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ABSTRACT
Reputation mechanisms help peers in a peer-to-peer (P2P) system
avoid unreliable or malicious peers. In application-level networks,
however, short peer life-times mean reputations are often gener-
ated from a small number of past transactions. These reputation
values are less “reliable,” and more vulnerable to bad-mouthing or
collusion attacks. We address this issue by introducing proactive
reputations, a first-hand history of transactions initiated to augment
incomplete or short-term reputation values. We present several
mechanisms for generating proactive reputations, along with a sta-
tistical similarity metric to measure their effectiveness.

1. INTRODUCTION
The growing success of peer-to-peer (P2P) networks makes

securing them an increasingly difficult research challenge.
Popular P2P applications can support millions of users spread
across numerous administrative and network boundaries. The
heterogeneous and distributed user population means that at
any given time, some peers will be compromised by ma-
licious users using viruses, worms, or application-specific
vulnerabilities. These threats pose significant risks to early
adopters of next-generation P2P applications such as users
of distributed file systems [21, 16], application-level multi-
cast [22, 13] or Internet-scale query engines [2, 17].

The use of reputation systems can help applications pre-
serve correct operation despite the presence of malicious
users. A large body of literature has shown their impact on
distributed applications in the form of increased levels of
cooperation and trustworthiness among peers. Researchers
are also using reputations to diagnose complex networking
protocols such as the Border Gateway Protocol (BGP) [27].
A reputation system quantifies a peer’s trustworthiness as
an aggregation of ratings earned from previous interactions.
Such interactions can include message forwarding, remote
storage, file transfer, or financial transactions.

While reputations have been deployed in online shopping
sites such as EBay [14], they are not necessarily a natural
fit for the dynamic nature of peer-to-peer networks. Since
reputations assess a peer’s trustworthiness using historical
feedback of its past interactions, longer peer lifetimes lead
to more interactions and a more accurate reputation. In
P2P networks, however, peers are often short-lived as they
periodically exit the application or leave due to failures. This
high rate of peer turnover, or churn, means a significant
portion of peers will have relatively “short-term” reputations
accrued from a small number of past interactions.

For applications that rely on peers for data storage, mes-
sage forwarding, or distributed computation, choosing a peer
based on short-term reputations is highly undesirable. How
then can we provide reliable reputation ratings for unknown
peers or newcomers? To address this question, we propose

the idea of proactive reputations. Where traditional reputa-
tion systems rely on ratings assigned following transactions
performed during the normal execution of an application,
proactive reputations allow peers to proactively initiate trans-
actions with one or more peers for the express purpose of
generating reputation ratings. The result is a mechanism for
quickly generating reliable reputations for new peers or those
with short lifetimes.

This paper offers three key contributions. First, we intro-
duce the concept of proactive reputations and describe related
research challenges in peer-to-peer networks. Next, we in-
vestigate information theoretic metrics to assess the effective-
ness of proactive reputation generation. Finally, we propose
a set of mechanisms to generate proactive reputations and
conduct initial experiments to measure their effectiveness.

The remainder of the paper is organized as follows. We
begin by describing the concept of proactive reputations in
Section 2. Next, we outline the generation of proactive rep-
utations, and present our methodology in Section 3. We then
discuss our performance evaluation in Section 4. Finally, we
discuss related work in Section 6 and conclude in Section 7.

2. PROACTIVE REPUTATIONS
In a traditional reputation system, peers assign ratings to

others after concluding transactions with them. A peer look-
ing to initiate a transaction, the initiator, can use reputations
to choose the candidate peer(s) with which to interact. Be-
cause peers who seek to access another’s reputation has no
way to directly influence the quality of that reputation, we
call this traditional approach passive.

Since reputation values are generally aggregates of per
transaction feedback values, the “reliability” of a peer’s repu-
tation depends very much on the number of past transactions
taken into account. In volatile P2P systems, however, the
passive approach to reputations means peers will often base
their interaction choices on reputation values that are “short-
term,” meaning they are derived from feedback following a
relatively small number of past transactions.

In this paper, we propose a proactive reputation model for
networked systems with verifiable, low-cost transactions. In
a proactive reputation system, a peer initiates transactions
with a targeted peer for the express purpose of understanding
the peer’s reliability for future transactions. For example,
if Peer X needs to interact with two new peers or peers
with “short-term reputations,” it can initiate a number of
requests for these peers in order to gauge their reliability
and trustworthiness. Unlike challenge-response mechanisms
where the candidate has a clear incentive to respond correctly,
the goal of proactive requests is to blend in with regular
application-level traffic to measure the candidate’s “normal”
response.

Proactive reputations are complementary to traditional,



passive reputations. An initiator can proactively probe those
candidates it is less confident about, while undertaking nor-
mal transactions with other peers known to be trustworthy.

Requirements. There are two requirements that must be sat-
isfied for proactive requests to be feasible. First, transactions
must have “low cost,” and carry uniform application-level
“value.” A low cost, where cost is measured by the resource
overhead consumed per transaction, ensures that utilizing
proactive requests does not create significant overhead for
their initiators. Uniform value across transactions means
proactive transactions have the same “priority” and will be
treated similarly as a “typical” transaction. For example,
an online auction system such as EBay would not satisfy
this requirement. Its transactions vary highly in value, and
transactions of low value do not necessarily serve as use-
ful indicators of peer behavior for high-valued transactions.
Transactions in cooperative peer-to-peer systems such as
structured overlays, in contrast, generally incur low resource
costs (bandwidth and processing time), and any variance in
“value” across transactions is generally hidden to the request
handling peer.

The second key requirement is that transactions must be
“verifiable.” That is, the initiator peer must have a definitive
mechanism for testing whether the transaction was performed
properly. In the context of online e-commerce communities,
this is analogous to confirming the promised product or pay-
ment was received on time. For P2P systems, the initiator
can request that a trusted third party verify the transaction
result. For message routing, the initiator can route a mes-
sage to a third party verifier via the candidate peer, and wait
for an acknowledgment. For storage, the peer or a trusted
party can read the stored data and confirm its contents. The
third party verifier can be chosen in two ways. The initiator
can choose a trusted party based on existing trust relation-
ships or reputation values. As an alternative, it can exploit
the free-cost nature of P2P identities to create a second vir-
tual identity who appears independent from its main identity.
This mechanism leverages the Sybil attack [12] on a small
scale to improve security.

Benefits. Augmenting a reputation system with proactive
reputations has two main benefits. First, from the initiator’s
perspective, proactive reputations generate a more reliable
credibility measure of the target peer. Results from proactive
requests are formed from “firsthand” (when using a virtual
identity for verification) or trusted observations, and thus are
less vulnerable to false ratings or collusion. Second, accruing
passive ratings takes time and depends on the target peer’s
level of interaction with others during the normal execution
of an application. Consequently, a significant amount of
time may be needed to establish a reliable reputation value.
With our proactive model, a peer controls its transaction rate
with the target peer, and can generate its reputation quickly
(within bounds of detection).

Challenges. We face several major challenges in designing
a proactive reputation system. First, for the processing of
proactive requests to be fair and non-biased, the receiver must
not be able to identify the request initiator. Otherwise, a tar-
get peer can tailor its response based on the originator. There-
fore, these proactive requests should be anonymous [11, 28].
Second, in order for proactive requests to generate accurate
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Figure 1: Proactive reputation generation: the initiator node
injects proactive requests into the application stream on its way
to the candidate node. A trusted 3rd party verifies the transac-
tion outcome and informs the initiator.

peer behavior, they must be indistinguishable from normal
application requests. Requests can come in the form of rout-
ing requests, storage directives, or other application-specific
actions. Once a malicious peer determines that the purpose
of a request is to measure its performance and reliability,
it will always process these requests correctly to boost its
reputation. Finally, we must design proactive reputations to
minimize computation and bandwidth overhead.

In this work, we assume that proactive requests are sent as
anonymous messages, and focus on addressing the challenge
of hiding proactive requests inside application traffic. In
the remainder of the paper, we present an architecture for
proactive requests and evaluate its effectiveness at evading
detection. While this approach does impose communication
and computation overheads on the system, a detailed study
of this overhead is the subject of ongoing work.

3. RESISTING TRAFFIC ANALYSIS
In this section, we describe how to generate proactive re-

quests, and consider a variety of metrics to quantify its suc-
cess in evading detection. Consider an initiator, A, that
wishes to test Candidate B’s behavior via proactive requests.
As shown in Figure 1,A will forward a number of anonymous
messages to B, and enlist the help of a third party verifier,
C. Note that C can be a second virtual identity belonging
to the same user as A. For simplicity, we assume that each
proactive request fits inside a single overlay message.

Peer B can easily detect anonymous proactive requests in-
jected into the network, since they stand out from traffic with
associated identities. Once detected, a malicious node can
temporarily behave well to boost its reputation. To make
proactive requests indistinguishable from normal traffic, we
require that all nodes anonymize a portion of the messages
they originate. The result is that any node will see a mixed se-
quence of normal and anonymous messages. An initiator can
then inject a sequence of anonymous proactive requests that
blend with normal traffic. From the perspective of the tar-
get peer, it should be very difficult to distinguish statistically
whether an anonymous packet is part of a proactive request,
or simply part of a peer’s anonymized outgoing traffic.

A proactive reputation scheme should be resilient to traffic
analysis by the target peer. While the target peer can monitor
all transaction requests it observes in the network, it should
not be able to distinguish between normal application traffic
and the proactive requests. As a result, proactive reputations
would not only be able to detect malicious behavior, but also
encourage peers to participate honestly at all times.



0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 1
1 0 1 1 0 0 1 0 1 1 0 1 1 1 1 1

Injected
Requests

After

Before

Figure 2: A binary representation of the distribution of anony-
mous messages inside a finite sized history window. The target
node can compare a window of recently seen messages against
a reference window to detect proactive requests.

3.1 A Stream Similarity Metric
With this goal in mind, we investigate several metrics that

could be employed to accurately assess the generation of
proactive reputations. Our objective is to quantify how “ran-
dom” a stream of open and anonymous requests looks to
the target. Assuming that proactive requests are indistin-
guishable from normal traffic at the application level, we use
binary values of 0 and 1 to represent open or anonymous
requests received by the target peer. To detect proactive re-
quests statistically, the target peer would maintain a window
of recently observed requests, and compare its rate of anony-
mous versus normal messages against a reference window of
“normal” traffic. As shown in Figure 2, if the current window
of messages differs substantially from the reference window,
the target can assert that it is being probed with proactive
requests, and behave differently.

We investigated three different information theoretic mea-
sures as possible metrics for a target peer to use in detecting
proactive bursts in the transaction stream. These metrics are:
conditional entropy, relative entropy (or Kullback-Leibler (KL)
distance), and histogram similarity. These metrics measure
the statistical similarity between two streams, and can be
used to estimate the resilience of a stream containing proac-
tive requests against statistical traffic analysis. In each case,
the buffer of recent messages is used to gather statistics on
the current message stream. A larger buffer provides a bigger
dataset and increased accuracy in extracted statistics.

A distribution’s entropy is a measure of the randomness it
contains. The first metric we examine, conditional entropy,
measures the likelihood of predicting the (N + 1)th value
given the last N values. Given the target peer’s buffer of
recent messages, this metric represents the amount of auto-
correlation in the incoming stream, but not the statistical
similarity between two streams.

A more appropriate metric is the relative entropy or the
Kullback-Leibler (KL) distance, an entropy-based measure
of dissimilarity between two probability distributions. The
KL-divergence metric, however, is known to lack robustness
to small sample set sizes. Given that history buffers at target
nodes are finite in size, this metric is unlikely to produce the
most efficient detector of proactive requests.

Our ongoing search led us to the related areas of multime-
dia databases and bioinformatics, where similarity metrics
are used to index and retrieve documents, images, musi-
cal pieces, and biological sequences [7, 8, 15, 19]. Simi-
larity between data sets is determined using frequency his-
tograms. Histogram similarity metrics include weighted Eu-
clidean distance, square distance, and absolute difference.
Smaller values from these measures indicate a higher level
of similarity between two streams.

As shown in Figure 2, we need to determine the similarity

Parameter Range Default
Size of network 50-100 50
# of transactions 100-10000 5000

Proactive burst size 0-70 40
Window Size 50-500 100

Anon. rate (Model 1) 0-70 30

Table 1: Simulation Parameters

between two traffic streams observed by the target peer: a
normal application traffic without proactive bursts and the
current traffic stream possibly injected with bursts of proac-
tive requests. We found histogram similarity metrics to be
the best solution currently available, and will discuss their
use in more detail in Section 4.

3.2 Producing Anonymous Cover-Traffic
We now present a set of mechanisms to shape normal

application traffic in order to provide sufficient cover for
anonymous proactive requests. For simplicity, we assume a
uniform request rate across the nodes in the network.

We now describe three candidate models that determine
how nodes in the network anonymize their outgoing traffic.
In the first model, each peer in the network anonymizes out-
going traffic at a predefined constant rate. We will investigate
the effectiveness of this model for a range of anonymization
rates. In our second model, peers in the network vary their
rate of anonymous transactions at some predefined time inter-
val. The rate of change per hour is randomly chosen across
a predefined range, e.g. 20-80%. Finally, we consider a
third and most fine-grained model of traffic anonymization.
In this model, peers dynamically define a random number of
messages N and a random anonymization rate R for these
messages. The peer applies R to the next N incoming mes-
sages, and then resets both values.

Our objective in developing these models is to choose the
optimal anonymization scheme that will allow a peer to inject
the maximum sized burst of proactive requests to a target
peer without detection. Therefore, our metric of success is
how large of a consecutive burst of proactive requests can be
injected before the target peer successfully detects a change
in stream statistics.

Our proposed methodology is presented in Figure 1. The
source node sends a burst of anonymous proactive requests
to the target peer. The requests are routed by the network
overlay to the target peer, and mixes with normal application
traffic from other peers. Our traffic anonymization models
result in a mix of anonymous and open messages seen by the
target peer.

4. EVALUATION
In this section, we evaluate our methodology by perform-

ing two sets of initial experiments. Our goal is to quantify
the effect of specific anonymization models and system pa-
rameters on the ability of a candidate peer to detect proactive
requests.

4.1 Simulation Setup
We have implemented a simulator in NS-2 using OTcl and

C++. Table 1 summarizes the main simulation parameters
and the range of values tested. These ranges were selected
based on their coverage of the likely performance characteris-
tics. In addition to these parameters, networks of nodes were
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Figure 3: The effect of increasing anonymous rate and burst
size on the preset anonymous rate model.

constructed using GT-ITM-based topologies [4]. In these
networks, approximately 25% of the nodes transact with the
target peer as part of normal application execution. The tar-
get peer processes approximately 5,000 transactions in each
simulation run. Each data point in our figures represents the
average value of three randomized runs.

The main focus of our evaluation is to determine the simi-
larity between two traffic streams observed by a target peer:
a normal application traffic stream, and an application traffic
stream with injected bursts of proactive requests. We pro-
pose three models of application traffic: a preset anonymous
rate, a per-hour anonymous rate,and a per-set-of-transactions
anonymous rate. A traffic stream is modeled as a a series of
binary values, a “0” represents an open transaction and a “1”
represents an anonymous transaction.

Out of the three candidates described in Section 3, we
choose the Absolute Difference (AD) metric for our experi-
ments. First, the weighted Euclidean distance does not apply
to our data set, since we give equal weight to all data values.
Second, because our data streams are composed of binary
values, the square distance and absolute difference metrics
will produce identical results.

Let Ha(j) represent the histogram bin value of the j con-
secutive 1s in the application traffic. That is, Ha(1) would
be the frequency count of single 1s in the traffic stream;
Ha(2) would be the frequency count of two consecutive 1s
in the stream; and so on. Similarly, let Hp(j) represent the
histogram bin value of j consecutive 1s in the application
stream with proactive bursts. We define the Absolute Differ-
ence (AD) metric as:

AD =
N

X

j=1

| Ha(j) - Hp(j) | (1)

The maximum number of histogram bins is represented
by N. This maximum number of bins would be equal to
the window size at the target peer because the target could
observe a stream of consecutive 1s equal in length to the
window size. The smallest values of the absolute difference
metric represent the best similarity of the two data streams.
Therefore, a good proactive reputation generation scheme is
one that ensures low absolute difference values.

4.2 Simulation-Based Experiments
Our first set of experiments evaluates the preset anonymous

rate model. In this model, each peer in the network transacts
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Figure 4: The effect of increasing window sizes on the preset
anonymous rate model.

anonymously at a predefined rate, X. This rate varies from
10% to 70% of the total number of transactions.

Figures 3 and 4 illustrate the effect of increasing the rate
of anonymous transactions, burst size, and window size on
the preset anonymous rate model. As seen in Figure 3, small
proactive bursts are better hidden than large bursts. Ad-
ditionally, small bursts are better hidden as the number of
anonymous transactions increases. With an anonymous rate
greater than 70%, small proactive bursts show a near zero
absolute difference value, indicating that they go essentially
undetected. On the other hand, large bursts perform poorly
with low anonymous transaction rates, but are better hidden
as the amount of anonymous traffic increases. As expected,
hiding proactive requests is much easier among a high per-
centage of anonymous transactions.

The next experiment evaluates the effect of the size of a
target peer’s buffer window size. A larger buffer window
should give the target peer a better chance of identifying
traffic as active probes.

Figure 4 illustrates the effect of varying the window size
on the preset anonymous rate model. In this experiment, we
employ two window sizes of 50 and 100 transactions. We
maintain a 30% anonymous rate for the experiment. For each
window size, there is an increase in the absolute difference
value as the burst size increases. This result occurs because
a 30% anonymous rate is able to hide small bursts but is not
effective for large bursts. With an increase in window size,
the absolute difference values between the normal application
stream and the proactive stream increases. With a larger
buffer, a target peer is better able to detect that it is being
probed for reputation assessment. We observe similar results
when varying the window size for the per-hour and per-
transaction-set traffic models.

Our final experiment compares the three models of gen-
erating application traffic. This comparison is conducted
with respect to the size of proactive bursts. The traffic gen-
erated by the three models, before proactive bursts are in-
serted, is modeled as follows. For the preset anonymous
rate model, each node in the network overlay generates ap-
proximately 30% anonymous traffic. For the per-hour and
per-transaction-set anonymous rate models, the rate varies
randomly between 20% and 80% per hour, and per set of
transactions, respectively.

Given the three anonymization models, we examine the
effect of varying the length of proactive bursts injected into
the network from 10 to 70 messages. The target peer main-
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Figure 5: A comparison of the three application traffic models.

tains a window size of 100 transactions. The experiment
proceeds by having network overlay nodes conduct normal
transactions, open and anonymous, as modeled by the ap-
plication traffic models. Proactive requests targeted towards
a specific peer are routed by overlay nodes, and reach the
target depending on the network topology and background
traffic.

As seen in Figure 5, the per-hour and per-transaction-set
models perform significantly better than the preset model.
As observed earlier, a fixed anonymous rate of only 30%
performs poorly with increasing burst sizes. Thus, higher
burst sizes result in a more dissimilar stream than lower burst
sizes. The second and third models, however, continue to
perform well, even with higher proactive burst sizes. This
result occurs because both models are more dynamic than
the first model. Each peer generates anonymous transactions
at a different rate, and varies this rate over each hour or over
a specific set of transactions.

Finally, we can make two interesting observations from
these results. First, we were moderately surprised to see that
the per-transaction-set did not perform significantly better
than the per-hour model. It seems that the mixing of streams
prior to arrival at the target produced sufficient statistical
variance to cover the proactive requests. Second, both per-
hour and per-transaction-set models saw little change across
different sized proactive bursts. While these results are gen-
erally positive, we are running more detailed experiments in
order to better understand their underlying factors.

5. DISCUSSION
While this paper discusses the high level concepts related

to proactive reputations, the details of a number of issues
remain the focus of ongoing work.

Minimum Anonymity Required. In this paper, we assume the
availability of a fully anonymous routing layer and focus on
the challenge of hiding proactive requests inside application
traffic. One interesting question is, how much anonymity is
required to satisfy our requirements for evading detection?
While prior work on anonymity measures anonymity against
powerful colluding attackers, we require a much weaker level
of anonymity. Given the number of network messages, a
target peer cannot expend significant resources to determine
the source of a single request. Therefore, simple forwarding
through one or more relay peers (who can be secondary
identities for the same physical user) should suffice.

Integration into Global Reputations. Proactive reputations
augment traditional global reputation systems with on-demand,
first-hand transaction feedback. They can provide guidance
to peers interested in interacting with a target peer, but are
specific to the peer who initiated the requests. Ideally, they
should be integrated into the global reputation for the tar-
get peer so that other peers can benefit from a more reliable
global reputation value.

An interesting question is how to integrate proactive repu-
tations with global reputations while avoiding vulnerability
to collusion. For example, a colluding peer could offer strong
support for a malicious peer in the form of positive proactive
reputations. We believe that integration should be handled on
a per-peer basis, where a peer, A, interested in the reliability
of peer, B, can access both B’s global and per-peer proactive
reputations, and use its own discretion in discarding or using
any of the proactive values.

6. RELATED WORK
Several reputation systems have been proposed to discour-

age maliciousness and motivate trustworthiness and coopera-
tion in P2P networks [1, 9]. Protecting these systems against
the Sybil attack [12] remains a significant challenge [6].
Some solutions address the problem of false ratings and dy-
namic peer personalities [3, 25, 26]. Finally, controlled
anonymity has been shown to avoid peer discrimination [10].

Research on similarity-based data retrieval and indexing
has led to metrics that measure similarity between docu-
ments, images, musical pieces, and biological sequences [7,
8, 19]. Multimedia databases use histogram-based simi-
larity metrics for image retrieval [15], while entropy-based
metrics are used to determine stationarity in Internet mea-
surements [18].

Finally, extensive work exists on the subject of anonymous
communication. A majority of these projects use the Chaum-
Mix [5] model, including Onion Routing [20], Tor [11], and
most recently, Cashmere [28]. In addition, P5 [23] and
Herbivore [24] use the dining cryptographer model.

7. CONCLUSIONS
High churn rates in dynamic networks pose a serious chal-

lenge to the adoption of reputation systems that depend on
long-term state for accuracy. In this paper, we propose a
novel approach of quickly generating reliable reputations
through the use of proactive transaction requests. By blend-
ing in with ordinary application-level traffic, these verifi-
able requests provide a first-hand estimation of the reliabil-
ity and trustworthiness of unknown peers. To ensure that
these requests are treated like normal application requests,
we anonymize them and provide cover traffic by anonymiz-
ing a portion of normal application traffic. We use a stream
similarity metric to evaluate the effectiveness of these ap-
proaches and conduct initial experiments to measure their
resistance to detection. For low window sizes, our results
demonstrate that bursts of proactive requests blend in well
and are nearly undetectable under traffic analysis by target
peers.

We note that this work focuses on the feasibility of adopting
long-term reputation systems for high-churn networks, and
does not address other shortcomings of general reputation
systems. These include vulnerability to collusion attacks, as
well as attacks based on dynamic peer behavior, where an



attacker behaves well in order to build a sufficient reputation
to launch a single focused attack. Addressing these vulner-
abilities using proactive reputations is the topic of ongoing
research.
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