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Abstract

Coupling recent imaging capabilities with microstructural finite el-
ement (µFE) analysis offers a powerful tool to determine bone stiffness
and strength. It shows high potential to improve individual fracture
risk prediction, a tool much needed in the diagnosis and treatment of
osteoporosis that is, according to the WHO1, second only to cardiovas-
cular disease as a leading health care problem. We adapted a multilevel
preconditioned conjugate gradient method to solve the very large voxel
models that arise in µFE bone structure analysis. The intricate mi-
crostructure properties of bone lead to sparse matrices with billions of
rows, thus rendering this application to be an ideal candidate for mas-
sively parallel architectures such as the BG/L Supercomputer. In this
work we present our progress as well as the challenges we were able to
identify in our quest to achieve scalability to thousands of BG/L cores.

1 Introduction

High resolution in vivo peripheral quantitative computed tomography (pQCT)
provides detailed information on bone structure (see Fig. 1). The underly-
ing voxel model admits to estimate the local bone density. The analysis of
bone density (using other, more commonly available technology) is today’s

∗Corresponding author: bek@zurich.ibm.com
1World Health Organization
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Figure 1: Bone specimens from human subjects. Left: Low density (osteo-
porotic) specimen from a 72 year old male subject. Right: High density
(normal) specimen from a 78 year old male subject.

approach of predicting bone strength and fracture risk in diseases like osteo-
porosis that is, according to the WHO, second only to cardiovascular disease
as a leading health care problem.

Such a quantitative analysis of bone density does not take into account
the microarchitectural structure of the bone. Coupling recent imaging capa-
bilities with microstructural finite element (µFE) analysis offers a powerful
means to determine bone stiffness and strength. It shows high potential
to improve individual fracture risk prediction, a tool much needed in the
diagnosis and treatment of osteoporosis. µFE models are created from CT
scans by a direct voxel-to-element conversion (see Fig. 2). The intricate mi-
croarchitectural structure of bone entails that these µFE models possess a
very large number of elements and, by consequence, degrees of freedom.

2 Computational model

Most µFE analyses of bone usually rely on linear elasticity in displacement
form. The intricate geometric structure of the bone is approximated by
voxels. Each displacement component is a continuous piecewise trilinear
function that is determined by its values in the vertices of the voxels. The
large number of voxels entails large linear symmetric positive-definite sys-
tems of equations that have to be solved. The method of choice is the
preconditioned conjugate gradient (PCG) algorithm (see for example [7]).

Recently, we have devised a matrix-free variant of PCG that does not re-
quire building the system matrix but still is able to construct an aggregation-
based AMG preconditioner [1]. The method is implemented in the software
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Figure 2: Simulation model.

package ParFE2 which is parallelized using MPI3 and is based on the public-
domain object-oriented software framework Trilinos [5]. Data is distributed
by means of ParMETIS [6] and stored in the HDF5 data format [4]. In [1]
we presented results obtained on the Cray XT/3 at the Swiss National Su-
percomputing Centre, (CSCS) in Manno, Switzerland4, that validaded the
correctness and usefulness of our approach.

In the present work we curry this important research to the next level.
In particular, the accurate study of realistic simulations of large human bone
specimens requires extreme scale-out that stretches the limits of both algo-
rithms and computational platforms. Here, we report our progress as well as
the challenges that we face towards this goal. We focused on the IBM BG/L
Supercomputer with the goal of exploiting it’s excellent scale-out potential
that can allow us to attempt realistic simulations that involve one order of
magnitude larger computational load. Indeed, the BG/L Supercomputer,
coupled with algorithmic advances we introduced into our methods, led to
the simulation of a human vertebra bone specimen that is the largest of it’s
kind.

3 The study

We conducted a study of artificial as well as human bone specimens result-
ing in very large sparse systems of up to about 1.5 billions of unknowns.
These runs always required less than half an hour, using up to 8 racks (8192
nodes) of the BG/L system at the T.J. Watson Research Center. Pre- and

2http://parfe.sourceforge.net/
3http://www.mpi-forum.org/
4http://www.cscs.ch

3



cores repart precond solution total iters
1 2.50 27.5 113 149 94
8 6.60 45.2 116 179 86
27 7.10 51.5 113 185 80
64 7.10 53.6 124 199 86
125 7.60 55.7 122 202 81
216 8.00 65.6 119 207 79
343 8.60 55.0 119 211 77
512 9.10 67.5 118 214 75
729 10.4 70.5 118 216 74
1000 12.0 87.0 126 248 77
1728 18.5 185 145 376 81

Table 1: Run times in seconds for the weak scalability test. The last column
indicates the number of PCG iterations.

postprocessing of data took place at the CSCS.
We have conducted two series of experiments. In the first, we mea-

sured the so called weak scalability of the code on a sequence of carefully
constructed artificial bone samples that increase in size proportional to the
increase of the BG/L cores employed. The second series involves strong
scalability (the number of BG/L cores increases while the problem size stays
fixed) on a real human bone specimen which (to the best of our knowledge) is
the largest simulation of its kind so far, the results of which provide valuable
information about the strength of osteoporotic bone. A second important
target of this experiment was to identify the parts of the code that exhibit
the best as well as the worst scalability. In particular, we focused on mea-
suring the performance of the graph repartitioning, the construction of the
preconditioner and the solution phase (application of the preconditioned CG
algorithm).

3.1 Weak scalability test

The problems were obtained by mirroring a small cube of human trabecular
bone5, scanned with a high-resolution microCT system (see Fig. 3). We have
tested weak scalability using a series of 12 cubes (see Table 1), starting from
1 to 1728 BG/L nodes, where the k-th cube required k3 BG/L nodes. The
smallest cube (k=1) involved about 300.000 degrees of freedom, the largest
cube (k=12) about 500 million. All runs were done in co-processor mode in
which the second PPC440 core of the BG/L nodes handles MPI communica-
tion. We observed satisfactory scalability up to 1000 CPUs. However, load

5The interior of the bone, see Fig. 1.
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Figure 3: Sequence of artificial bone samples for the weak scalability test.

cores repart precond solution total iters
4800 157 614 482 1341 71
5000 187 420 447 1143 68
5400 230 577 431 1323 67
5800 304 362 417 1165 69
6200 397 430 425 1332 69
6800 497 368 416 1359 70
7900 749 427 380 1632 71
8100 775 418 365 1635 70

Table 2: Run times in seconds for the strong scalability test. The last
column indicates the number of PCG iterations.

imbalance caused by poor repartitioning started to manifest in the largest
cases entailing the increase of the time for constructing the preconditioner.

3.2 Strong scalability test

We conducted the largest simulation of its kind so far (1.5 billions degrees
of freedom) and calculated the effective strain of a vertebral bone specimen.
This enabled a highly detailed analysis of bone deformation under load, and
calculation of bone stiffness and strength. Fig. 4 illustrates the effective
strain of the bone specimen. For this specimen we conducted a strong scal-
ability test (see the run times in Table 2). No less than 4800 BG/L nodes
were required for the memory requirements of the problem to be satisfied
(ca. 2.4 TBytes). We scaled our runs up to eight (8) BG/L racks (8192
BG/L dual core nodes).
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Figure 4: Effective strain on a human bone (vertebra) specimen.

The solution phase scales quite well and uniformly (column ‘solution’)
as the number of employed BG/L cores increases. The construction of the
preconditioner exhibits similar overall scalabilty (column ‘precond’). How-
ever, this is not as uniform as before. The reason is the load imbalance
that is caused by the graph repartitioning (ParMETIS). Fig. 5 illustrates
the box-plots for the finite element mesh-node distribution to the available
processing units (BG/L cores in our case). Box-plots graphically show the
lower, median and upper quartile values of the node distribution (contained
in the box). More importantly the crosses indicate outlier data, i.e., nodes
per core values that are far different from the bulk of the data. It it clear
that we are experiencing significant load imbalance! Observe that only a few
cores are assigned many fewer mesh nodes than the average, while several
cores are assigned a significantly larger node load than the average. This
causes cores with a light load to wait at synchronization points and thus to
register much larger communication times than the average. The cases for
that mesh-node distribution disparity is the smallest are those that achieve
the best scalability in the preconditioner construction phase (i.e., the case
of 6800 BG/L cores).

Returning to the scalability of the solution phase we note that the pre-
conditioned conjugate gradient method is dominated by the sparse matrix-
vector products (including the application of the preconditioner) and the
global reductions (MPI ALLREDUCE) for the calculation of vector inner prod-
ucts. For this purpose we utilize the global tree network available on the
BG/L platform that achieves excellent latency as well as bandwidth which
is important (remember that global reduction involves more that 10GBytes
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Figure 5: Box-plots of the mesh-node distribution achieved by graph reparti-
tioning (ParMETIS) for the strong scalability test. According the MATLAB
help: “The boxes have lines at the lower quartile, median, and upper quar-
tile values. The whiskers are lines extending from each end of the boxes to
show the extent of the rest of the data. Outliers are data with values beyond
the ends of the whiskers”.

of data since we have more than 1.5 billion degrees of freedom).

3.3 Repartitioning scalability

We observed that the major bottleneck in extreme scale-out of ParFE is in
graph repartitioning. The top viewgraph in Fig. 6 illustrates a comparison of
the run times for the construction of the preconditioner, the solution phase,
and the time required for graph repartitioning. It is clear that the latter
dominates the overall runtimes.

In order for ParMETIS to be suitable to run on 8 racks of a BG/L system
(with 512 MBytes of memory per node) we introduced a number of algo-
rithmic modifications. The main change involved the geometric partitioning
algorithm which relies on a serial version of the quicksort algorithm. Geo-
metric partitioning is used to achieve an initial partitioning of CT scan data
to the available cores on which k-way multilevel repartitioning is applied at a
second step. We implemented a fully parallel mergesort algorithm to replace
the serial quicksort, since using the latter on 8192 BG/L nodes (8 racks) re-
quires 512 MBbytes of memory per node leaving no memory for any other
calculations (or even for the light weight Linux OS kernel on the compute
cores), thus causing the program to halt. A second important modification
was to replace asynchronous all-to-all communication with MPI collective
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Figure 6: Top: Strong scalability test on the large bone specimen. Timings
for the repartition (ParMETIS), construction of preconditioner, and solution
phase. Bottom: Timing analysis for repartitioning on a smaller bone sample.

communication. The former floods the network with messages, quickly over-
flowing the MPI buffers, while the latter is very efficiently implemented on
the BG/L communication layer.

In achieving scale out on thousands of compute cores the challenges we
face are aligned towards two main directions.

Load imbalance. Complicated geometry of the application domain, such
as the intricate structure of trabecular bone (see Figs. 1 and 4) can en-
tail significantly imbalanced partitions that have a strong negative impact
when thousands of processors are used (see Fig. 5). It is well known that
graph partitioning is an extremely challenging combinatorial problem for
which the best algorithms utilize complicated heuristics. Without doubt
during the last years multilevel coarsening-decoarsening algorithms (such
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as the ones implemented in popular software such as ParMETIS, Zoltan6,
or SCOTCH7 [3]) have dominated the scene. However, our experiments
indicate that in the era of massively parallel machines with tens (or even
hundreds) of thousands of computing cores this model of graph partitioning
has reached its limits.

Scalability. The scalability of parallel graph partitioning tools on tens
of thousands of processors appears to be a formidable task. The bottom
viewgraph of Fig. 6 illustrates a run time breakdown for ParMETIS on a
smaller real human bone sample. There are two main observations.

• There are two phases that clearly do not scale at all. These are the
coarsening and decoarsening (partition refinement) phases. They in-
volve the solution of a series of graph maximal-matching and matching
refinement problems for which many point to point communications
are needed. In ParMETIS, these are implemented in an asynchronous
manner (in order to avoid dead-locks and race conditions among other
targets) that pose great difficulties when tens of thousands of com-
puting cores are involved. Finding the optimal scheduling for these
communications, so that they can be safely performed concurrently, is
a formidable task on massively parallel platforms.

• Observe that the run times of the phases that appear to cause much
less scalability problems, in comparison with the above, increase with
a slope that suggests they will also not scale when several tens of thou-
sands of cores will be used. Thus, we claim that achieving extreme
scale-out on real world applications with intricate geometry character-
istics, we will have to use either a different algorithmic approach, one
that naturally scales in massively parallel machines, or we will need
to consider a different mapping of applications to available resources,
one that does not rely on graph partitioning.

4 Conclusion

We have presented our progress in very large scale simulations of human
bones that can provide crucial information and insight for appreciating the
risk of fractures due to osteoporosis. It is well known that osteoporosis is a
leading health care problem, thus the development of a software tool that can
render this kind of risk analysis to be a routine procedure is very important.
In this work we have shown that it is possible to achieve simulations of
unprecedented size in a few minutes, thanks to the synergy of powerful
algorithms and the excellent scale-out potential of the BG/L Supercomputer.

6http://http://www.cs.sandia.gov/Zoltan/
7http://www.labri.fr/perso/pelegrin/scotch/
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Our work has led us to understand a number of important challenges,
which we believe will become even more demanding in the next few years.
In particular, in anticipation of the petaflop machines, efficient mapping of
real world applications on millions of processing elements will require next
generation algorithms and efficient mapping models. We believe that the
models of mapping such as graph partitioning or even the most advanced
ones such as hypergraph partitioning (see for example [2]), will need to
be extended or modified so that the particular underlying architecture is
seriously taken into consideration. Furthermore, these mapping tools will
need to be naturally suited for extreme scale-out as well, otherwise they will
become the bottleneck of the whole process.
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