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SUMMARY

Operating systems are the core software component of many modern computer systems,
ranging from small specialised embedded systems through to large distributed operating
systems. The demands placed upon these systems are increasingly complex. In particular,
the need to handle concurrency in order to exploit increasingly parallel (multi-core)
hardware; support increasing numbers of user and system processes; and to take
advantage of increasingly distributed and decentralised systems. The languages and
designs that existing operating systems employ provide little support for concurrency,
leading to unmanageable programming complexities and ultimately errors in the
resulting systems; hard to detect, hard to remove, and hard to prove correct.

This article presents the process-oriented design of a USB device driver infrastructure
for the RMoX operating system, and its implementation in the occam-pi multiprocessing
language. We show how concurrency can be used to the benefit of such systems,
simplifying design and implementation, providing freedom from race-hazard and aliasing
errors, and the potential for guarantees of operating system scalability, reliability and
efficiency.
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1. INTRODUCTION

The RMoX operating system [1], on which the work presented here is based, represents an
interesting and well-founded approach to OS development. Concurrency is utilised at the
lowest level, with the whole operating system comprised of many interacting parallel processes.
Compared with existing systems, that are typically sequential, RMoX offers an opportunity to
easily utilise increasingly available multi-core hardware. The system is primarily developed in
occam-pi [2, 3], a language with CSP [4] based semantics that incorporates ideas of mobility
from the π-calculus [5], with guarantees of freedom from race-hazard and aliasing error.

The overall aims of the RMoX operating system are to provide an OS that is: reliable, in
that we should have some guarantee about the correct operation of system components and the
system overall; scalable, both in design and in response to available hardware and the demands
of users; and efficient, using the available resources effectively. Many commonly available
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operating systems fail to meet one or more of these goals, due in a large part to the nature
of the programming languages used to build them — typically procedural low-level languages
such as C. These languages offer little or no support for concurrency or formal verification,
resulting in systems that can be difficult to design, hard to understand and maintain, and for
which formal verification (in whole or in part) is hard to impossible. Concurrency is inescapable
for OS designers, necessary at the simplest level for handling interrupt-driven operation and
supporting multiple tasks, but increasingly often for exploiting multi-core processors and
decentralised systems (e.g. GPUs for general purpose computation [6]).

Although there are a variety of tools available to assist in the verification of C programs,
such as BLAST [7] and ACE [8], these require some amount of effort on the part of the
system developer, as well as an understanding of model checking. Neither do such tools help
the developer build the system correctly in the first place. As a result, verifying systems may
often require revising the design and implementation, substantially lengthening the time to
delivery for a verified system. Systems that have undergone rigorous verification have proved
themselves, however, with certified OSs such as Integrity [9] and LynxOS [10] used in real-time
critical applications.

The view maintained by this work is that a concurrent, process-oriented, approach to design
and development can help to overcome the problems currently experienced by a range of
systems. A communicating processes model of concurrency, with the compositional formal
semantics of CSP, allows for scalable designs that can be readily understood, and provides
routes into formal verification as the system is developed, although these are not considered
here. The occam-pi language provides compile-time guarantees of freedom from aliasing and
race-hazard error, improving reliability, and at the same time permits high levels of dynamics,
including the reconfiguration of process networks. An efficient runtime system permits the
scheduling of thousands to millions of concurrent processes across multiple processing cores.
Combined, these encourage the use of concurrency as a fundamental design tool for reliable,
scalable and efficient systems, and not just as a necessary hurdle in systems development.

The work presented here concentrates on the design and development of a single aspect
of the RMoX operating system, specifically the universal serial bus (USB) [11] driver stack.
Supporting this hardware presents some significant design challenges in existing operating
systems, as it requires a dynamic approach that layers easily — USB devices may be plugged
and unplugged arbitrarily in tree-like structures, and this should not break system operation.
The lack of support for concurrency in existing systems can make USB development hard,
particularly when it comes to guaranteeing that different 3rd-party drivers interact correctly.
RMoX’s USB architecture shows how concurrency can be used to our benefit: breaking down
the software architecture into simple, understandable, concurrent components; producing a
design that is scalable, and an implementation that is reliable and efficient.

A high-level overview of the RMoX OS is given in section 2, with some details regarding
its operation and limitations, followed by a brief summary of the USB hardware standards in
section 3. In section 4 we describe the design and implementation of the USB device driver
components within RMoX. Initial conclusions and consideration of future and related work are
given in section 5. Examples of USB device programming within RMoX are not presented here.
For these, the reader may refer to our earlier conference publication [12], which additionally
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Figure 1. RMoX top-level process network.

contains further low-level details of our implementation, or to the freely available RMoX source-
code and documentation (available from http://rmox.net/).

2. THE RMOX OPERATING SYSTEM

The RMoX operating system is designed and built using layered networks of communicating
processes, as shown in figure 1. Each of the individual components, such as the ‘keyboard’
device-driver (which could internally be a network of parallel processes), are isolated from
one another and scheduled independently. Communication between components is by means
of synchronised channel communication, using an efficient non-aliasing pointer passing
mechanism for large data items. Communication of channel bundle ends over channels
(including themselves) allows the dynamic restructuring of process networks, an idea taken
from the π-calculus. Processes in RMoX are organised into client-server networks, whereby
clients initiate communication, and in the absence of cycles in the communication graph, this
gives guarantees of deadlock freedom [13].

There are three core services provided by the RMoX system: device-drivers, file-systems and
networking. These simply provide management for the sub-processes (or sub-process networks)
that they are responsible for (some processes inside the “driver-core” are shown in figure 1).
When a request for a resource is made, typically via the ‘kernel’ process, the relevant ‘core’
process routes that request to the correct underlying device. Using mobile channels [3], this
allows direct links to be established between low-level components providing a particular
functionality, and the high-level components using them. Protocols for the various types of
resource (e.g. file, network socket, block device-driver) are straight-forward and well understood
in the context of operating systems — e.g. a file-system driver (inside “fs.core”) can use any
driver that provides a block-device interface. Since such protocols are well defined, in terms
of interactions between processes, building pipelines of processes which layer functionality is
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no problem. Some consideration must be given to shutting these down correctly (i.e. without
inducing deadlock); fortunately that process is well understood [14].

As the system evolves, links established between different parts of the system can lead to
a complex process network. However, with guarantees that individual processes interact with
their environments in ‘safe’ ways (with a per-process analysis performed automatically by the
compiler), then we can guarantee the overall ‘safe’ behaviour of the system — a feature of
the compositional semantics of CSP. This type of formalism is already exploited in the overall
system design — specifically that a client-server network is deadlock free; all we have to do is
ensure that individual processes conform to this. In cases where a communication cycle might
occur at runtime, dynamic process creation can be used to create a short-lived ‘client’ process
that breaks this cycle (effectively by providing asynchronous communication).

Although the majority of RMoX is written in occam-pi, and as such is a concurrent system
that we can reason about, there remains an amount of C and assembler code, for which we
cannot yet make the same claims of correctness. This includes the occam-pi runtime process
scheduler (CCSP), a small amount of additional low-level code (providing the memory allocator
and other low-level routines), and the occam-pi compiler and native-code translator, which
form part of the toolchain. These tools are essentially unchanging with respect to the rest of
the system, however, and for a large part have been tried and tested within the KRoC occam-
pi system [15]. We also have the opportunity to verify these using existing model-checkers such
as BLAST and ACE [7, 8], although have not yet done so.

3. THE UNIVERSAL SERIAL BUS

The Universal Serial Bus (USB) [11, 16] first appeared in 1996 and has undergone many
revisions since. In recent years it has become the interface of choice for peripherals, replacing
many legacy interfaces, e.g. RS232, PS/2 and IEEE1284. The range of USB devices available
is vast, from keyboards and mice, through flash and other storage devices, to sound cards and
video capture systems. Many classes of device are standardised in documents associated with
the USB. These include human-interface devices, mass-storage devices, audio input/output
devices, and printers. For these reasons adding USB support to the RMoX operating system
increases its potential for device support significantly. It also provides an opportunity to explore
modelling of dynamic hardware configurations within RMoX.

3.1. USB hardware

The USB itself is a 4-wire (2 signal, 2 power) half-duplex interface, supporting devices at three
speeds: 1.5 Mbps (low), 12 Mbps (full) and 480 Mbps (high). There is a single bus master,
the host controller (HC), which manages all bus communication. Communication is strictly
controlled — a device cannot initiate a data transfer until it has been offered the appropriate
bandwidth by the HC. The topology of a USB bus is a tree, with the HC at the root, providing
a root hub to which devices can be connected. Additional ports can be added to the bus by
connecting a hub device to one of the existing bus ports. Connected hubs are managed by
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Figure 2. Example USB hardware tree.

the USB driver infrastructure, which maintains a consistent view of the topology at all times.
Figure 2 shows a typical arrangement of USB hardware.

Unlike more traditional system busses, such as PCI [17], the topology of the USB is expected
to change at runtime. For this and the reasons above, access to bus devices is via communication
primitives provided by the USB driver infrastructure, rather than directly using CPU I/O
commands or memory-mapped registers. Although it should be noted that this difference does
not preclude the use of DMA (direct memory access) data transfers to and from bus devices.

3.2. USB interfaces and endpoints

Each device attached to the bus is divided into interfaces, which have zero or more endpoints,
used to transfer data to and from the device. Interfaces model device functions, for example
a keyboard with built-in track-pad would typically have one interface for the keyboard, and
one for the track-pad. Interfaces are grouped into configurations, of which only one may be
active at a time. Configurations exist to allow the fundamental functionality of the device to
change. For example, an ISDN adapter with two channels may provide two configurations: one
configuration with two interfaces, allowing the ISDN channels to be used independently; and
another with a single interface controlling both channels bound together.

Individual interfaces may also be independently configured with different functionality by
use of an “alternate” setting. This is typically used to change the transfer characteristics of
the interface’s endpoints. For example, a packet-based USB audio device may have alternate
interfaces for different packet sizes, possibly selected by the device driver depending on bus
load or other conditions.

Endpoints are the sinks and sources for communications on the bus. Bus transactions are
addressed first to a device, then to an endpoint within it. A software structure known as
a pipe is used to model the connection between the host and an endpoint, maintaining the
state information (not entirely dissimilar to the structure and state maintained in a TCP/IP
network connection).

There are four different endpoint types defined by the USB standards, which specify
how communication on the relevant ‘pipe’ should be handled. Control endpoints use a
structured message protocol, sending messages in either direction. These are used generically
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for enumerating devices on the bus, but also for device-specific control. Bulk endpoints

communicate data on demand, with no particular structure imposed; conceptually similar
to the Unix ‘pipe’. Interrupt endpoints are similar to ‘bulk’, but exchange data according to
a defined schedule. At a set interval, the host offers bus time to the device, which may then
respond, possibly with a negative acknowledgement, causing the host to retry at the next
interval. Isochronous endpoints are similar to ‘interrupt’, but allow larger packets and do not
support the retry mechanism. Typically used by devices which can tolerate data loss, such as
audio and video.

3.3. Implementation challenges

There are a variety of implementation considerations when building a USB device-driver stack.
Firstly, the dynamic nature of the hardware topology must be reflected in software. Traditional
operating systems use a series of linked data-structures to achieve this, with embedded or global
locks to control concurrent access. The implementation must also be fault-tolerant to some
degree — if a user unplugs a device when in use, the software using that device should fail
gracefully, not deadlock or livelock.

As USB is being increasingly used to support legacy devices (e.g. PS/2 keyboard adaptors,
serial and parallel-port adapters), the device-driver infrastructure developed needs to be able
to present suitable interfaces to higher-level operating system components. These interfaces
will typically lie underneath existing high-level device-drivers. For instance, the ‘keyboard’
driver (primarily responsible for mapping scan-codes into characters and control-codes, and
maintaining the shift-state), will provide access to any keyboard device on the system, be it
connected via the on board PS/2 port or attached to a USB bus. Such low-level connectivity
details are generally uninteresting to applications — these expect to get keystrokes from
a ‘keyboard’ device, regardless of how it is connected (PS/2, USB or an on-screen virtual
keyboard).

4. SOFTWARE ARCHITECTURE

All device-driver functionality in RMoX is accessed through the central “driver.core” process
(figure 1), which directs incoming requests (internal and external) to the appropriate driver
within. The “dnotify” device-driver, although quite separate from the USB infrastructure, is
used to notify processes when new USB devices become available or when existing ones are
removed.

The USB driver infrastructure is built from several parts. At the lowest level is a host

controller driver (HCD), that provides access to the USB controller hardware (via I/O
ports and/or memory-mapping). The implementation of one particular HCD is covered in
section 4.3. At the next level is the “usb.driver” (USBD) itself. This process maintains a
view of the hardware topology using networks of processes representing the different USB
busses. The USBD acts as a client to HCD drivers and as a server to higher-level drivers
(e.g. “usb.keyboard”). Figure 3 shows a typical process network setup, using USB to provide
an application process with access to the keyboard.
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Figure 3. USB device-driver top-level components.

The “usb.keyboard” process uses the USBD to access the particular keyboard device, and
provides an interface for upstream “keyboard” processes. The “keyboard” process actively
listens for newly arriving keyboards (using the “dnotify” driver), and manages them all together
by default — as many existing systems do (e.g. pressing ‘num-lock’ on one of the keyboards
causes all num-lock LEDs to toggle).

4.1. USB driver structure

Processes outside the USB driver can gain access to the USB at three levels: bus-level, device-
level and interface-level. The “usb.driver” contains within it separate process networks for each
individual bus — typically identified by a single host controller (HC). These process networks
are highly dynamic, reflecting the current hardware topology. When a host controller driver
instance starts, it connects to the USB driver and requests that a new bus be created. Mobile
channel bundles are returned, on which the host controller implements the low-level bus access
protocol and the root hub. Through this mechanism the bus access hardware is abstracted.
Figure 4 shows the process network for a newly created bus, with three connected USB devices,
one of which is a hub. Some of the internal connections have been omitted for clarity.

Without concentrating too much on the internal detail of the individual components, it is
possible to see in Figure 4 that a hierarchy of process connections exists, starting at the high-
level with “usb.keyboard”, through “usb.device” and “hub.manager”, down to the HCD. The
“usb.hub” process converts the abstract hub protocol used by “hub.manager” into accesses on
the hub device’s endpoints. The root hub, not being an actual USB device, is implemented
directly by the HCD, so no “usb.hub” process is necessary.

When a new device is connected to the bus, reported by either the root hub or a “usb.hub”
process, it is first enumerated by the appropriate “hub.manager” which forks (dynamically
creates) a new “usb.device” process to manage it. The two processes “bus.enumerator” and
“bus.directory” maintain the shared state on a bus, i.e. what devices are attached and
their unique identifiers. When a “hub.manager” is notified that an attached device has been
disconnected, it shuts down gracefully, notifying the associated “usb.device” and processing
any pending requests.
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4.2. USB device structure

Figure 5 shows the internal structure of two “usb.device” processes, which internally maintain
a network of interconnected ‘interface’ and ‘endpoint’ processes. With the exception of the
default control endpoint, these form the structure described in 3.2, and model the hierarchy
defined in the USB specification directly as processes. When a device is configured, it
dynamically creates interface processes to match those defined in the configuration read from
the device. The interfaces in turn dynamically create endpoints to match their current alternate
setting. Changing an interface’s alternate setting causes the existing endpoint processes to be
shut down and new ones created; changing the configuration of the device shuts down and
re-creates all interface and endpoint processes.

Device, interface and endpoint processes can each act as servers, giving out the unshared

client-end of a channel bundle when they are “opened”. If the device is disconnected, or
interface or endpoint processes shut down, the relevant server process continues to respond to
client requests (with errors), until that client disconnects. As the USB topology is expected to
change during normal system operation, the process network must not only safely grow, but
also safely shrink. Using unshared channel-bundles makes this simpler, but devices, interfaces
and endpoints can still be shared at a higher-level if necessary, although this would be unusual
given the nature of typical USB devices. Requests to open a particular USB device, interface or
end-point originate within the “bus.directory” process, and are routed to the relevant internal
process.

Care must be taken when implementing the main-loop of the ‘endpoint’ processes, such that
the channel from the interface is serviced at a reasonable interval. This is mainly a concern
for interrupt endpoints, where requests to the underlying bus could wait for a long period of
time before completing (due to the lower-level retry mechanism). For all other endpoint types,
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bus transactions are guaranteed to finish within a short period of time. The consequence of
ignoring this detail would be that the system could appear to freeze until some external event
(e.g. key press, or device removal) occurs, causing a pending interrupt request to complete,
and the associated endpoint process to resume.

4.3. USB host controllers

A number of host controller standards exist, implemented by a wide range of hardware
(e.g. different PC and PC/104 mainboards). RMoX has drivers for the UHCI, OHCI and
EHCI standards. The UHCI [18] standard (Universal Host Controller Interface), released by
Intel in 1996, is the simplest of these. Figure 6 shows the RMoX implementation of this,
alongside the USB driver processes to which it is connected.

The UHCI hardware registers are partitioned between the different processes inside the
“uhci.driver”, guaranteeing no shared resource race-hazards. To further reinforce this, there
are no shared memory buffers; all memory used is mobile and is moved between processes as
appropriate. Memory buffers from high-level clients such as the “usb.keyboard” driver process,
are passed directly through the endpoint process into the UHCI “transfer” process, where they
are used for DMA with the underlying hardware. With some small modifications to the occam-
pi runtime allocator, to make it DMA aware, an efficient zero-copy architecture is created.

5. CONCLUSIONS AND FUTURE WORK

In this article we have presented the design and development of a robust and efficient process-
oriented USB driver. Significantly, the software process networks bare an almost picture perfect
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Figure 6. Overview of the ‘uhci.driver’ host controller driver.

resemblance to the hierarchy presented in the USB standards and the network which exists
between physical devices. Furthermore, as a feature of the development language and process-
orientated approach, our driver components are scheduled independently. This allows us, as
developers, freedom from almost all scheduling concerns. Developers can instead concentrate
on the correct functionality of their particular driver, without needing to worry about how the
surrounding USB infrastructure operates. If the USB infrastructure does change in the future,
all we need do to ensure backwards compatibility — easily done with concurrent ‘adapter’
processes.

RMoX itself still has far to go. The hardware platform for which we are currently developing
is a PC104+ embedded PC — a standardised way of building embedded PC systems, with
stackable PCI and ISA bus interconnects [19]. This makes a good initial target for several
reasons. Firstly, the requirements placed on embedded systems are substantially less than
what might be expected for a more general-purpose (desktop) operating system — typically
acting as hardware management platforms for a specific application (e.g. industrial control
systems, automotive applications). There is, however, a strong requirement for reliability in
such systems. Secondly, the nature of the PC104+ target makes the developed components
immediately reusable when targeting desktop PCs in the future. Additionally, USB is being
increasingly used for device connectivity within embedded PC104 systems, due to its versatility.
The builds are routinely tested on desktop PCs and in emulators as standard, exercising aspects
of RMoX’s scalability.

In addition to USB, RMoX has support for the PCI bus and several PCI drivers, including
the RTL8139 based network interfaces present on our PC/104+ boards. We aim to experiment
with distributed RMoX systems in the near future, using nodes in a standard PC cluster or a
distributed collection of PC/104+ boards, to further exercise scalability.

To further guarantee the reliability of RMoX, as well as other process-oriented systems
programmed in occam-pi, we are looking at ways of formally specifying process behaviours,
that the compiler can check against the actual implementation. In the first instance, this will
be to check communications on mobile channel bundles, of which RMoX makes extensive
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use, particularly within the USB infrastructure presented here. The ideas here are similar
to ‘contracts’ [20], which have been introduced into other languages such as Erlang [21] and
Sing# [22]. Importantly, these checks will require no additional work on the part of the driver
developer.

5.1. Related work

The most significant piece of related research is Microsoft Research’s Singularity operating
system [23], which takes a similarly concurrent approach to OS design. Their system is
programmed in a variant of the object-orientated C# language, Sing#, which has extensions for
efficient communication between processes — very similar in principle and practice to occam-
pi’s mobilespace [24]. Within the embedded systems market are long established OSs such as
Integrity [9], LynxOS [10], VxWorks [25] and QNX Neutrino [26], certified at various levels
and used in a range of mission-critical applications. The established integrity and reliability of
these systems represent some of our long-term aims for RMoX.

More generally, there is a wide range of related research on novel approaches to operating
system design. Most of these, even if indirectly, give some focus to the language and
programming paradigm used for implementation — something other than the threads-and-locks

procedural approach of C. For example, the Haskell operating system [27] uses a functional
paradigm. The Plan9 OS [28] uses a concurrent variant of C (“Alef”). However, we take the
view that the concurrent process-oriented approach of occam-pi seems to be more suitable.
Future work will seek to investigate if this view can be supported both analytically and
experimentally.

A large amount of ongoing research elsewhere aims to make existing languages and paradigms
more efficient and concrete in their handling of concurrency. With RMoX, we are starting with
something that is already highly concurrent with extremely low overheads for managing that
concurrency — due in part to years of experience and maturity from CSP, occam and the
Transputer [29].
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