The HPC Basic Profile and SAGA: Standardizing Compute
Grid Access in the Open Grid Forum®

Chris Smith', Thilo Kielmann®, Steven Newhouse’, and Marty Humphrey®

! Platform Computing Inc, 101 Metro Dr, Suite 540, San Jose, CA USA

2 Department of Computer Science, Vrije Universiteit, Amsterdam, The Netherlands
4 Microsoft Corporation, 1 Microsoft Way, Redmond, WA USA

* Department of Computer Science, University of Virginia, Charlottesville, VA USA

SUMMARY

After seven years of life the Open Grid Forum (OGF), previously the Global Grid Forum, is
beginning to produce standards that meet the needs of the community and that are being adopted
by commercial and open source software providers. Accessing computational resources,
specifically high performance computing resources, is a usage scenario that predates the
emergence of the Grid and is well understood within the community. Building on this consensus
the HPC Profile Working Group was established within the OGF to standardize access to HPC
resources. Its first specification, the HPC Basic Profile 1.0, has been developed and has
established interoperability within the community. Alongside the development of this protocol,
another group within the OGF, the Simple API Grid Applications (SAGA) Working Group has
been defining a programmatic interface relevant to application developers that encompasses
access to compute resources. This paper examines the relationship between the “standard”
protocol of the HPC Basic Profile and the programmatic interface of SAGA to access compute
resources and assesses how well these address the problems faced by the community of users
and application developers.

KEY WORDS: High Performance Computing; Standards; Web Services; Grid; APIs

1 INTRODUCTION

From the early days of the Open Grid Forum (OGF) [1], there has been a particular

* Marty Humphrey was supported in part by the National Science Foundation under grant ANI-
0222571 (NSF Middleware Initiative) and Microsoft Research. The work on SAGA is supported in part
by OMII-UK and the European Commission (via the XtreemOS Integrated Project).

1

focus on standardizing access to computing resources, whether by an end user
submitting work directly to a scheduler or meta-scheduler, or by a meta-scheduler
communicating with other peer or lower level schedulers. It is telling that the first three
documents in the OGF document series (after the three community practice documents
that set out the processes for the document process itself) are “Ten Actions When
SuperScheduling” (GFD-1.4)[2], “Advance Reservation API” (GFD-L.5)[3], and
“Attributes for Communication between Scheduling Instances”’(GFD-1.6)[4]. So how
much progress has been made since July 2001 when GFD-1.4 was published? Does
there exist sufficient specifications in the area of compute grid access that would allow
end users and peer scheduling services to communicate in an interoperable way? Does
there exist a standardized API that facilitates the creation of portable applications that
execute in the context of a compute grid?

In this paper, we describe two recent activities in the Open Grid Forum that form the
basis of standardized access in compute grids. First, we describe the HPC Basic Profile
[5], which is a Web services profile that realizes the vertical use case of batch job
scheduling of scientific or technical applications. Then, we describe SAGA [6][7], the
“Simple API for Grid Applications”, that includes support for job submission and
management. We discuss and evaluate the HPC Basic Profile and SAGA with regard to
the “user” to whom the standard applies (whether a real person or another software
system), the “use cases” that the standard was designed to address, and the particular
maturity level of the given specification. While the HPC Basic Profile and SAGA have
been developed independently (and thus it is inappropriate to believe that one is
necessary for the other or one is even an endorsement of the other), together they
provide complementary capabilities for standardized access to compute grids.

The reminder of this paper is as follows. Section 2 provides the basis upon which we
evaluate the HPC Basic Profile and SAGA. Section 3 describes and evaluates the HPC
Basic Profile, including the Job Submission Description Language (JSDL) [8] and the
Basic Execution Services (BES) [9]. Section 4 describes and evaluates SAGA. Section
5 concludes and gives a brief overview of next steps for the HPC Basic Profile and
SAGA specifications.

2 EVALUATING THE PROGRESS OF STANDARDS FOR
COMPUTE GRID ACCESS

Standards can be challenging to evaluate. In this section, we describe in detail the basis
for evaluating the HPC Basic Profile and SAGA: the user focus (Section 2.1), the use
cases that the standard is targeting (Section 2.2), and the maturity of the specification
(Section 2.3).

2.1 User Focus

Standards specifications need to have a clear idea of who the consumer of a particular
specification will be. It is obvious that the main consumers of a specification will be
software developers who will be implementing the specification, but what kind of
developer is this, and who is the consumer of their work? It is useful to ask this
question, because the user of focus will determine the type of specification that will be
developed. In the OGF area of focus, where Grids are characterized by distributed

2

services accessed over the network, there are three main types of specifications:
¢ Information Schemas
¢ Protocol Specifications
e Application Programming Interface (API) Specifications

The relationship between protocol and API specifications for a typical compute grid
scenario involving a job management client and service is shown in Figure 1. One can
see that there are multiple combinations of API and protocol, standard and proprietary,
which provide various levels of ease of use to client and service implementers.
Although not shown here, the Information Schemas are vital in describing the
capabilities of the Job Management Service to the client in order to drive the selection
of the most appropriate resource for their needs.

2.1.1 Information Schemas

The first type of specification is an Information Schema, which defines the information
being passed between clients and services, and between peer services. If these are
defined using XML, then these specifications represent the document formats that are
used to structure the information flowing between nodes in the Grid. These schemas
enable both clients and services to “speak the same language” about Grid resources and
activities.

Within the OGF there are two complementary activities relating to Information
Schemas (or Models): use of the CIM (Common Information Model) schema [10] from
the DMTF (Distributed Management Task Force) and the GLUE (Grid Laboratory
Uniform Environment) Working Group [11]. The collaboration with the DMTF has led
to the definition of a information model around the BES to describe the computation
resources accessible through the service. Elements of this information model have been
introduced as an experimental option in the latest version of CIM. The GLUE-WG is
building on the operational experience gained over many years in large research Grids.
The information model published by the sites within a Grid enables both the monitoring
and selection of resources by higher level services by describing a site’s computing
resources, hosted applications and its access policies. The group is defining how this
model can be rendered within CIM, as an XML schema or within other structured data
models.

2.1.2 Protocol Specification

The second type of specification is a Protocol Specification, which defines the messages
that pass between Grid clients and services, and the ordering of these messages such
that clients may request services to perform an action on their behalf.

While the format “on the wire” (i.e., the message) is of primary concern, those alone
only tell half the story. The order in which messages are exchanged, and the “state” of
the interactions, are equally important when defining a protocol. In the case of many of
the OGF protocol standards currently being defined, there is a move to using SOAP-
based Web services as a framework for defining these protocols. The use of SOAP
allows the writer of a specification to adopt an existing “pattern” for message exchange,
such as request/response. This reduces the burden on the specification writer since they
can just refer to an existing pattern, and it reduces the burden on the protocol
implementer since they can make use of an existing SOAP protocol library to

3

implement their client or service. SOAP-based Web services also make use of XML
Schema, so any information schemas that can be rendered using XML Schema are
immediately available to plug into the SOAP framework, thus providing some
standardized way to encode protocol messages on the wire.

Protocol specifications are generally focused on the implementer of Grid services.
Grid services need to be exposed on the network in order to be useful, so the burden of
implementing a network endpoint already exists for the service implementer. Providing
an endpoint that accepts standardized messages is thus a straightforward
implementation path, and can even be implemented in parallel with proprietary
protocols. Since the service implementer provides protocol access to their Grid services,
they need not concern themselves with the programming model or language chosen by
the client of the Grid service.

2.1.3 API Specifications

The third type of specification is an API. These types of standards define programming
language interfaces that expose the desired Grid service functionality within a program
running on the client’s node in the Grid. In Grid computing environments, libraries
exposing a particular API usually end up implementing a protocol in the library
(whether it is a standard protocol, or a proprietary one), but the details of the protocol
implementation, including message formats and the state of message exchange, are
hidden from the API user.

API specifications are generally focused on the implementer of Grid clients. APIs
provide access to Grid services using a programming model that is more natural to the
client implementer. For example, an API specification might provide an object-oriented
view of the Grid service, which would not naturally emerge from the underlying
protocol messages. This is the primary reason to support both API and protocol
specifications. The service implementer provides access via a protocol that might not be
easy to use for the implementer of the client. By combining a standard protocol with a
standardized API, the burden on both service and client implementers can be reduced.

2.2 Use Cases

When defining specifications it is important to identify the problem being addressed in
order to be able to measure progress, and to be able to identify when the specification is
done. While this sounds obvious, in the OGF it is generally left up to individual
working groups to set these criteria, and in some cases in the past, this has not been
done, leading to standardization efforts that seemingly never end. A typical way of
defining the criteria for completion is through use cases. While the way of documenting
use cases might be different from working group to working group, the idea is to “tell a
story” about the problem that is to be solved by a particular specification in enough
detail to be able to analyze whether the elements of the specification will adequately
solve the problem. For instance, if a use case states that a client must be able to ask a
Grid service its name, and the specification does not provide an operation called “get
name”, then the use case has not been solved by the specification.

For accessing compute Grids, it is worth identifying two relevant use case
documents: “HPC Job Scheduling: Base Case and Common Cases” (GFD-1.100) [12]
and “A Collection of Use Cases for a Simple API for Grid Applications” (GFD-1.70)

4

[13].

GFD-I.100 describes the scheduling of scientific applications as batch jobs within an
organizational computing cluster, which is referred to as the “typical” High
Performance Computing (HPC) use case. So what does this have to do with Grid
computing? While described as “HPC”, this scheduling of scientific applications onto
computing resources is equally applicable in Computing Grid environments where jobs
flow from one organization to another, although some details, such as the authentication
model, might differ. For this reason, it is worth categorizing much of the use of
Compute Grids using the moniker “HPC”.

GFD-1.100 defines the “Base Case” of the HPC use case as having the following
characteristics:

e User Interface - users can make requests of a scheduler to submit a job, query a
specific job, cancel a specific job, and to list the jobs they have submitted.

e State Diagram - jobs submitted to a scheduler will be in one of three states:
queued means it is waiting to run, running means the job is occupying resources
allocated by the scheduler and finished when the job terminates (for whatever
reason).

e Resource Descriptions - users may provide resource requests using a small set of
“standardized” attributes, such as number of CPUs/nodes needed, memory
required, etc.

e Fault Tolerance - if a job fails, it is up to the client to resubmit the job as a new
job if it would like to attempt to rerun the job.

¢ QOut-of-band Aspects - data that is to be processed by the job is not provided by
the job submission request. Data access is considered out-of-band to the job
management requests and operations.

® QOut-of-scope Considerations - scheduling policies are considered out of scope,
including notions of SLAs. Jobs are independent of each other, and running
parallel jobs is not assumed for the base HPC use case. Resource reservation and
interactively running jobs are also considered out-of-scope.

While [12] goes on to describe some common use cases that increase the scope
beyond the base case, the characteristics of the base use case provide the basic criteria
for evaluating the state of job management specifications that will be discussed later in
this paper. It is worth highlighting one of the common use cases described in [12] that
together with the base use case could be considered the “base” use case for Grid HPC
jobs; that is, the multiple organization use case. In this use case, HPC jobs are submitted
to a computing resource that resides within a different organization from the submitting
user.

There are two elements of this use case that are worth mentioning. First, submission
will require some form of additional security support to either federate identity systems
between the organizations, or more simply, to provide a technique for “outside users” to
be mapped to some appropriate principal inside the organization hosting the job.
Second, the data that the client will process might reside at the client’s facility, and thus
must be transferred from the client’s site to the computing site, and results must be
transferred back if desired. These two additional characteristics, along with the
characteristics of the base HPC use case, define the base Grid HPC use case. It will be

5

worth evaluating current specifications in light of these characteristics as well as the
base HPC use case characteristics.

In GFD.I-70 a set of use cases are described that are used to inform the specification
of SAGA. The scope of SAGA is much wider than just the use of compute grids, since
it includes use cases for data management, visualization and remote steering, but one of
the focus areas of the API is on the submission and management of jobs. In GFD-1.70,
use cases are categorized using a number of “phrases”, including “high throughput
computing” and ‘“high performance computing”, which are used to indicate job
management functions. These phrases can be interpreted to be very similar to the HPC
base use case described in GFD-1.100, which also uses the phrase “high throughput
computing” when defining HPC. Of the twenty-three use cases listed in GFD-1.70,
sixteen identified HPC as very important to their use case, and a further four identified
HPC as medium importance.

2.3 Specification Maturity

The final factor to take into consideration when evaluating the progress of specifications
is the maturity level of the specification. In the OGF, specifications go through various
phases during their lifecycle [14]. These are not “official” document states, but are
useful for helping classify the maturity of a specification.

e Draft phase - this is the phase where the specification is being developed and
written. At this stage, there might or might not exist implementations of the
specification, but the specification is subject to change at this time.

¢ Interoperability phase - at this point, the draft is complete, and could even be as
far ahead as to be a “proposed recommendation” in OGF nomenclature. For
protocols, at this point there are two or more implementations of the
specification, and the implementers are demonstrating that their implementations
can communicate successfully. For APIs, either there is a compliance test suite
for verifying that an implementation complies with the standard, or there exists
an official reference implementation to compare to other implementations.

e Adoption phase - this is the phase where the implementers of Grid services in
the specifications problem area have implemented the specification in their
products and software stacks. Implementations at this phase are often going
from “prototypes” in the interoperability phase, to full product in the adoption
phase.

¢ Deployment phase - this is the point in time when Grid clients have started to
adopt the specification, and the implementations of the specification are going
into use by those who deploy and use Grid middleware. Specifications at this
phase could be considered “very successful”.

Note that these categories are somewhat fluid depending on the state of the
specification. For instance, after an interoperability phase, enough issues might have
been found in the specification to require a new draft phase. It’s also not guaranteed that
a specification will go beyond any one phase.

3 HPC BASIC PROFILE

The HPC Profile Working Group (HPCP WG) [5] was formed in May 2006 within the
OGF (GGF at the time). The objective of the working group was to define a profile of
the protocol specifications needed to realize the use case of batch job scheduling of
scientific/technical applications, i.e. the HPC use case. A profile specification defines
no new schemas or protocols, rather it is intended to describe the use of other existing
protocols and schemas to meet a particular use case. Profiles generally contain
statements that are used to clarify any ambiguities in referenced specifications that
would cause interoperability issues, and will also restrict the usage of certain aspects of
referenced specifications in order to promote interoperability of implementations.
Profiles should not expand the scope of the referenced specifications.

The “HPC Basic Profile, Version 1.0” (HPCBP, GFD-R-P.114) [15] references three
other specifications: the “Job Submission Description Language, Version 1.0” (JSDL,
GFD-R-P.56) [8], the “JSDL HPC Profile Application Extension, Version 1.0” (GFD-
R-P.111) [16], and the “OGSA Basic Execution Service, Version 1.0” (BES, GFD-R-
P.108) [9]. It also normatively defines a simple XML Schema called the BasicFilter
extension. The purpose of HPCBP is to profile the use of these specifications in order to
solve the base HPC use case. It was envisioned that additional, composable profiles
would be defined to solve the other, common HPC use cases, such as the multi-
organizational use case. It is worth exploring the specifications that make up the
HPCBP and map them back to the characteristics of the base HPC use case in order to
see how the base HPC use case is solved.

3.1 Job Submission Description Language (JSDL)

The Job Submission Description Language (GFD-R-P.56) [8] is an XML-based
language used to describe the requirements for computational jobs. The specification
defines an XML schema from which the elements are taken to build up the job
description document. JSDL does not provide elements for describing the actual status
of the job after it has been submitted, and the JSDL specification does not describe any
mechanism for submitting a JSDL document to a job management system. As such,
JSDL is equally applicable to use within SOAP-based Web services, as to being
consumed by a command-line or rich client program, which then interacts with a job
management system in a proprietary way.

In the context of both the base HPC use case and the base Grid HPC use case, JSDL
provides the following capabilities.

e The ability to describe the resources needed to run the job. JSDL can describe
resources such as number of CPUs, the amount of required memory, disk space
requirements, and operating system and CPU model requirements.

e A place to hold a description of the run time environment of the job, including
attributes such as the executable to run, arguments to the executable, etc, etc.
The JSDL specification defines an element called POSIX Application intended
for this purpose, but the HPC Basic Profile made use of a different element, as
described below.

e For the base Grid HPC use case, JSDL allows the description of data transfers
that should occur before the job runs, and after the job has completed.

It was mentioned that JSDL defines POSIXApplication, which is an element used to
describe the run time attributes of the job, including executable, stdio files, program
arguments, environment, user name to run the job as, and various POSIX shell limits.
Since the HPC Basic Profile was also intended to be used on systems that do not
support POSIX shell limits (i.e., Windows), a different application element, called
HPCProfileApplication, was defined to take the place of POSIXApplication. It is the
same except for the exclusion of the POSIX limit elements. This ability to support
multiple different application types using XML Schema extensibility, was built into the
JSDL specification from day one. It is envisioned that new application types such as
parallel application, SQL query, or even web service invocation could be described
using a JSDL document, with the appropriate application extension defined.

The HPC Basic Profile adds some restrictions to the JSDL that is accepted by an
HPC Basic Profile compliant service. In basic JSDL, there are no elements within the
schema that must be supported. The implementation is free to choose which ones to
support. In the case of the HPCBP, in order to make sure there is some level of
interoperability, certain elements are restricted such that they must be supported by a
compliant implementation. One of these elements is the HPCProfile Application element
as described above.

3.2 Basic Execution Service (BES)

The Basic Execution Service specification (GFD-R-P.108) [9] defines the service
operations used to submit and manage jobs within a job management system. BES
defines two WSDL port types: BES-Management for managing the BES itself, and
BES-Factory for creating, monitoring and managing sets of activities. A BES manages
“activities”, not just jobs, but the activity in the context of the HPCBP is an HPC or
Grid HPC job. The notion of the activity is much like the notion of the application in
JSDL. It is intended to be an extensibility point so that the operations defined by the
BES have wider applicability than just batch job execution.

In terms of the base HPC and Grid HPC use cases, BES provides the bulk of the
functionality. In terms of user interface, BES-Factory port type supplies the following
operations:

¢ CreateActivity - the operation used to submit a job. It takes an
ActivityDocument (a JSDL document) describing the activity (job) to create,
and returns an identifier for the job in the form of a WS-Addressing
EndpointReference (EPR). This EPR can be used in subsequent operations.

e GetActivityStatuses - this operation accepts a list of EPRs (previously returned
from CreateActivity), and will return the state of each activity represented. The
state model will be described below.

¢ GetActivityDocuments - this operation accepts a list of EPRs, and will return an
ActivityDocument for each EPR requested. The ActivityDocument just wraps a
JSDL document. The use of JSDL in this way is perhaps not in the “spirit” of the
JSDL specification, since this JSDL document is used to describe a job instance,

8

not a job to submit, but it was considered a low effort way to get some simple
reporting of the status of the job.

e TerminateActivities - takes a list of EPRs of activities that the BES should
attempt to terminate (i.e., move to the Terminated state). Will return “true” or
“false” for each activity depending on whether the operation was successful or
not.

¢ GetFactoryAttributesDocument - this operation returns various attributes of the
BES back to the client. These attributes includes information about the BES
itself, such as if it is accepting new activities. It also contains information about
the resources that the BES has access to when scheduling jobs, and will return a
list of Activity EPRs of the activities running within the BES container. Given
that the list of either activity EPRs or the list of contained resources could be
large, the HPC Basic Profile defines the BasicFilter extension, which is an XML
element that can be passed to the GetFactoryAttributesDocument operation
using the extensibility elements in the input document (a normally empty
document). This BasicFilter allows the client to specifically request that the BES
include or not include either the activity EPRs or the contained resource list in
the output document from GetFactoryAttributesDocument. The filter makes
explicit the fact that otherwise, the BES can choose to return or not return this
information based on its implementation.

Using these operations, one can fulfil the requirements of the User Interface
characteristics of the base HPC use case described earlier in the paper. All the required
operations are covered.

BES also defines the state model for activities, shown in Figure 2 (as reproduced
from [9]). The BES states map to the states described in the base HPC use case. The
Pending BES state is the same as the previously described queued state, Running is the
same, and Finished is the same. One difference is the inclusion of two additional
terminal states, Terminated and Failed, which allow the client to get a little more
information about how the activity met its end. These extra terminal states, along with a
rich set of operation faults for Create Activity, allow the client to be made fault tolerant,
in the sense that the client has the information needed to decide whether to resubmit a
job depending on the terminal state.

Another feature of the state model is that it is extensible, but in a structured way that
allows clients to reason about the state model, even if they do not understand the
extensions. Later specifications and profiles can define “sub-states” of the existing state
model, and they can introduce state transitions between their sub-states, but they cannot
define state transitions that violate the basic state model. Thus, a person could define a
sub-state for Running and a sub-state for Pending, but the state extensibility model says
that no transition could be made from my Running:sub-stateA to Pending:sub-stateB,
since the transition from Running to Pending does not exist in the basic state model.
This is a powerful model that builds in extensibility for meeting future use cases, while
ensuring basic interoperability between basic clients and services.

3.3 Basic HPC and Grid HPC Use Cases

One can see that the combination of JSDL and BES provides the capabilities needed to
9

satisfy the basic HPC use case. How about the basic Grid HPC use case? It was noted
that this use case differed in two aspects: the security model and the ability to stage data
from one site to another, both before and after the job.

Security is directly addressed in the HPC Basic Profile. The Profile defines two
mechanisms for authentication to be used when communicating with a BES endpoint. In
both cases, the BES service is authenticated using SSL and server X.509 certificates.
For client authentication, the HPC Basic Profile service either must support username
and password based authentication as described by WS-Security, or it must perform
client authentication using an X.509 certificate at the SSL level. This second method is
common to many inter-organizational Grid deployments, so this supports the basic Grid
HPC use case. Regarding authorization, the account mapping functionality is not
specified, but this is generally a BES implementation specific operation, and varies
from middleware to middleware.

In terms of data transfer, while the HPC Basic Profile doesn’t preclude the use of
JSDL DataStaging elements, it does not make them mandatory, so in that sense the HPC
Basic Profile cannot support the Grid HPC use case characteristic of data access. That
said, there is currently a second profile going through the OGF standardization process,
produced by the HPC Profile WG, that aims to define how to use the JSDL DataStaging
elements, and which defines the protocols that must be supported by a compliant
endpoint, etc. This “HPC File Staging Profile”, when published, will provide the
necessary capability to support the basic Grid HPC use case.

3.4 Experience and Maturity

The HPC Basic Profile and associated specifications (JSDL and BES) are well
advanced in the sense of the maturity of the specifications. There are a number of
interoperable implementations of the specification.

The first round of interoperability testing of the HPC Basic Profile occurred at the
IEEE/ACM Supercomputing 2006 conference. At this time, even though the HPC Basic
Profile and BES specifications were not out of their draft stage, there was an
interoperability demonstration performed between ten independent implementations of
the specification (see [17]). At this stage the specification was firmly in the
interoperability phase, and results of the interoperability demonstration and testing were
used to refine the specification itself.

There was then a second round of interoperability testing that culminated in another
interoperability demo at IEEE/ACM Supercomputing 2007. This round of testing was
performed between seven independent implementations, but this time the specification
had progressed from draft status to a proposed recommendation (see [18]). There were
two interesting differences with this round of testing. One was the use of a “service
compliance checking” website, hosted by the eScience research group at the University
of Virginia (see [19]) that allowed service implementers to test their implementations
with various combinations of both valid and invalid message formats. The second
difference with this round of testing was that an early draft of the HPC File Staging
Profile was also demonstrated by a subset of the interoperability demo participants. The
results of the second round of interoperability tests have been documented in
“Interoperability Experiences with the High Performance Computing Basic Profile
(HPCBP), Version 1.0” (GFD-E.124) [20], which will be the experimental evidence

10

necessary in OGF document process to bring the HPC Basic Profile, BES and JSDL to
full recommendation status (i.e., to become fully ratified standards).

At Supercomputing 2007, a number of vendors of job management systems declared
that they would be implementing HPC Basic Profile service endpoints in their products,
thus leading one to believe that the maturity of the HPC Basic Profile is at least at the
adoption phase of its lifecycle.

4 SIMPLE API FOR GRID APPLICATIONS (SAGA)

SAGA provides a single, unifying, application-oriented programming interface for grid
applications. The SAGA Research Group was formed in 2005 within GGF, based on the
observation that grid application development was a challenging task, mostly because of
the complexity and instability of the programming interfaces to grid middleware, and
the fact that grid middleware exposed dissimilar APIs for similar functionality. While
middleware APIs focus on providing access to functionality provided by middleware
services, SAGA has been designed based on the needs of actual application use cases,
as described in GFD-1.70, and thus has a focus on the Grid client implementer as
described previously. SAGA was designed to be simple for developers to use, and was
intended to provide a familiar programming paradigm for developers. Figure 3 shows
SAGA's “hello, world” example, reading a remote file, which looks exactly like a
POSIX-inspired file API, omitting all middleware-related aspects.

4.1 SAGA Core

The SAGA API defines two general sets of packages; the functional packages, and the
“look and feel” packages. The functional packages provide access to resources and
services in a grid. Reflecting the use cases from GFD-1.70, the SAGA Core
specification (GFD-R-P.90) [21] provides functional packages for job submission and
management, for physical and replicated files, for stream communication, and for
GridRPC. Of great importance are the “look and feel” packages that address non-
functional aspects in a systematic and uniform way. SAGA provides such packages for
authentication (security contexts) and authorization (permissions), for exception
handling, application-level monitoring and steering, as well as asynchronous operation
through SAGA's task model. The “look and feel” packages apply to all functional
packages, exposing a common programming style to an orthogonally designed and
extensible API.

By design, SAGA abstracts the middleware services actually invoked in order to
provide its functionality. At the same time, it leverages related OGF standards for
middleware services, exposing matured grid “terminology”, where this makes sense.
For example, SAGA provides a state model for tasks and jobs that closely mirrors the
state model from OGSA BES. In addition, SAGA creates job descriptions based on
JSDL keywords, providing the application programmer with the terminology widely
accepted in the community. For data access, URL schemes are used to access common
services while security credentials are completely treated as black box elements.

In the context of the characteristics of the basic HPC use case, the SAGA job
package provides much of the capability required by the use case. The saga::job_service
and saga::jjob classes provide methods for submitting a job to a scheduler

11

(saga::job_service.create_job), querying a job by examining the attributes of an instance
of class saga::;job, cancelling a submitted job (saga::job.signal), and listing already
submitted jobs (saga::job_service.list).

As mentioned above, the state model for a SAGA job is very similar to the OGSA
BES state model, and thus meets the needs of the basic HPC use case for describing a
job in pending, running, and finished states (with the same three terminal states as
BES). Since an API user can query this current state of the job, the characteristic of
client-driven fault tolerance behaviour is supportable using the AP

The saga::job_description class allows one to specify the attributes of a job to be
submitted, including a description of the resources required for execution, as well as the
attributes of the execution environment itself. The attributes of saga::job_description are
inclusive of the elements defined by JSDL, and thus can support the same capability.

And how well does SAGA support the added characteristics of the basic Grid HPC
use case? Since each SAGA API “session” is associated with some form of credentials,
SAGA can easily be used with a multitude of security systems, that are then passed
through to underlying middleware, so any type of identity system (federated or mapped)
are useable through the SAGA API. In terms of data transfer, SAGA provides a host of
capability. First, much like in JSDL, one can define a set of file transfers that must be
performed before and after running a job. This approach allows one to associate data
transfer on a job by job basis. Second, there are APIs for accessing both physical and
logical files managed by Grid file access and replica services, which allows users of the
SAGA API to apply a finer grained control of data movement than data transfers in line
with job execution.

4.2 Experience and Maturity

After a long phase of careful design, re-design, and consensus building in the
community, SAGA is now on a fast track towards standards maturity. It always was an
important asset of the SAGA working group to have a prototypical reference
implementation available during the API design process. This allowed the group to
evaluate design choices and their implications on both expressiveness and feasibility
directly in the process. The SAGA Core specification [18] became a proposed
recommendation in January 2008. Immediately afterwards, the reference
implementation prototype in C++ was made available by members of the SAGA
working group for early adopters.

For API specifications, the notion of compliance with the API is measured somewhat
differently than with protocols. With an API, a particular program that makes use of the
API should operate in a semantically identical fashion no matter which particular
implementation of the API is used. The reference implementation of the specification
provides the semantic reference for how other API implementations should behave.
Given that SAGA has the reference implementation, other implementations of SAGA
can easily be examined for compliance with the specification. It would thus appear that
SAGA falls somewhere between the “interoperability” and “adoption” phases, as there
is a reference implementation that can be used to test other implementations for
compliance.

12

S CONCLUSIONS AND FUTURE WORK

In this paper, we have shown how clear consumer-oriented use cases of a well-
understood problem provide the basis for rapid (for a standards process) successful
development and adoption of standards. This has been illustrated for computationally
oriented Grids by considering access to HPC resources in the context of the basic HPC
and basic Grid HPC use cases.

For Grid client implementers, SAGA provides a programmatic access to HPC
resources. Grid service implementers can implement protocol level access to HPC
resources using the HPC Basic Profile. Both SAGA and the HPC Basic Profile fulfill
the requirements of the basic HPC use case and (with the addition of the HPC File
Staging profile) can both fulfill the requirements of the basic Grid HPC use case as
well. SAGA and the HPC Basic Profile are mature specifications that have surpassed
the "draft" phase. Furthermore, SAGA has a reference implementation for testing
compliance, and the HPC Profile is well within the adoption phase, as evidenced by the
adoption of the HPC Basic Profile within various Grid middleware stacks from
commercial vendors and open source projects. This represents a significant milestone in
the usability of HPC resources and the transportability of the applications that are being
built to exploit this increasingly common resource.

There is much work that both the HPC Profile team and the SAGA team intend to
pursue.

The HPC Basic Profile specification is already the basis of a number of increasingly
mature extensions. In addition to the ‘HPC File Staging’ extension, the ‘Advanced
Filter’ extension improves the control a client has over the information returned about
the computational resource, while the ‘Application Template’ extension removes the
burden from the user of specifying site specific configuration information which is
instead provided by the HPC Basic Profile service provider. Both of these are mature
working group drafts.

Currently, the SAGA working group is continuing its activities in two directions.
One important stream of activities is the specification of language bindings of the
(language-independent) SAGA Core specification. The first language binding
specification is currently under way. It will provide SAGA syntax and semantics for the
Java language. Similar efforts for C, C++, and Python will follow. Simultaneously,
work is under way to extend the scope of the API, based on the experiences gained so
far through the reference implementations. Due to the orthogonal API design, such
extensions can be done in the form of well-defined (functional) extension packages. The
first such extension package is addressing the important aspect of service discovery.
Likely candidates that are being considered as future extensions include a messaging
extension, grid checkpointing and recovery, or a DRMAA API “compatibility” package.

ACKNOWLEDGEMENTS

The authors would like to express their gratitude to many members of the Open Grid
Forum (and Global Grid Forum before that) in their contributions to the HPC Basic
Profile WG and the SAGA WG/RG (particularly the JSDL WG and the BES WG). We

13

additionally thank Glenn Wasson for his contributions to the HPC Basic Profile WG
and Andre Merzky for being the driving force behind SAGA.

REFERENCES

[1] Open Grid Forum. http://www.ogf.org [March 2008].

[2] Schopf JM. Ten Actions When SuperScheduling. Grid Forum Document GFD-L.4. July
2001.

[3] Roy A, Sander V. Advance Reservation API. Grid Forum Document GFD-E.5. May 23,
2002.

[4] Schwiegelshohn U, Yahyapour R. Attributes for Communication between Scheduling
Instances. Grid Forum Document GFD-1.6. December 2001.

[51 Open Grid Forum High Performance Computing Profile WG (HPCP-WG).
http://forge.ogf.org/sf/projects/ogsa-hpcp-wg [March 2008].

[6] Open Grid Forum Simple API for Grid Apps RG (SAGA-RG).
http://forge.ogf.org/sf/projects/saga-rg [March 2008].

[71 Open Grid Forum Simple API for Grid Apps Core WG (SAGA-CORE-WG).
http://forge.ogf.org/sf/projects/saga-core-wg [March 2008].

[8] Savva A (Editor). Job Submission Description Language (JSDL) Specification, Version 1.0.
Grid Forum Document GFD-R.056. 7 November 2005.

[9] Foster I et. al. OGSA Basic Execution Service Version 1.0. Grid Forum Document GFD-R-
P.108. 8/8/2007.

[10] Distributed Management Task Force (DMTF) Common Information Models (CIM)
Standards. http://www.dmtf.org/standards/cim/ [March 2008].

[11]Open Grid Forum GLUE WG (GLUE). http://forge.ogf.org/sf/projects/glue-wg [March
2008].

[12] Theimer M, Smith C, Humphrey M. HPC Job Scheduling: Base Case and Common Cases.
Grid Forum Document GFD-1.100. July 1 2006.

[13]Jha S, Merzky A. A Collection of Use Cases for a Simple API for Grid Applications. Grid
Forum Document GFD-1.70. May 09 2006.

[14]Catlett C. Global Grid Forum Documents and Recommendations: Process and
Requirements. Grid Forum Document GFD-C.1. June 2001, revised April 2002.

[15]Dillaway B, Humphrey M, Smith C, Theimer M, Wasson G. HPC Basic Profile, Version
1.0. Grid Forum Document GFD-R-P.114. August 28, 2007.

[16]Humphrey M, Smith C, Theimer M, Wasson G. JSDL HPC Profile Application Extension,
Version 1.0. Grid Forum Document GFD-R-P.111.August 28, 2007.

[17]Open Grid Forum SC2006 HPC Profile WG Interoperability Demonstration Status Wiki.
https://forge.gridforum.org/sf/wiki/do/viewPage/projects.ogsa-hpcp-
wg/wiki/SC2006WikiPage [March 2008].

[18]Open Grid Forum SC2007 HPC Profile WG Interoperability Demonstration Status Wiki.
https://forge.gridforum.org/sf/wiki/do/viewPage/projects.ogsa-hpcp-
wg/wiki/HomePage [March 2008].

[19]University of Virginia eScience Group High Performance Computing Basic Profile
Interoperability Tester v1.0
https://opteron4.cs.virginia.edu:45885/FormServerTemplatessrHPCBasicProfileCompliance
Tester.aspx [March 2008].

[20]Wasson G. Interoperability Experiences with the High Performance Computing Basic
Profile (HPCBP), Version 1.0. Grid Forum Document GFD-E.124. 2/21/08.

[21]Goodale T, Jha S, Kaiser H, Kielmann T, Kleijer P, Merzky M, Shalf J, Smith C. A Simple
API for Grid Applications (SAGA). Grid Forum Document GFD-R-P.90. January 15, 2008.

14

15

