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ABSTRACT
Much work has been done to address the need for incentive models
in real deployed peer-to-peer networks. In this paper, we dis-
cuss problems found with the incentive model in a large, deployed
peer-to-peer network, Maze. We evaluate several alternatives, and
propose an incentive system that generates preferences for well-
behaved nodes while correctly punishing colluders. We discuss
our proposal as a hybrid between Tit-for-Tat and EigenTrust, and
show its effectiveness through simulation of real traces of the Maze
system.

1. INTRODUCTION
File-sharing networks such as KaZaA and Gnutella have

popularized the peer-to-peer (P2P) resource sharing model.
In these large and distributed networks, there are a lot of
free-riders who consume without sharing. Numerous re-
search efforts have focused on the use of incentive systems
to encourage sharing among users. Despite the effectiveness
of these incentive systems, they are generally vulnerable to
variants of the Sybil Attack [5]. In a Sybil attack, users take
advantage of the zero-cost nature of online identities to create
multiple identities. These online identities can then actively
collude to cheat the incentive system.

Maze[18][19] is a large and deployed P2P file sharing net-
work and it has a simple incentive mechanism that imposes
service differentiation with a simple point system. This point
system tallies a peer’s net contribution in its entire history
as its point. By examining detailed logs over a long enough
period of time, it is evident that colluders use variations of
Sybil attack to exploit the weakness of the incentive system.
This, in addition to the longstanding problem of free-riding,
propels us to design the next generation incentive system for
Maze.

We borrow the core principle from the Tit-for-Tat strategy
and link reputation and incentives together: by collaborat-
ing with more reputable peers it is possible to improve a
peer’s own reputation and thus the service it gets in return.
However, mechanisms based on purely private history do not
scale: coverage will be so small that cheaters are indistin-
guishable from good peers. A practical solution is to leverage
other peers’ opinions and gradually move from private his-
tory to shared history. Our study shows that if shared history
is employed in its uttermost form as proposed in Eigen-
Trust[9], the system is vulnerable to other problems. Our
multi-trust mechanism is designed to achieve the best bal-
ance between the two extremes. We have performed detailed
simulation that validated our algorithm. The new mechanism
is implemented and ready to be deployed.

In the remaining of this paper, Section 2 discusses related
work. Section 3 introduces Maze system and the collusion
cases we have found, followed by discussions of potential
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Figure 1: The category of incentive algorithms and
examples

problems of Tit-for-Tat and EigenTrust. Section 4 discusses
the design of the multi-trust algorithm, from its mathematical
form to implementation consideration. Section 5 evaluates
the multi-trust algorithm using trace driven simulation and
verifies its effectiveness. We conclude in Section 6.

2. RELATED WORK
Nielson et al. [14] classifies incentives into two categories.

The first type is genuine incentives as exemplified by incre-
mental block exchanges in BitTorrent[3]. This mechanism
works well when the file is hot and there are many concurrent
users in a session. However, our experience with the Maze
system has been that the distribution is heavily long-tailed, on
one typical day we found around 80% downloading involves
at most one downloader. We conjecture that this is com-
mon for other file sharing networks. Such long-tail behavior
requires the incentive system to record current behavior for
future reference. This type of incentive is termed as artificial
incentives, and must be based on observed history. History
can be harnessed in different ways, Feldman et al. [6] clas-
sify into private history, shared history, and subjective shared
history(Figure 1). Basically, private history means a peer re-
wards other peers with which it has good experience. Shared
history looks at the overall contribution of a peer by sharing
private history among peers. In subjective shared history, a
peer’s reputation is given by the local trust value assigned
by other peers, weighted by the reputations of the assigning
peers.

Systems based on private history generally do not scale,
although it has already been deployed in successful systems
such as eMule[10] and BitTorrent[3]. In a large network,
each peer can only interact with small percentage of peers[4].
Scrivener[15] proposes to use transitive trading to scale the
relationship, but the complexity is to find a valid path, which
becomes increasingly difficult when the system scales up. A
related problem is that rigorous schemes as such could also
degrade system performance in general, as pointed by Gane-
san[8]. Many systems thus propose to let peers share their



own experiences to rank other peers [4][12][16][18][19].
However, shared history introduces the collusion prob-

lem. Colluding peers can forge shared history to increase
each other’s points or rankings. We have found active col-
lusion in Maze[11], the result of which motivates this work.
In general, a more sound solution is to use subjective shared
history, as proposed by maxflow[6] and EigenTrust[9]. Peers
in maxflow rank other peers using its own perspective, while
the entire system ranks all peers globally in EigenTrust.
Maxflow is ideal, but is prohibitively expensive for real sys-
tems. As we have experimentally verified, subjective shared
history has its own problem of false negatives and false pos-
itives.

3. BACKGROUND: MAZE AND EIGENTRUST

3.1 The Maze Peer-to-Peer System
Our work builds on the Maze[18][19] P2P file-sharing

system. Maze is a large deployed file sharing system with
more than 1.4 million registered users. An average of 30,000
peers are online at any time, and roughly 13TB of data are
exchanged daily. We have included the transfer log upload
mechanism in our client side software, so that our log collec-
tion server can get the complete trace data we need for this
paper. We begin with some background on the current Maze
incentive system and the observed collusion behavior.

3.1.1 The point incentive system
Maze currently operates using a point system, where peers

consume points by downloading files and earn points by up-
loading files. Download requests are queued according to
their points: requestT ime − 3 · log10 P , where P is the re-
questor’s point total. Frequent uploads provide peers with
higher points and faster downloads. Since the Maze cen-
tral server audits all transfers and tallies points accordingly,
Maze’s incentive policy is in the shared-history category.

While simple, this system faces two issues. First, do we
keep the assignment of points as a zero-sum game, where
the points lost by one peer is gained by the other? Enforcing
such a policy imposes hardships on peers with slow links
and those who hold many unpopular items. As a result, the
Maze community discussed and voted for a rule which gives
uploading more points than downloading in order to encour-
age uploading. This enables more flexibility, but has the side
effect of allowing two interactive peers to create a net gain in
points after mutual interaction. The other issue is bootstrap-
ping points for new peers. Peers must have sufficient initial
points to download content for it to share later. In the current
system, Maze allows peers to download at least 3GB of data
before its downloads are throttled at 300 kbps.

3.1.2 Existent cheating
To understand the impact of these incentive mechanisms

on user collusion, we analyzed the complete log of all trans-
actions in the Maze system over a one month period. By
examining every transaction between all peers, besides the
expected free-riding behavior[19] and user whitewashing[7],
we found empirical evidence of user collusion as below.
More details can be found in [11].
Pair-wise collusion: Two colluders mutually exchange large
amounts of data to increase points for each other. This be-
havior exploits net point gain from mutual transactions, and
is the simplest case used by most of the colluders.
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Figure 2: Result of applying EigenTrust to Maze
logs. The figure shows two bands of users: those in
the satellite cluster (lower half) and everyone else.
Satellite users are punished as one group of collud-
ers, even if some user (local distributor) have high
contribution to those within.

Spam account collusion: A colluder registers a number of
“spam” accounts, uses them to download data from the main
account, thereby transferring spam accounts’ initial points
to the colluder’s main account. This collusion is a form of
whitewashing that allows whitewashed points to be collected
at a single user.

3.2 The limitation of other incentive systems
To reduce user collusion, we examined a number of al-

ternative incentive designs, mainly focusing on variations of
Tit-for-Tat and EigenTrust. We briefly describe our thoughts
on the strengths and weaknesses of each that motivated us to
design an alternative incentive system.

3.2.1 EigenTrust
EigenTrust works similar to the PageRank[2] algorithm

used by Google. The page link in the PageRank algorithm
becomes traffic flow in EigenTrust. EigenTrust falls into
the subjective shared-history category, and assigns each peer
a global EigenRank value by computing the left principle
eigenvector of the trust matrix transit MT . Mi,j is the rank
of j from i’s perspective. Our offline calculations show that
EigenTrust helps to punish colluders in Maze, but suffers
from both false negatives and false positives.

False negatives: We observe that the distribution of points
across users is highly skewed. A number of super peers
provide a large number of uploads to many users while only
downloading infrequently. Because of their high reputation
values, their random downloads from a colluder immediately
boost the colluder’s reputation. Larry is a spam account
colluder that we detected. , e.g. Most of Larry’s 30GBs
uploads are to other colluders, but 200MB uploads to some
reputable peers boosts his rank nearly 100 times from 7.4 ·
10−8 to 8.2 · 10−6(Fig. 2). Another 734KB upload to one
super peer further promotes its rank to 6.6 · 10−5. With these
“leg-hugger” uploads, Larry gets a higher rank than most of
peers who upload more than 30GB to legitimate users.

False positives: Systems like EigenTrust can unfairly pun-
ish peers inside satellite networks such as college networks.
As shown in Figure 3, a college network as a whole consumes
by downloading much more than it uploads, but still performs
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Figure 3: Satellite cluster example.

a large amount of exchange among members. EigenTrust
treats the entire college as a collusion group. Roughly 5%
of users in our dataset are inside these “satellite” clusters.
EigenTrust generally ignores internal transactions and ranks
most peers similarly. As a result, those that contribute heav-
ily within the cluster – we call such peer local distributor –
will be unfairly punished. For example, two local distributors
who upload more than 300GB are ranked equally to an out-
side peer who uploads less than 10GB (Fig. 2). This implies
internal peers should trust outside peers instead of nearby
peers. In addition to being incorrect, this result destroys
any attempts to leverage network locality for more efficient
bandwidth utilization. Transfers will traverse the bandwidth
limited wide-area links rather than higher throughput internal
links.

3.2.2 Private history coverage problem
Solving the satellite cluster problem requires that peers

utilize personalized rankings. The simplest and best-known
personalized rank algorithm is the private history based Tit-
for-Tat. Basically, a peer gives higher priority to those that
it has successfully downloaded before. However, purely
private history does not scale. In a large network, peers may
interact on an infrequent basis with many others. If private
history covers a very small percentage of peers, a cheater is
indistinguishable from a good peer.

Our simulation results confirm these expectations. It shows
that even with long private history it is difficult to improve
coverage. A one month download log only enforces Tit-
for-Tat to only 2% of a peer’s upload, and the other 98%
uploads are just blind upload, i.e., peer have no opinion of
the requesting peer. The blind uploads bring a lot of oppor-
tunity for free-riders. In a very large p2p sharing system, it is
enough for one free-rider to get enough benefit by cheating
every peer only once[8]. This encourage peers to create more
accounts than establishing long term trust relations.

4. DESIGNING MULTI-TRUST INCENTIVE
Tit-for-Tat [1][3] links incentive mechanisms with reputa-

tion: by collaborating with more reputable peers it is possible
to improves a peer’s own reputation and thus the service it
gets in return. The main problem of purely private history is
its coverage, and resolving it requires leveraging other rep-
utable peers’ history. Pushing this direction to its extreme,
however, arrives at the EigenTrust mechanism. Our multi-
trust solution attempts to achieve a balance in between. We
will now discuss the core algorithm and its implementation.

4.1 A Mathematical Discussion of Multi-trust
Incentive

Let M be a N × N matrix that defines a one-step rank
among peers, i.e., Mi,j is peer j’s rank from i’s perspective.
In practical terms, this can be measured as the normalized
download volumes that i has received from j during a period

of T . e.g. k has uploaded ten times more than j does to
i, then Mi,k = 10Mi,j , and

P
j Mi,j = 1. This is actually

Tit-for-Tat, and the matrix is sparse because it only covers a
peer’s immediate friends as non-zero entries.

Similarly, the two-step rank matrix (one-level indirect trust)
can be expressed as M2. The entry (M2)i,j aggregates other
peers one-step rank to yield the rank of j from i’s perspective.
For instance, if Mi,j is 0.5, and Mj,k = 0.1, then (M2)i,k is
added by the value of 0.05, and this is to be performed for
all such j. This produces two effects. First, the coverage
of the rank matrix gets larger as it becomes exponentially
less sparse. Second, the rank starts to mix in more and more
peers opinions.

In general, we can obtain the n-step rank matrix by con-
tinuing the above steps. The coverage continues to increase
and the rank becomes more and more global, moving towards
shared history based algorithm. In fact, M∞ is exactly the
EigenTrust matrix, and the entries in each column are the
same and the matrix can be collapsed into the EigenTrust
vector: every peer has the same rank on any other peer, and
the vector offers complete coverage.

The above discussion reveals that this series of rank matrix
gives a full trust spectrum, with Tit-for-Tat and EigenTrust
as two extreme ends. The insight here is that, when deriv-
ing incentive metric for service differentiation, we need to
consider – ideally – all these matrices instead of one. The
immediate friends form the first tier, friends’ friends form
the next, and so on. Each matrix precisely represents the
trust a peer imposes on others at a different level, and as the
levels go deeper, the ranking become more global and less
private. We can not use M since its coverage is too small, and
likewise M∞ is also insufficient since, as we have discussed,
EigenTrust is vulnerable to a number of issues.

Our multi-tier incentive scheme essentially imposes ser-
vice differentiation by looking at which tier j falls into when
its downloading request arrives at i. The smaller level it
belongs to, the higher priority it is given. Within the same
tier, two peers will be ranked according to their values in the
matrix of that tier. Obviously, i only needs the i-th row of
the matrix series, and for all practical purposes we only need
small number of levels.

4.2 Implementation
The multi-level trust model can be easily implemented in a

distributed manner. For a duration of t, peer i computes Mi,∗
by normalizing all the downloads it has had. Periodically,
it will ask those immediate friends (i.e. non-zero entries
in i’s M row) for their Mj,∗ row, and thus enables it to
compute its own (M2)i,∗ row. This procedure can be repeated
iteratively, in the sense that as long as i can get (Mk)j,∗ from
its immediate friends, it can compute (Mk+1)i,∗.

This fully distributed algorithm is very practical when the
level is small. From the Maze log, we found that the average
size of a peer’s immediate friends for one day is about 36.
Getting all the 36 friends Mj,∗ rows thus amounts to less
then 32KB total. It is still manageable for level two, where
it becomes about 1MB and daily update does not impose
a significant overhead. However, cost progressively grows
when moving to higher levels. Nevertheless, as our simula-
tion shows later, using two level (i.e. M and M2) already
covers more than 60% of total traffic, because the download
traffic exhibits small world pattern. For all peers that miss
these matrix, we will use M∞ to approximate. Since a peer’s



EigenTrust rank is global, the value is carried along with the
request instead.

From the engineering perspective, we would like to intro-
duce complexity into the real system in a progressive man-
ner. Thus, we have implemented the scheme by calculating
{M, M2, M∞} in the Maze central server. These rows are
then signed digitally and sent to the peers when they start a
Maze session. The computation takes roughly two hour to
complete. At the Maze peers, the service differentiation will
be imposed as before, but now on this new metric instead of
the original points.We plan to measure the effects and then
move on to the distributed version of the algorithm.

We select t to be one day in our implementation. This
duration represents a snapshot and can be too short. Thus,
we aggregate the values of the past two weeks.

5. EVALUATION
Our preliminary evaluation focuses on two aspects of the

multi-trust algorithm. First, we validate that the two-level
rank metrics is capable of boosting the coverage significantly
beyond what a private-history solution can offer. Second,
we show that our mechanism deals with the colluders as
effectively as EigenTrust does while reducing the side effects
such as leg-hugger and unfair punishment of local distributor
within satellite users.

5.1 Coverage experiment
We used one month traffic log to study how the multi-trust

algorithm improves coverage. Applying such policy will
alter the traffic pattern, as source peers will give preference
to those fall in M , and then in M2. The downloading peer
will likewise modify their rank matrix accordingly. Also, the
complete log is too large to be simulated. The amendments
we made are:

• We simulate the 0.84% most popular files which ac-
count for more than 88% of total traffic. This makes
in-memory simulation possible.

• The indexing is perfect and all the replicas are always
available when the request is made. A more detailed
simulation will correlate the request time with the node
churn log.

These simplifications will bring in noises, however our
goal is to have a qualitative understanding of the net effect.
The simulation picks one request, sends it to all available
replicas, each of which will upload equal share to the re-
quester. The metrics that we use is called the trust upload
ratio, which is the volume of traffic that are served by either a
M friend, or a friend that is either a M or M2 friend, over the
total traffic in the system. And we plot both curves as time
progresses. The difference between the two curves give an
idea on how much coverage is expanded by one more level.

In Fig. 4, the x-axis is the wall clock, whereas the y-axis
gives the upload traffic ratio for both M and {M, M2}. As
expected, both curves rise with time. However, M stays
mostly at around 3%, showing the problem of purely private-
history based approach. M2, on the other hand, increase
to about 60%. What that means is that the rest of the 40%
traffic is left to be handled by EigenTrust and subject to its
problems.
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Figure 4: Coverage experiment for one month long
simulation.
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Figure 5: Pair-wise colluder Cindy.

5.2 Leg-hugger and satellite cluster experiment
Since our algorithm does not give a global value like Eigen-

Trust, we must construct our own metric to quantify prefer-
ence between peers. In this experiment, we illustrate peer
preference by subjectively ranking the values of downloaders
from the perspective of the uploader. We generate the ranking
value in two steps. First, we use the completed transactions
in our one month traffic log to calculate a set of ranking val-
ues for each peer. Next, the evaluator node extracts download
requests for the following two week period, and statistically
sorts the requesters into a service queue according to their
local subjective ranking. Peers with lower queue positions
are served first, i.e., higher ranked. Our result uses the peers’
queue positions as a metric to compare each incentive algo-
rithm. Our expected results are that true colluders will have
queue positions no earlier than EigenTrust, whereas local
distributors will move up.

5.2.1 Colluder punishment
In our first experiment, we choose one pair-wise colluder

and spam account colluder, and verify that multi-trust per-
forms as well as EigenTrust. This experiment includes two
target peers, pair-wise colluder Cindy and spam account col-
luder Ingrid.

Pair-wise colluder: (Fig. 5) Cindy downloads from 9
peers during the next two weeks. As we see from the figure,
there are 7 peers punish Cindy in multi-trust as well as Eigen-
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Figure 6: Spam account colluder Ingrid.
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Larry, for both EigenTrust and multi-trust.

Trust. On the other hand, multi-trust allows for both peer 4
and peer 9 to punish Cindy more than EigenTrust. Detailed
analysis show that friends of these two peers moved ahead,
downgrading Cindy as a result.

Spam account colluder: (Fig. 6) Ingrid downloads from
7 peers during the next two weeks. There are 5 peers punish
Ingrid in multi-trust as well as in EigenTrust. Peer 7 punishes
Ingrid more in multi-trust than in EigenTrust. Peer 4 is one
exceptional case. Peer 4 has downloaded 29MB data from
Ingrid, as such it is reasonable for it to get ahead.

5.2.2 Curing the problem of EigenTrust
As we discussed earlier, EigenTrust suffers from false-

negative (i.e. the problem of leg-hugger) and false-positive
(i.e. unfair punishment of local distributor). We select one
leg-hugger peer Larry and another satellite cluster local dis-
tributor peer Wayne. EigenTrust gives them unexpected high
and low rank.

Leg-hugger (Fig. 7) Larry downloads from 73 peers in
the two weeks following our one month traffic log. It gets
high rank in the EigenTrust because of his high rank friend.
In multi-trust his high reputable friend still helps him getting
into 16 (22%) peers’ trust list, but overall he is punished in
all the other peers. Although multi-trust does not completely
solve this problem, the problem is alleviated by 78%. In the
case it is punished, its queue position is increased by more
than a factor of 10.
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Figure 8: Local distributor Wayne. The x-axis is
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Satellite cluster (Fig. 8) Wayne is the local distributor
in one cluster. It downloads from 14 peers in the next two
weeks, among them there are 11 external peers and 3 internal
peers (peer 9, 10 and 13). He is punished by all download
sources in EigenTrust because of his low EigenRank. With
multi-trust, the two internal peers 10 and 13 give him higher
priority. Peer 9 is new to the system and its M consists of
only 3 peers, as such it has not had enough history to elevate
Wayne from its perspective. Although all external peers
rank Wayne fairly low, one of them (peer 8) has directly
downloaded from Wayne from and thus gives its high rank,
illustrating the advantage of the tiered design.

The simulation results show that, multi-trust performs no
worse than EigenTrust in punishing pair-wise or spam ac-
count colluders. Meanwhile, it solves the two problems
brought by EigenTrust, by dropping the high rank of leg-
hugger peer and rising the low rank of local distributor inside
its own satellite cluster.

6. CONCLUSION
Designing a robust incentive algorithm for P2P system is

a challenging research issue. Using the real trace from the
deployed and large P2P network Maze, we present several
collusion patterns found in Maze. We believe that the ex-
isting solutions such as private history-based Tit-for-Tat and
the EigenTrust algorithm each have their own pitfalls. We
propose the multi-trust algorithm as a hybrid that achieves
the best balance.
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