the 
MTTF of the system. Given a WSN system characterized 
by a set of parameter values as identified in the paper, we 



show that there exists an optimal level of redundancy 
under which the MTTF is maximized. The contribution of 
the paper lies in the mathematical analysis and pioneering 
work on the tradeoff analysis between fault tolerance and 
energy consumption for WSNs. 

2 System Model 

A WSN consists of a set of low-power sensor nodes 
typically deployed through air-drop into a geographical 
area. The sensors in the network are indistinguishable 
with the same initial energy level. Sensors group 
themselves into distinct clusters in the system for energy 
conservation purposes, with each cluster ideally 
responsible for a feature area, as illustrated in Figure 1. 
Each cluster elects a sensor to be the cluster head. The 
role of a cluster head is rotated fairly among sensors in 
the cluster based on a cluster head rotation algorithm such 
as HEED [10] or LEACH [13] so that sensors will not 
quickly deplete their energy. The function of a cluster 
head is to manage the network within the cluster, and 
collect/aggregate sensor reading data from the sensors 
within the cluster. To save energy, the transmission power 
of a sensor even when it is a cluster head is reduced to a 
minimum level to enable it to communicate with its 
neighbor within one-hop radio range. Thus, a sensor 
needs to use a multi-hop route (i.e. passing through a 
number of other sensors) for it to communicate with 
another sensor node distant away.  

We assume that users (through a flying airplane or a 
moving vehicle) can issue a query through any cluster 
head, which we call it a processing center or a user 
monitoring node as labeled in Figure 1. A query may 
involve all or a subset of clusters, say, k clusters, to 
respond to the query for data sensing and retrieval. These 
involved clusters are termed source clusters. Our system 
does not have a base station. Also sensors in a cluster will 
rotate to be the cluster head in their cluster. Thus, the 
notion of higher energy consumption by critical nodes 
[14] for relaying messages to a base station or to a cluster 
head does not exist. 

 

Figure 1: Cluster-based WSN architecture. 

In a cluster-based architecture, a source cluster head 
must relay sensor data information to the processing 
center in response to a user query, and thus will consume 
more energy than a pure sensor node. The energy 
consumed by a source cluster depends on the length of the 
path connecting the source cluster and the processing 
center. For fault tolerance reasons, two forms of 
redundancy are considered for which we analyze their 
effect on MTTF in this paper. The first one is path 
redundancy. That is, instead of using a single path to 
connect a source cluster to the processing center, m 
disjoint paths (where m ≤ 3 practically) may be used. The 
second is source redundancy. That is, instead of having 
one sensor node return requested sensor data, ms sensor 
nodes within a source cluster may be used to return 
readings to cope with sensor hardware and software 
faults. 

We characterize the failure behavior of a sensor due to 
environment conditions (i.e. hardware failure) by a failure 
probability parameter q. Assume that all sensors are 
deployed in a square sensor area of size A2 such that each 
side is of length A. Also assume that the sensors in the 
network are distributed according to a homogeneous 
spatial Poisson process with intensity λ. Let n be the total 
number of nodes in the WSN. Let ns be the number of 
sensors in a cluster. The size of a cluster depends on the 
clustering algorithm employed and is a design parameter 
that will affect the MTTF of the system. The number of 
clusters in the system, Nc, is given by n/ns. A cluster head 
will perform the function of data collection, aggregation 
and communication. Let Eo be the initial energy of each 
sensor node in Joule.  

A user query may demand up to k clusters to respond 
to it, where k is in the range of 1 to Nc. When a query calls 
for a cluster to retrieve sensor data, one sensor is 
sufficient to answer the query. To provide fault tolerance 
through source redundancy, however, the system uses ms 
sensors to return sensor results to the cluster to cope with 
inconsistent readings. All sensors have the same power 
transmission level and have the same one-hop radio range 
r. Whether a single-hop or a multiple-hop route is 
required for a sensor to communicate with its cluster head 
depends on the cluster size whose effect on the MTTF 
will be analyzed. Within a cluster we assume that a 
cluster election protocol such as HEED [10] is in place 
that will more or less achieve a perfect rotation of the 
cluster head among all sensors in the cluster. Thus, given 
that the number of sensors in a cluster is ns, the 
probability that a node will become a cluster head, p, is 
equal to 1/ns. Thus total number of clusters in the 
network, Nc, is given by n/ns = np. Assume a perfect 
rotation of sensor nodes within a cluster to assume the 
role of the cluster head, so each sensor node would 
consume energy at about the same rate. Then, instead of 
considering each individual sensor energy level, we can 
consider the system energy whose initial energy level is 
given by Einitial = n Eo. When the energy level of the 
system falls below a threshold value, say Ethreshold, the 
WSN is considered as having depleted its energy.  



3 Probability Model  

We define the MTTF of a sensor data system as the 
average number of queries that the system can answer 
correctly before it fails, with the failure caused by either 
energy depletion or sensor faults. Let Pq(k) be the 
probability that a query requires k clusters to respond. Let 
Eq(k) be the energy consumption of the system to answer 
a query that requires k clusters, and Rq(k) be the query 
reliability for a query that requires k clusters to respond. 
Furthermore, let the average amount of energy consumed 
per query be Eq, given by the expected value of Eq(k) as: 

1
( ) ( )

np

q q q
k

E E k P k
=

= ∑  
(1)
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Let the reliability of a query be Rq, given as:  
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Since the system is able to answer Nq queries before 
energy depletion, each with the reliability of Rq, the 
MTTF of the system is the expected number of queries 
that the system can answer without experiencing a failure 
with the upper bound of Nq, i.e.,  

1

1
(1 )

q
q

N
Ni

q q q q
i

MTTF iR R N R
−

=
= − +∑  

(4) 

The magnitude of Eq and Rq largely depends on the 
redundancy level used by the system to answer a query 
and there is a tradeoff between Eq and Rq. In the extreme 
case of no redundancy, Eq would be low at the expense of 
low Rq. Conversely, when excess redundancy is used Rq 
would be high at the expense of high Eq. We intend to 
show that there is an optimal level of redundancy that 
would maximize the MTTF.  

Below we derive Rq(k) and later we derive Eq(k). Let d 
be a random variable denoting the distance between a 
source cluster head and the processing center. Then the 
number of hops between the processing center and the 
source cluster head, denoted by h, is given by: 

1dh
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Without loss of generality, let the source cluster head 
be randomly located at (Xi, Yi) in the square sensor area 
with –A/2 ≤ Xi ≤ A/2 and  –A/2 ≤ Yi ≤ A/2 and the 
processing center be located in the center of the sensor 
area with the coordinate at (0, 0). Then,  
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For notational convenience, let  

int ( )h
erN E h=     (7) 

Here Nh
inter represents the average number of hops (or 

sensors) to forward sensor data from a source cluster head 
to the processing center. Then, the failure probability of 
that source cluster failing to send data to the processing 
center, when there is a single path from the cluster head to 
the processing center, is given by: 

int1 (1 )
h

erN
fpP q= − −  (8) 

For fault tolerance, we consider path redundancy and 
source redundancy. For path redundancy, let there be m 
disjoint paths between a source cluster head and the 
processing center. A source cluster head can deliver the 
requested sensor data to the processing center if any of the 
m redundant paths is alive. Thus, the failure probability of 
that source cluster failing to deliver data to the processing 
center can be calculated as the probability that all m paths 
have failed. As a result, the failure probability of a source 
cluster failing to deliver data due to path failure, when 
there are m disjoint paths between it and the processing 
center, is given by: 

( )m m
fp fpP P=  (9) 

For source redundancy, instead of using one sensor, we 
assign ms sensors in each cluster to return sensor readings 
to their cluster head to cope with incorrect readings and 
sensor faults. Since a sensor becomes a cluster head with 
probability p and all the sensors are distributed in the area 
in accordance with a spatial Poisson process with 
intensity λ, the cluster heads and non-cluster head sensors 
will also be distributed in accordance with a spatial 
Poisson process with rates pλ and (1-p)λ, respectively. 
Non-cluster-head sensors thus would join the cluster of 
the closest cluster head to form a Voronoi cell [11] 
corresponding to a cluster in the WSN. It can be shown 
that [12] the average number of non-cluster-head sensors 
in each Voronoi cell is (1-p)/p and the average distance 
from a non-cluster-head sensor to the cluster head is given 
by

1/ 2
1

2( )pλ
. 

If this distance is more than per-hop distance r, a 
sensor will take a multi-hop route to transmit sensor data 
to the cluster head. The average number of intermediate 
sensors (including the sensor itself) is the quantity above 
divided by per-hop distance r. Let Nh

intra denote the 
average number of hops to forward sensor data from a 



sensor responsible for a reading to its cluster head. Then 
Nh

intra is given by: 
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A sensor will fail to return its reading to the cluster 
head when any hop fails, so the probability of a sensor 
failing to return its reading to the cluster head is given by: 

int1 (1 )
h

raNq− −  (11)

Consequently the failure probability that all ms sensors 
within a cluster fail to return sensor reading to the cluster 
head is given by: 

int[1 (1 ) ]
h

s ra sm N m
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Combining results from above, the failure probability 
of a cluster not being able to return a correct response, 
because of either path or source failure, or both, is given 
by: 

1 (1 )(1 )s
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mm
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Suppose that the application demands k source clusters 
to return sensor data to answer a query. Also suppose that 
the query is considered failed when any of the k clusters 
fails to deliver data. The overall query failure probability 
is given by: 

1 (1 )
ps

k
f fP P= − −  (14)

Therefore, the reliability of a query that requires k 
clusters to respond is given by: 

( ) 1q fR k P= −  (15)

For the energy model, we adopt the radio model in 
[10]. The energy used for communication is denoted as 
Eelec per bit. Thus the energy spent by a sensor node to 
sense (or to receive) and transmit a data packet of length 
nb bits is given by:  

2packet b elecE n E=  (16)

In response to a query, a sensor assigned would 
transmit a data packet to their respective source cluster 
head. Since the average number of hops between a sensor 
and its cluster head is given by Nh

intra as derived above, 
the average energy for the system to transmit sensor data 
from a sensor to its cluster head is given by Epacket Nh

intra.
In general if a query requires the use of k clusters, each of 
which with ms sensors for source redundancy, to respond 
to the query, then the total energy required for these 
sensors within k clusters to gather and forward data to 
their cluster heads is given by Es = Epacket Nh

intra k ms. Let 
Ech be the total energy consumed by the WSN to transmit 
sensor data from k source cluster heads to the processing 

center for the case in which m=1. Since the average 
number of hops from the cluster head of a source cluster 
to the processing center is given by Nh

inter derived eralier, 
following a similar derivation for Es, Ech is given by Ech = 
Epacket Nh

inter k. Thus the amount of energy spent by the 
system, Eq(k), to answer a query that demands k clusters 
to respond, each with m disjoint paths connecting the 
cluster head to the processing center for path redundancy 
is given by: 

( )q ch sE k mE E= +  (17)

Our objective is to find the best redundancy level 
represented by m and ms that maximizes MTTF when 
given a set of system parameter values characterizing the 
application and network conditions. 

4 Numeric Results 

We exemplify the utility of analytical results derived in 
Section 3 with a WSN characterized by a set of model 
parameter values as adopted from [9] with n = 1000 
nodes, r = 1, λ = 10 nodes/square unit, A = 10 units, nb = 
50 bytes, Eelec = 50 nJ/bit,  Eo =2 Joule, Ethreshold = 0, ns 
ranges from 10 to 100 nodes, q ranges from 10-8 to 10-3, m 
is in the range of 1 to 4 and ms is in the range of 1 to 7. 
We intend to illustrate the tradeoff between fault tolerance 
and energy conservation on the MTTF metric.  To 
simplify the analysis, we assume Pq(k)=1 for a fixed k 
value. When k is equal to np, it means that all clusters are 
required to respond to each query. 

1
2

3
4 1

3
5

7

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000

MTTF 

m ms

4000000-4500000
3500000-4000000
3000000-3500000
2500000-3000000
2000000-2500000
1500000-2000000
1000000-1500000
500000-1000000
0-500000

 

Figure 2: MTTF vs. (m, ms) with k=1, p=0.01 and q=10-6. 

We first demonstrate that there exists an optimal 
setting of (m, ms) that would maximize MTTF of the 
WSN when given a set of parameter values characterizing 
the operating and workload environment. Figure 2 shows 
MTTF (z-coordinate) in terms of the number of queries 
before failure vs. ms (x-coordinate) vs. m (y-coordinate) 
in a 3-D graph for the case in which only one cluster (i.e., 
k=1) is required to respond to a query, and the per-node 
failure probability q is 10-6. The results show that there 



exists an optimal combination of (m = 2, ms = 3) where 
the system MTTF is maximized.   

Next we test the effect of q. We observed that when q 
is extremely low (10-8), the system would favor m=1 (i.e., 
no path redundancy) as well as ms = 1 (i.e., no source 
redundancy) because the chance of path or source failure 
is low, so the system can prolong its lifetime by not to 
waste energy on redundant paths and redundant sources. 
As the per-node failure probability increases (from 10-8 to 
10-6 to 10-3), the system then favors a higher (m, ms) 
combination (from 1,1 to 2,3 to 3,3 correspondingly). The 
reason is that as q increases, the system will experience a 
higher probability of path failure as well as source failure, 
and thus the investment in energy to allow redundant 
paths and redundant sources pays off in prolonging the 
system’s lifetime.  

Finally we test the effect of p, the probability of a 
sensor becoming a cluster head. For the case k=1, we 
observe that as p increases, or, equivalently, as the cluster 
size (1/p) decreases, MTTF increases. The reason is that 
fewer sensors would be involved in answering a query in 
a cluster as p increases. For the case k=np, that is, all 
clusters must respond to the query we see the opposite 
trend. That is, as p increases, MTTF decreases. This is 
because as p increases, they will be more clusters in the 
system and since all clusters must respond to the query, 
more energy is consumed per query since cluster heads 
consume more energy than regular sensor nodes. 

5 Conclusion 

In this paper we analyzed the intrinsic tradeoff 
between fault tolerance and energy conservation for 
prolonging the lifetime of WSNs designed to answer user 
queries. We define the system failure as the inability of 
the system to answer queries due to either sensor faults or 
energy depletion. By means of a probability model, we 
showed that while using path and source redundancy 
could increase the probability that data are delivered 
reliably, there is a tradeoff in reliable data delivery vs. 
energy consumption. We demonstrated that there exists an 
optimal level of redundancy that should be used by the 
system in order to maximize the mean time to failure, 
when given a set of parameter values characterizing the 
WSN and workload environment. Once the optimal path 
and source redundancy levels are determined by the 
system designer at static time, they can be deployed in the 
WSN to prolong the lifetime of the system.  
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