
http://wrap.warwick.ac.uk

Original citation:
Jarvis, Stephen A., 1970-, Foley, B. P., Isitt, P. J., Spooner, Daniel P., Rueckert, D. and
Nudd, G. R. (2008) Performance prediction for a code with data-dependent runtimes. In:
4th UK e-Science All Hands Meeting (AHM 2005), Nottingham, England, 19-22 Sep
2005. Published in: Concurrency and Computation: Practice & Experience, Volume 20
(Number 3). pp. 195-206.

Permanent WRAP url:
http://wrap.warwick.ac.uk/30430

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Publisher’s statement:
"This is the pre-peer reviewed version of the following article: Jarvis, Stephen A., 1970-,
Foley, B. P., Isitt, P. J., Spooner, Daniel P., Rueckert, D. and Nudd, G. R. (2008)
Performance prediction for a code with data-dependent runtimes. Concurrency and
Computation: Practice & Experience, Volume 20 (Number 3). pp. 195-206., which has
been published in final form at
http://onlinelibrary.wiley.com/doi/10.1002/cpe.1191/abstract.

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/30430
http://onlinelibrary.wiley.com/doi/10.1002/cpe.1191/abstract
mailto:publications@warwick.ac.uk

Performance Prediction for a Code with Data-dependant
Runtimes

B. P. Foley∗ D. P. Spooner P. J. Isitt S. A. Jarvis G. R. Nudd

Dept. of Computer Science, University of Warwick, Coventry, CV4 7AL, UK

Abstract

In this paper we present a preliminary predictive model for a key biomedical imaging application

in the UK e-Science IXI (Information eXtraction from Images) project [1]. This code represents a

significant challenge for our existing performance prediction tools as it has internal structures that

exhibit highly variable runtimes depending on qualities in the input data provided. Since the runtime

can vary by more than an order of magnitude, it has been difficult to apply meaningful quality of

service criteria to workflows that use this code. The model developed here is used in the context of

an interactive scheduling system which provides rapid feedback to the users, allowing them to tailor

their workloads to available resources, or to allocate extra resources to scheduled workloads.

1 Introduction
For grid applications to function efficiently, they

rely on middleware services to manage resources

and allocate them to tasks amongst variable and

unpredictable application workloads. Tools that

measure the performance of various resources and

estimate the runtimes of tasks on these resources

can provide essential data that enable Grid sched-

ulers to perform more efficient task scheduling,

and make it possible to deliver sustainable Qual-

ities of Service.

Previous performance work at Warwick has fo-

cused on performance prediction with a tool called

PACE [2] and an adaptable scheduling system

called TITAN [3]. The PACE tools assist the user

in generating analytical performance models that

can account for the computations, network com-

munications and cache utilisation of an applica-

tion. The evaluation of these models allows the

performance and scalability of parallel applica-

tions to be estimated on different architectures. TI-

TAN is a scheduler that creates schedules from

groups of workflows by allocating them to nodes

on the local cluster and by using a genetic algo-

rithm continually refines that schedule. The ge-

netic algorithm is aware of QoS requirements for

a workflow and its adaptive nature allows it to re-

spond to changes in resource availability almost in-

∗High Performance Systems Group, Dept. of Computer Sci-

ence, University of Warwick, Coventry. Email: {bfoley,
dps, pji}@dcs.warwick.ac.uk

stantly.

Here, we describe two improvements to this sys-

tem. The first is a demonstration of how PACE

models can be extended to cope with applications

whose runtime varies significantly depending on

the kind of data provided. The application used for

this is nreg, a tool developed as part of a UK e-

Science medical imaging project. This IXI project

[1] demonstrates how grid-computing technologies

can be used to enable large scale image processing

and medical image analysis. Connectors in IXI’s

workflow manager can submit jobs to dedicated

clusters, Condor-managed workstations, or to the

National Grid Service.

Secondly, we show that when rapid performance

prediction is available, it is possible to develop

tools that allow the end user to experimentally con-

struct workflows and let the scheduling and predic-

tion systems provide preliminary estimates on how

long the workflows will take to complete. The user

can then examine this schedule and decide whether

or not it meets their requirements. If it does not,

they can modify the workflow as they see fit, ei-

ther in the hope of doing extra useful work, or of

getting usable results back more quickly. As the

workflow changes, the predicted schedule updates

with it and this closing the loop between the user,

application and scheduler allows the both the user

and scheduler to provide valuable feedback to each

other that would not otherwise be available to the

other.

2 nreg Image Registration
nreg is a medical imaging tool [4] used to per-

form non-rigid registration on pairs of 3-D MRI

scans. It differs from other registration algorithms

in that it uses a mesh of B-splines to capture both

local deformation and global motion between the

two images and its similarity measure is based on

normalised mutual information which allows it to

align images from different MRI modalities such

as CT, MR and PET. It has been shown to be

highly effective at compensating for misregistra-

tion in breast MR images and for isolating tumour

growth for visualisation purposes.

The use of B-splines has desirable numerical

attributes, including smoothness, continuity, and

the property that moving a control point only af-

fects the transformation in the local neighbourhood

of the control point, making it computationally

tractable to use large numbers of points.

2.1 The algorithm

The core of the algorithm is a gradient descent op-

timisation with thousands of degrees of freedom

(three for each control point). The algorithm fits

a uniform mesh of control points onto the 3-D im-

age. A function called EvaluateDerivative
is called for each control point to experimentally

move them by a fixed step-size in the x, y and

z axes, and measure the effect of this motion on

the transformation using a fitness function. If

there is an improvement, the best set of motions

is kept. This process is controlled by a function

called EvaluateGradient and if it judges that

there is sufficient overall improvement (ie we are

on a sufficiently steep path in our multidimensional

space), the fitting process is repeated for another it-

eration.

When the fitting yields little or no improvement

over the previous results, the process of iteration is

stopped, the step-size is halved and a new round of

fitting is performed. Once the step-size reaches a

certain threshold, significant improvements in the

fitness of the transformation are unlikely to occur

and the optimisation is halted.

To account for global motion as well as local de-

formations, this entire optimisation process is pe-

formed at several different image resolutions, start-

ing with a low resolution image and repeatedly

doubling the image resolution. After each optimi-

sation, the number of points in the mesh is doubled

in each dimension and a B-spline subdivision algo-

rithm is used to insert the new points.

The fitness function consists of two components:

the first imposes some costs on the transformations

to make sure they are well formed. For example,

one cost encourages smoother transformations by

calculating a 3-D analogue of an equation that de-

scribes the bending energy of a thin sheet. Trans-

formations that require more bending energy (and

are therefore have more local irregularities), are pe-

nalised.

The second component is a technique for mea-

suring the similarity between two images. It cal-

culates the normalised mutual information of the

two images, a statistical measure from information

theory that quantifies how much information one

image contains about the second.

2.2 Computational Costs
The runtime of nreg is limited by the speed of the

CPU and main memory. Upon initialisation nreg
reads two image files into main memory and con-

structs the set of subsampled images that are used

later in the registration process. For images that

take a long time to register this setup phase takes a

negligible amount of the total runtime. Other than

these reads and the final write of the transformation

to an output file no disk I/O occurs.

Several factors account for the bulk of the the

runtime of nreg:

1. All else being equal, the runtime is propor-

tional to the number of voxels in the target

image.

2. All else being equal, the runtime is propor-

tional to the number of control points in the

transformation mesh (i.e., the number of calls

to EvaluateDerivative per iteration).

3. All else being equal, the runtime is propor-

tional to the number of iterations of the fitting

function (EvaluateGradient).

4. For each call of EvaluateDerivative,

there is a fixed cost of computing and then

clearing the overall normalised mutual infor-

mation statistics. This cost is proportional to

the number of control points.

5. For each call of EvaluateDerivative,

there is a highly variable cost associated

with gathering the statistics relating the trans-

formed source.

The first two factors are predictable and can be

reduced to simple analytical expressions.

Intuitively, factor 3 seems very difficult to pre-

dict, as it is related to the overall difficulty in

matching the two images. However, as can be seen

in table 1, although it has a strong correlation to the

Target Source Iterations Runtime

b7 s2 b7 s2 15 3863s

b7 s2 b7 s1 44 14210s

b9 s2 b9 s1 83 26940s

b9 s4 e2 b9 s3 e2 114 4284s

b9 s3 e2 b8 s3 e2 134 3515s

Table 1: EvaluateGradient iterations

runtime, this effect can often be occluded by other

factors.

Factor 4 exhibits some variance depending on

the input images, but it is several times less than

the large differences in runtime in table 1. In fact,

the bulk of the variation comes from factor 5.

Table 2 was generated by running a number of

sample registrations under the profiling simulator

callgrind [5]. Callgrind uses an x86 CPU emu-

lator to execute user processes and accounts for

the number of CPU cycles spent waiting for mem-

ory accesses by simulating the behaviour of the

first and second level caches. The table shows

that while the cost of calculating the statistics

is quite stable, the cost of gathering the image

statistics from the results of moving a control

point is highly variable: in some images it dom-

inates the runtime, for other images it is a much

smaller factor. The table shows only average costs

across the entire execution of the program, but

when parallelising nreg we found that the cost of

EvaluateDerivative varies widely from one

control point to another.

2.3 Parallelisation

Since the runtime of nreg can be extensive (tens

of hours), it may be desirable to have a parallel

version of nreg. Despite the inefficiencies intro-

duced by parallelisation overheads, it can improve

turnaround and resource utilisation in cases where

a user has many free machines and wishes to per-

form small registration workflows. Depending on

the requirements of a workflow, a mix of sequen-

tial and parallel tasks can provide the best overall

use of the system.

The processing performed by nreg as de-

scribed in the previous section is almost entirely

CPU and memory bound, and this lack of I/O re-

moves one potential barrier to a scalable paralleli-

sation. On the other hand, the internal workings

of nreg’s algorithm appear less amenable to par-

allelisation: they involve an unknown number of

iterations of mesh transformation, each dependant

on the last. Furthermore this occurs at several dif-

ferent step-sizes and resolutions.

However, the amount of work done inside each

Target Source Gather NMI eval/clr

b7 s2 b7 s2 721kc/iter 244kc/iter

b7 s2 b7 s1 816kc/iter 254kc/iter

b9 s2 b9 s1 945kc/iter 282kc/iter

b9 s4 e2 b9 s3 e2 99kc/iter 246kc/iter

b9 s3 e2 b8 s3 e2 93kc/iter 286kc/iter

Table 2: EvaluateDerivative costs

iteration is substantial. It involves the experimen-

tal movement of thousands of control points and,

as observed before, the use of B-splines means that

the movement of control points only affects voxels

in the vicinity of those control points. The effect

of each of these movements can be calculated in-

dependently and thus in parallel with all the rest.

The simplest parallel decomposition would involve

dividing the work into N equal pieces and hand-

ing one to each CPU. This decomposition is sim-

ple and needs no communications to arrange, but is

inefficient on hetrogenous systems or systems with

varying load: the overall runtime is limited by the

speed of the slowest CPU. Also our analysis has

shown that the variable cost of gathering the image

statistics means different amounts of work occur

per candidate move, making it impossible to stat-

ically divide up the workload into equal chunks.

This leads us to our current parallelisation tech-

nique: a simple master/slave decomposition of the

workload. Approximately 95% of the application’s

runtime is spent in a very small portion of the code.

The remainder of the code runs identically and in

lockstep on each CPU. When they reach the inner

transform fitting iteration, one CPU (the master),

hands out small packets of work to each of the

slave CPUs in turn. This work involves comput-

ing the effect of moving a small number of control

points. When this work is completed, the results

are passed back and more work is received. When

all the movements for an iteration have been com-

pleted, the master distributes all the results to all

the CPUs. Then every CPU returns to ‘lockstep

mode’, executing the same code as every other un-

til they enter the next iteration.

The code changes needed to implement this

were minimal: about 200 lines of new code were

introduced. As can be seen from table 3, it’s fairly

effective for such a simple parallelisation. It scales

adequately on smaller experimental clusters, but

the scaling is insufficient for a larger production

system, especially for a code that is in principle

quite amenable to parallelisation. However this is

a ‘quick and dirty’ untuned parallelisation and it

is quite probable that further improvements can be

made with little effort.

CPUs Runtime Speedup

1 58320s 1.00x

2 31895s 1.83x

4 19340s 3.02x

8 14045s 4.15x

16 9625s 6.06x

Table 3: Parallel scaling of nreg

3 Predictive model
The workflows that TITAN can currently support

for IXI include nreg and two other codes - BET

[6] and FAST [7]. These pre-process input images

for use with nreg and perform a fixed amount of

per-voxel work that is directly related to the in-

put parameters and size of the input image. They

can be analysed using PACE tools and analytical

expressions for each are readily formed. Perfor-

mance tests reveal that these models yield a high

level of predictive accuracy, with the relative error

of predicted vs. measured execution time typically

less than 10%.

The nreg model is less straight-forward. The

program has been emperically described as ‘unpre-

dictable’ in that the execution time varies widely.

This variation is caused partly by the variation in

the number of mesh fitting iterations that occur and

partly because of the variable amount of work re-

quired to calculate the improvement generated by

moving each point. In some execution scenarios,

there are a large number of very fast iterations of

EvaluateGradient. In other scenarios, the

routine is called far less frequently, but the runtime

is also much slower. From source code analysis,

study of the internal data structures and analysis

of profiling traces, it is apparent that the execu-

tion time of nreg correlates most strongly with

the choice of ‘target’ image. This is the second of

the two input images and is the image that the first

image (the source) is registered against. The sensi-

tivity to the target image is dramatic and can effect

the overall execution time by an order of magni-

tude.

Figure 1 illustrates the variability in the overall

runtime and Table 1 shows the number of iterations

that can occur for different images and how it may

affect runtime. The difficulty in predicting the ex-

ecution time for nreg is related to anticipating,

a priori, how many iterations will occur and their

overall costs.

3.1 Pre-model work parameter

Despite the variations in runtime, we have identi-

fied four classes of execution behaviour. The steps

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

Runtime (sec)

Fig. 1: Runtime variation for different images

between these classes are significant - an average

‘low’ class will run for 2500s on a 2.8GHz P4 ar-

chitecture, while an average ‘high’ class will run

for 18000s on the same machine. TITAN is able

to compensate when tasks complete earlier than

expected (see below) or over-run – so it was felt

that, initially, it was sufficient to attempt to iden-

tify which class the execution belonged to.

One approach to estimating the runtime is to

pre-process the destination image to distinguish

whether it is likely to cause more (or less) work

than other images. Earlier work on PACE ad-

dressed a related problem where a data-dependent

application, a lossless video compressor, per-

formed an inexpensive initial scan over the data

to identify potential features that would affect the

runtime [8]. The result of this analysis yielded a

model parameter than could be used by PACE’s

evaluation engine. Unfortunately, while some

statistics such as intensity variations or various in-

formation theoretic properties can be found in the

MRI scans, these do not (directly) reveal the effect

the image has on the gradient descent solver.

Static analysis of the code revealed that while

data sensitivity is significant, the program’s run-

time is also related to the size of the input image

and the number of control points used. If the image

has smaller physical dimensions (or is of a lower

resolution), there is less work to do. This feature

can be exploited by using nreg itself to gener-

ate the pre-model parameter. Running the program

with a subsampled version of the image, it is pos-

sible to obtain an indicator of execution time and

classify which band the image will fit into.

As can be seen by figure 2, even when two

pairs of images have the same global features (by

virtue of one set being a subsampled version of

the other), the runtime doesn’t simply scale lin-

early with the image size. The scaling factor de-

pends partly on which ‘class’ the target images

fall into. The bounds of this problem are the best

and worst case runtimes for both the actual and

 0.02

 0.04

 0.08

 0.16

 0.32

 0.64

Subsampled by 2
Subsampled by 2 (perfect scaling)

Subsampled by 4
Subsampled by 4 (perfect scaling)

Fig. 2: Runtime scaling with subsampled images

subsampled images. The lowest task-time is by a

‘self-registration,’ that is a registration of an image

with itself. This causes the lowest number of itera-

tions of EvaluateGradient, causing the min-

imum amount work required for a registration in

this class. Conversely, a ‘bad brain’ image, which

has been empirically found, is much more diffi-

cult to correlate and exercises the code closer to

the limits of each iteration. Using these upper and

lower bounds on the execution time it is possible,

by subsampling an image, to hugely shorten the

runtime but still keep the salient features of the im-

age. When compared with the subsampled worst

case registration and subsampled self-registration

it is straightforward to identify a candidate work-

load parameter. Figure 3 shows how effective this

performance prediction technique can be.

 0

 5000

 10000

 15000

 20000

 25000

 30000

Actual runtime (sec)
Predicted runtime (sec)

Fig. 3: Predicted runtimes

With this technique predictions of the overall

runtime can be made at the cost of performing one

self-registration using a subsampled version of the

target registered against itself and one registration

with subsampled versions of the source and tar-

get images. It has been found that subsampling in

each axis by a factor of 4 provides good results,

although it may be possible to subsample further

without sacrificing accuracy. Furthermore, it is a

simple matter to cache the results of each of these

performance predictions. One typical use pattern

of nreg is to register several images against the

one reference image and, in this case, the reference

self-registration only needs to be predicted once.

With speculative execution, as described below, it

is likely that users will add, and then remove, regis-

trations with very long runtimes from their specu-

lative schedules many times, further increasing the

hit-rate of the cache.

Once an expectation of runtime is available, TI-

TAN can manoeuvre the workflows as appropri-

ate. Workflows are constructed using an applet-

based graphical composition tool that communi-

cates with the TITAN service for submission and

monitoring of the workflows.

4 TITAN workflow scheduling
TITAN is a multi-cluster scheduling system that

uses a rapid genetic algorithm to create schedules

in real-time. The operation of the scheduler is de-

scribed in [3]. More recently, the ability to sched-

ule workflows has been added by allowing depen-

dencies to be considered across a process flow [9].

Given an expectation of execution time TITAN is

able to build a series of schedules and evaluate their

suitability according to a fitness function that can

take multiple criteria into account.

In this work, several new features have been

added that allow a degree of interaction with the

user. This uses features already present in TITAN

that were previously not directly available to the

user. An improved front-end has been written that

allows workflows to be constructed, submitted for

execution, and monitored. This resembles many

other DAG construction editors, but with the dif-

ference that these components represent the per-

formance models not the applications themselves.

As a result of this, the user can interactively deter-

mine the resources requirements of the workflow

and verify if it can be run within the desired time-

frame. In practice, rather than requiring ‘yet an-

other workflow editor’, it is more likely that the

services that TITAN exposes would be connected

to the end user’s preferred DAG tool. The IXI

project has a custom workflow builder, the IXI

Workbench [10] and it is planned that TITAN will

be integrated with this.

When a workflow is constructed, the perfor-

mance model for each sub-task is immediately

evaluated against the architecture provided by the

cluster of compute nodes that the scheduler is con-

nected to. This provides rapid feedback to the user

in terms of how long each task will take in isola-

tion, and can be used as the basis for setting real-

istic QoS targets. The user can build up the work-

flow incrementally, and each component will pro-

vide an indication of the CPU time required and

the scalability of the component. Currently, the

front-end assumes that each of these applications

will have an associated performance model. This

is not an assumption that TITAN requires – indeed,

the scheduler can work around tasks in the queue

that do not have such a performance model.

Once the workflow has been assembled, it can be

submitted to the scheduler, and it is possible to do

this speculatively. Speculative tasks are scheduled

like other tasks, but have the lowest possible prior-

ity and are marked as tasks that are never to be exe-

cuted. Tasks with a higher priority will ‘jump over’

these tasks if they block the scheduling queue, de-

pending on the weight attached to deadline.

An accurate runtime estimation for an entire

workflow cannot be obtained using only perfor-

mance data for each task in the workflow: the only

information this provides is how much CPU time

is required by a task and how well it scales. Since

the decision of how best to allocate CPUs to a spe-

cific task can only be made by examining both the

workflow and other workflows in the schedule, pre-

dictions from the performance models need to be

evaluated in the context of a complete schedule.

By speculatively submitting a workflow, the

scheduler is able to optimise the schedule for the

entire workflow by exploring the mapping of sub-

tasks to available hosts. The schedule returned

from a speculative workflow provides an accurate

runtime prediction for the entire workflow with op-

timal selection of the number of hosts each sub-

task will run on.

5 Related work
There are a number of Grid projects that con-

tain workflow composition tools including myGrid

[11], Geodise [12], IXI [1], CAT [13], and Grid-

Service-in-a-Box [14]. The myGrid project is a

toolkit of components for forming, executing, and

managing experiments in bioinformatics. One of

these components, the Taverna workbench [15], is

a graphical tool for building and executing work-

flows composed of local or remote web services

and Java applications. The Composition Analysis

Tool (CAT) enables the formulation of workflows

for scientific computations and business-related

web services. Semantic data associated with indi-

vidual steps and links allows the system to anal-

yse and verify workflows in order to help users

compose complete and consistent workflows. The

Grid-Service-in-a-Box (GSiB) project provides vi-

sual interfaces to a suite of tools for creating, de-

ploying, managing, using, and querying Grid ser-

vices. In addition, GSiB provides a service client

with tools for creating service-based composite ap-

plications by drawing their workflow.

The IXI project have developed a tool, the IXI

Workbench, which provides a web-based inter-

face to nreg. The IXI Workbench consists of a

database used for intermediate storage of images

and web pages providing search and update capa-

bilities geared towards atlas generation. The IXI

Workbench is used in a medical domain, so the

provenance of an image and an audit trail of the

tools used to process it is of particular importance.

The Geodise project aims to build up a service

oriented computing environment for engineers to

perform complicated computations in a distributed

system. A component of the Geodise project is

their Workflow Construction Environment (WCE),

a graphical workflow editor written in Java, used

mainly for workflow construction and runtime job

management [16]. Geodise has a ‘workflow advi-

sor’ which, by using a set of ontologies, guides the

user in workflow construction and in selecting and

configuring the appropriate components.

These projects are similar in concept to the

workflow composition front-end described in this

paper in that they aim to simplfy the creation of

complex workflows by providing graphical tools

for their construction. However, these projects

lack the integration between the workflow compo-

sition front-end and workflow execution environ-

ment provided by the platform described here. The

tight integration between TITAN PACE and the

workflow composition front-end enables the front-

end to provide an estimated execution time for each

subtask within a workflow and an execution time

prediction for the entire flow. This prediction data

is made immediately visible to the user allowing

them to interactively determine how modifications

they make to a workflow impact its execution time.

For applications such as nreg whose execution

time can vary greatly for different input data, the

ability to understand the implications of executing

tasks in a given configuration prior to executing a

workflow can provide significant advantages.

6 Conclusions
This paper presents a predictive model for a med-

ical image registration code. Image registration

alogrithms have a wide range of practical uses in

health care, medical research and drug discovery.

Image registration algorithms are commonly used

in combination with image segmentation algo-

rithms to form image processing pipelines, work-

flows of image processing algorithms that exhibit

a linear flow of data between stages. Predicting

the execution time of this application is particularly

difficult as the execution time is highly dependent

on the input data.

The application’s algorithm is described; its run-

time behaviour is analysed using profiling and

source code analysis; a simple parallel implemen-

tation is developed; and heuristics for estimating

the runtime of the application based on timings ex-

tracted from the registration of subsampled images

are explored.

Also a workflow composition front-end and

workflow scheduling system are presented. The

benefits to the end-user of tight integration be-

tween an interactive workflow environment, per-

formance prediction, and speculative scheduling

are outlined.

Future work will involve a more detailed mod-

elling of nregś performance in concert with more

fine-grained benchmarking of subsampled image

registration. It is envisaged that this scheduling

and prediction work will be integrated into the IXI

Workbench in the near future.

7 Acknowledgements
The authors would like to express our gratitude to

Daniel Rückert and Derek Hill of the IXI project

who provided us with valuable insights into the

nreg code and the IXI Workbench system.

This work is sponsored in part by funding from

the EPSRC e-Science Core Programme (contract

no. GR/S03058/01), the NASA AMES Research

Centres (administered by USARDSG, contract no.

N68171-01-C-9012) and the EPSRC (contract no.

GR/R47424/01).

References
[1] R. A. Heckemann, T. Hartkens, K. K. Le-

ung, Y. Zheng, D. L. G. Hill, J. V. Hajnal, D.

Rueckert. Information Extraction from Medi-

cal Images: Developing an e-Science Applica-

tion Based on the Globus Toolkit. Proceedings

of the 2nd UK e-Science All Hands Meeting,

2003.

[2] G.R. Nudd, D.J. Kerbyson, E. Papaefstathiou,

J.S. Harper, S.C. Perry, D.V. Wilcox. PACE: A

Toolset for the Performance Prediction of Par-

allel and Distributed Systems. Int. J. of High

Performance Computing Applications, Special

Issues on Performance Modelling, 14(3):228-

251, 2000.

[3] D.P. Spooner, S.A. Jarvis, J. Cao, S. Saini,

G.R. Nudd. Local Grid Scheduling Tech-

niques using Performance Prediction. IEE

Proc. Comp. Dig. Tech., 15(2):87-96, 2003.

[4] D. Rueckert, L. I. Sonoda, C. Hayes, D. L.

G. Hill, M. O. Leach, D. J. Hawkes. Non-

rigid Registration Using Free-Form Deforma-

tions: Application to Breast MR Images. IEEE

Transactions on Medical Imaging, 18(8):712-

721, August 1999.

[5] http://kcachegrind.sf.net/

[6] S. M. Smith. Fast Robust Automated Brain Ex-

traction. Human Brain Mapping, 17(3):143-

155, November 2002.

[7] Y. Zhang, M. Brady, S. Smith. Segmentation of

Brain MR Images Through a Hidden Markov

Random Field Model and the Expectation

Maximization Algorithm. IEEE Transactiosn

on Medical Imaging, 20(1):45-57, 2001.

[8] J. D. Turner, R. Lopez-Hernandez, D. J. Ker-

byson, G. R. Nudd. Performance Optimisation

of a Lossless Compression Algorithm using

the PACE Toolkit. University of Warwick Re-

search Report CS-RR-389, 10 May, 2002.

[9] D. P. Spooner, J. Cao, S. A. Jarvis, L. He, G.

Nudd. Performance-aware Workflow Manage-

ment for Grid Computing. The Computer Jour-

nal, 2004.

[10] A. L. Rowland, M. Burns, T. Hartkens, J.

V. Hajnal, D. Rueckert, D. L. G. Hill. Infor-

mation eXtraction from Images (IXI): Image

Processing Workflows Using A Grid Enabled

Image Database. DiDaMIC Workshop - MIC-

CAI, 2004, Rennes, France.

[11] R. D. Stevens, Alan. J. Robinson, C. A.

Goble. myGrid: Personalised Bioinformatics

on the Information Grid. 11th International

Conference on Intelligent Systems for Molec-

ular Biology, Bioinformatics Vol. 19 Suppl. 1

2003, pp.302-304.

[12] http://www.geodise.org

[13] J. Kim, M. Spraragen, Y. Gil. An Intelligent

Assistant for Interactive Workflow Composi-

tion. Proceedings of the 9th International Con-

ference on Intelligent User Interface, ACM

Special Interest Group on Computer-Human

Interaction, 2004, pp. 125-131.

[14] http://www.wesc.ac.uk/projects/

gsib

[15] http://taverna.sf.net

[16] F. Xu, M. Hakki Eres, F. Tao, S. J. Cox.

Workflow Support for Advanced Grid-Enabled

Computing. Proceedings of the UK e-Science

All Hands Meeting, 2004, pp 430-437.

	Abstract

	Introduction

	nreg Image Registration

	Predictive model

	TITAN workflow scheduling

	Related work

	Conclusions

	Acknowledgements

	References

