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Abstract

In the numerical solution of large-scale eigenvalue problems, Davidson-type meth-
ods are an increasingly popular alternative to Krylov eigensolvers. The main motiva-
tion is to avoid the expensive factorizations that are often needed by Krylov solvers
when the problem is generalized or interior eigenvalues are desired. In Davidson-type
methods, the factorization is replaced by iterative linear solvers that can be acceler-
ated by a smart preconditioner. Jacobi-Davidson is one of the most effective variants.
However, parallel implementations of this method are not widely available, partic-
ularly for non-symmetric problems. We present a parallel implementation that has
been included in SLEPc, the Scalable Library for Eigenvalue Problem Computations,
and test it in the context of a highly scalable plasma turbulence simulation code. We
analyze its parallel efficiency and compare it with a Krylov-Schur eigensolver.1

Key wordsMessage-passing parallelization; eigenvalue computations; Jacobi-Davidson;
plasma physics simulation

INTRODUCTION

We are concerned with the standard eigenvalue problem defined by a large, sparse matrix
A of order n, Ax = λx, where the scalar λ is called the eigenvalue, and the n-vector x is
called the eigenvector. Many iterative methods are available for the partial solution of the
above problem, that is, for computing a subset of the eigenvalues. The most popular ones
are Krylov projection methods such as Lanczos, Arnoldi or Krylov-Schur, and Davidson-
type methods such as Generalized Davidson or Jacobi-Davidson. Details of these methods
can be found in [2]. Krylov methods achieve good performance when computing extreme
eigenvalues, but usually fail to compute interior eigenvalues. In that case, the convergence
can be improved by combining the method with a spectral transformation technique, i.e.,
to solve (A − σI)−1x = θx instead of Ax = λx. The drawback of this approach is the
added high computational cost of solving large linear systems at each iteration of the
eigensolver. Moreover, for stability reasons these systems must be solved very accurately
(normally with direct methods). Davidson-type methods aim at reducing the cost by
solving linear systems approximately, without compromising the robustness, usually with
iterative methods. This topic is treat by some authors [11].
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Davidson methods are becoming an excellent alternative due to the possibility of strik-
ing a balance between numerical behaviour and computational performance. A powerful
preconditioner (close to the matrix inverse), if available, can usually reduce the number
of iterations significantly. However, in practice its use is normally too expensive compu-
tationally and may be difficult to parallelize, thus dominating the cost of the eigensolver.
Otherwise, depending on the performance of the matrix-vector product, the preconditioner
and the orthogonalization, there exist Davidson-type variants that can be competitive with
respect to Krylov-type eigensolvers. This paper illustrates an example of this.

Despite their potential benefit, it is still difficult to find freely available parallel imple-
mentations of Davidson-type eigensolvers, especially for the non-symmetric case, although
there are some publications dealing with parallel implementations of these methods em-
ployed for certain applications, see for instance [10, 1, 7]. Parallel Davidson-type methods
can be found in PRIMME [26] and Anasazi [3]. PRIMME implements many Davidson-
type variants including Jacobi-Davidson, whereas Anasazi only implements a basic block
Generalized Davidson method. However, none of them support non-Hermitian problems.
Implementation of non-Hermitian eigensolvers gets complicated because of the need to
work with invariant subspaces rather than eigenvectors, as well as to consider both right
and left eigenspaces. Our aim is to provide a robust and efficient parallel implementa-
tion of the Jacobi-Davidson method in the context of SLEPc, the Scalable Library for
Eigenvalue Problem Computations [9], that can address standard and generalized prob-
lems, both Hermitian and non-Hermitian, with either real or complex arithmetic. Our
implementation is already included in version 3.1 of SLEPc, which contains also different
Davidson variants other than Jacobi-Davidson. Regarding our Jacobi-Davidson solver,
some preliminary results were presented in [18], where a simple non-restarted variant with
real arithmetic is discussed. In this work, we focus on the restarted Jacobi-Davidson
method for complex non-Hermitian problems. This paper builds upon our previous work
[20] presented at Euro-Par 2010 in Ischia (Italy), and extends it with additional results.

The eigenvalue problem is the main algebraic problem in many areas such as structural
dynamics, quantum chemistry and control theory. In this work, we show results for the
eigenvalue calculation that takes place in the plasma physics application GENE, that
solves a set of non-linear partial integro-differential equations in five-dimensional phase
space by means of the method of lines. Because of the shape of the spectrum (see Fig. 1),
computing the largest magnitude eigenvalues of the linearized operator is not particularly
difficult, despite the unfavorable characteristics of the problem (complex non-Hermitian
with matrix in implicit form). However, the case of computing the rightmost eigenvalues
is much more difficult from the numerical point of view, since these eigenvalues are much
smaller in magnitude compared to the dominant ones. This makes the computational
problem challenging and suitable as a testbed for our new parallel eigensolver running on
distributed memory architectures.

The rest of the paper is organized as follows. First we describe the Jacobi-Davidson
method and several relevant variants such as harmonic extraction. Then the implemen-
tation details, including how the method is parallelized, are discussed. Next we provide
a brief description of the application. The performance of the parallel eigensolver in this
application is presented in the results section. Finally, we wrap up with some conclusions.

THE JACOBI-DAVIDSON METHOD

Davidson-type methods belong to the class of subspace projection methods, where approx-
imate eigenvectors are taken from a search subspace V . Each iteration of these methods
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Figure 1: Spectrum of the linearized operator of a GENE problem similar to the test
case I (Table 1). The largest magnitude (circle marks) and the rightmost (cross marks)
eigenvalues are desired.

has two phases: subspace extraction and expansion. In the extraction phase, the solver
selects the best (in terms of closeness to the desired region of the spectrum) from all avail-
able eigenpair approximations contained in V . In the subspace expansion, a correction for
the selected eigenpair is added to V .

The subspace expansion distinguishes a Davidson-type variant from others. Jacobi-
Davidson computes a correction t orthogonal to the selected approximate eigenvector u as
an approximate solution of the so-called Jacobi orthogonal component correction (JOCC)
[12] equation

A(u+ t) = λ(u+ t) , u ⊥ t . (1)

From (1) it is possible to formulate different linear systems, which are generically
referred to as the correction equation. For our purpose, we implement the correction
equation (

I −
uz∗

z∗u

)
(A− θI)

(
I −

uz∗

z∗u

)
t = −r , (2)

where r = Au− θu is the residual associated to the selected approximate eigenpair (θ, u),
and z ∈ span{Au, u}. The above correction equation is more general than the one proposed
in the original Jacobi-Davidson paper [24] and was introduced in [6].

If (2) is solved exactly, one step of the algorithm turns out to be one step of the
Rayleigh Quotient Iteration, which converges almost quadratically [6]. Otherwise, if it is
solved approximately, this high convergence rate may get lost. There is a trade-off between
speed of convergence and the amount of work one is willing to spend for solving the
equation, that is easily tuned if an iterative method is used. In practice, the performance
of the eigensolver depends dramatically on a suitable stopping criterion for the iterative
method.

In the subspace extraction phase, Davidson-type methods classically impose the Ritz-
Galerkin condition to the eigenpair (θ, u) that will be selected,

r = Au− θu ⊥ V . (3)
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Since u ∈ V , it is possible to express u = V ũ, V being an orthogonal basis of V . This
leads to the low-dimensional projected eigenproblem V ∗AV ũ = θũ.

In practice this extraction technique, called Rayleigh-Ritz projection, obtains good
convergence rates when the eigenvalues of interest are those located at the periphery of
the spectrum. However, it gives poor approximate eigenvectors for interior eigenvalues.
The harmonic Rayleigh-Ritz method was proposed in [14, 16] as an alternative extraction
technique for this case.

Assuming that interior eigenvalues close to a given target τ are desired, harmonic
Rayleigh-Ritz imposes the Petrov-Galerkin condition

(A− τI)u− ξu ⊥ W (4)

to the selected eigenpair (θ, u) with u = V ũ, where the test subspaceW ≡ (A− τI)V , and
ξ = θ − τ . For numerical stability reasons, both V and W (a basis of W) are constructed
to be orthonormal. The relation between the two bases is given by (A − τI)V = WS,
where S is upper triangular. Similarly to the previous case, this leads to the projected
eigenproblem

Sũ = ξW ∗V ũ , (5)

considering that W ∗(A − τI)V = S. Then the smallest magnitude pairs (ξ, ũ) of (5)
correspond to the pairs (ξ + τ, V ũ) in V closest to the target τ .

Algorithm 1 Block Jacobi-Davidson with harmonic Rayleigh-Ritz extraction

Input: matrix A of size n, target τ , number of desired eigenpairs p,
block size s, maximum column size of V mmax, restart with mmin vectors

Output: resulting eigenpairs (Θ̃, X̃)

Choose an n× s full rank matrix V such that V ∗V = I

While size(Θ̃) < p
1. Compute W,S such that (A− τI)V = WS, with W ∗W = I and S upper triangular
2. Compute H ←W ∗V
3. Compute the eigenpairs (Ξ, U) of the matrix pencil (S,H) and sort them ascendantly
4. Compute the first s harmonic Ritz pairs, X ← V U1:s and θi ← ξi + τ
5. Compute the residual vectors R, ri ← AV ui − θiV ui
6. Test for convergence
7. Compute the corrections T ,(

I −
xiz

∗
i

z∗i xi

)
(A− θiI)

(
I −

xiz
∗
i

z∗i xi

)
ti = −ri, with zi = (τ̄A+ I)xi

8. If size(V ) ≥ mmax, V ← V U1:mmin

Else if k pairs are converged

Add eigenvalues θ1, . . . , θk to Θ̃

X̃ ← [X̃ V U1:k]
V ← V Uk+1:k′ , where k′ = size(V )

Else, V ← [V orthonormalize([X̃ V ], T )]
End while
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Algorithm 1 summarizes the scheme of a Jacobi-Davidson method with harmonic
Rayleigh-Ritz extraction and the correction equation (2) with the particular choice of
zi = (τ̄A + I)xi as suggested in [6]. Note that the algorithm illustrates a block version,
i.e., s eigenpair approximations are improved simultaneously in each iteration. As in all
iterative algorithms based on expanding subspaces, due to memory limitations and in or-
der to improve efficiency, the maximum size of the search and test subspaces have to be
bounded. Thus, it is necessary to restart the computation whenever the available space
for new basis vectors is exhausted. The thick restart technique [27] resets the subspace
with the best mmin approximate eigenvectors when its size reaches mmax. A related issue
is locking of already converged eigenvectors (X̃ in Algorithm 1), a deflation technique
that amounts to extracting them from the active basis in order to avoid unnecessary
computation for further improvement. When an eigenpair converges, it is removed from
the subspace bases V and W , forcing a restart without it and in subsequent iterations
orthogonalizing the new ti vectors also against all locked vectors.

An important detail not shown in Algorithm 1 is that eigenvectors of the projected
eigenproblem, U , are not orthogonal in general, so updates such as V U1:k would require
reorthogonalizing the resulting basis. For improved stability, instead of directly computing
the eigenpairs of the projected problem, a variant of the method called JDQZ [6] builds the
(generalized) Schur decomposition and works with Schur vectors along the computation.
At the end, the solver has obtained a partial Schur decomposition from which it is possible
to compute the corresponding approximate eigenpairs. In the restart, JDQZ replaces
the eigenvectors by an orthogonal basis of the corresponding eigenspace, which means
updating V and W with the first mmin right and left Schur vectors of the projected
problem, respectively.

For a more detailed description, the reader is referred to [24, 6, 23, 25].

IMPLEMENTATION DESCRIPTION

In this section, we describe the details of our particular implementation, with special
attention to the parallelization and important aspects such as the solution of the correction
equation.

Overview of SLEPc

SLEPc, the Scalable Library for Eigenvalue Problem Computations [9], is a software library
for the parallel solution of large-scale, sparse eigenvalue problems. It was designed to
solve problems formulated in either standard or generalized form, both Hermitian and
non-Hermitian, with either real or complex arithmetic. It can also be used for singular
value and quadratic eigenvalue problems.

SLEPc provides a collection of eigensolvers on top of PETSc (Portable, Extensible
Toolkit for Scientific Computation, [4]), including Krylov-Schur, Arnoldi, Lanczos, Sub-
space Iteration and Power/RQI. Davidson-type solvers were missing, and this motivated
the development of our implementation, which was finally included in SLEPc 3.1 (released
in August 2010).

PETSc is a parallel framework for the numerical solution of partial differential equa-
tions, whose approach is to encapsulate mathematical algorithms using object-oriented
programming techniques in order to be able to manage the complexity of efficient nu-
merical message-passing codes. PETSc is object-oriented in the sense that all the code
is built around a set of data structures and algorithmic objects. The application pro-
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grammer works directly with these objects rather than concentrating on the underlying
data structures. The three basic abstract data objects are index sets, vectors and matri-
ces. Built on top of this foundation are various classes of solver objects, including linear,
nonlinear and time-stepping solvers. Many different iterative linear solvers are provided,
including GMRES, BiCGstab and BiCGstab(ℓ) [22], which can be combined with different
preconditioners.

SLEPc eigensolvers rely on the parallel implementation of vector operations, the matrix-
vector product and linear equation solvers. Basic implementations of these operations are
supplied by PETSc objects. However, certain time-consuming, critical operations have
custom implementation in SLEPc in order to improve the overall performance, as ex-
plained below.

Parallelization details

The problem matrix A and the vectors of size n, such as those stored in V , W , X, X̃ and
R are distributed by blocks of rows in the corresponding matrices. The rest of vectors and
matrices of size bounded by mmax ≪ n, such as S, H, U , Ξ, Θ̃, are replicated in all nodes.

Operations involving distributed operands are parallelized. These include updating W ,
computing the coefficient matrices of the projected eigensystem (S,H), the selected Ritz
vectors X and their residuals R, solving the correction equation (2) and orthogonalizing
V and W .

The search subspace V is initialized with a basis of randomly generated vectors in
parallel, taking care that each processor generates different random sequences.

The orthogonalization is based on a variant of classical Gram-Schmidt with selective
reorthogonalization, providing both numerical robustness and good parallel efficiency [8].
The Schur decomposition of the projected problem and other minor computations are
replicated in all nodes.

PETSc only provides basic support for multivectors (a multivector can be seen as a thin
tall matrix, or a set of vectors that should be stored contiguously for memory efficiency).
In order to develop an optimized version of Jacobi-Davidson it is necessary to implement
basic multivector operations using BLAS to perform the local calculations. We provide
an implementation in which individual vectors in a multivector can be used in common
PETSc functions.

The most time-consuming operations are the multivector inner product W ∗V and the
update V U . However, PETSc only implements the level 2 BLAS operations W ∗vi and
V ui. For W

∗V , our implementation (i) performs the level 3 BLAS matrix-matrix product
of the locally stored parts of V and W on each process, and then (ii) sums up all of
them with a single call to an MPI reduction operation. For V U , it performs the BLAS
matrix-matrix product of the locally stored part of V and the whole U .

Solution of the correction equation

The correction equation (2) is solved using PETSc’s Krylov linear solvers, which need
to compute matrix-vector products with the coefficient matrix. In this case, performing
the shifting and the projections implicitly is more efficient than explicitly building the
coefficient matrix. Also, applying only the left projector is sufficient to guarantee the
condition t ⊥ u, provided that a Krylov solver is used with a zero starting vector, as
shown in [25].

The trade-off between performance and global convergence is controlled in two ways.
First, the maximum number of iterations and the relative residual tolerance can be tuned
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for the linear system solver. Generally, increasing the number of linear solver iterations
(inner iterations) causes a decrease of the global method iterations (outer iterations). In
the next section we will compare the performance of two stopping criteria.

Secondly, the convergence behaviour of different Krylov solvers depends on the prop-
erties of the problem. We have tested two well-known solvers of this family: GMRES and
BiCGstab(ℓ). They have different parallel behaviour because GMRES generally requires
less matrix-vector products than BiCGstab(ℓ), but in contrast it has to explicitly maintain
an orthonormalized basis whereas BiCGstab does not.

Finally, it is noteworthy that in the first outer steps the pairs resulting from the (har-
monic) Rayleigh-Ritz procedure are usually poor approximations of the desired eigenpairs,
and the target τ may be a relatively better approximation. Therefore, when the selected
eigenpair’s associated residual norm is greater than a threshold value fix, the correction
equation (2) is solved with θ = τ instead [6, Section 4.0.1].

In principle, the preconditioning of the correction equation is desirable. However, this
issue is not addressed in this work because, as we will see below, the application matrix
is defined in implicit form, thus preventing from computing conventional preconditioners.
The issue of building an ad-hoc preconditioner is outside the scope of this paper.

GENE: A GYROKINETIC PLASMA SIMULATION CODE

One of the main goals of plasma simulation is to study the micro-instabilities that drive
turbulence which in turn produces anomalous transport. This analysis must be done to
determine the energy confinement time, a crucial parameter for the design of a fusion
reactor.

GENE [5] is a massively parallel plasma simulation code written in Fortran 90/95,
which is based on the numerical solution of the gyrokinetic equations. These equations
stem from a simplification of the Maxwell-Boltzmann equations by eliminating the fast
gyration of ions and electrons in strongly magnetized, dilute plasmas. This periodic motion
is not relevant for most investigations, usually focusing on observables related to much
slower time scales such as the net particle transport.

The linearized gyrokinetic equation can be written schematically as

∂g

∂t
= L[g], (6)

where L is a time independent, complex, non-Hermitian integro-differential operator. It
describes the time evolution of the modified distribution function of the gyrocentres g,
which is a (scalar) function of the perpendicular spatial wave vector (kx, ky), the co-
ordinate z parallel to the magnetic field, the velocity parallel to the magnetic field v‖,
the magnetic moment µ, and the species label j. The GENE code follows an Eulerian
approach. In particular, an explicit Runge-Kutta scheme is used for time integration,
while the semi-discretization of phase space variables is done with a fixed grid and a com-
bination of spectral and finite difference techniques. In GENE, the operator matrix is
never computed explicitly, but implemented in a highly parallelized and efficient matrix-
free form. For reasonably accurate models, the size of the problem ranges from several
hundred thousand for linear simulations up to a few billion for nonlinear problems.

In GENE, some selected eigenvalues of the linearized operator need to be computed.
In [17], the Krylov eigensolvers available in SLEPc are used for this. One scenario is the
computation of the largest magnitude eigenvalue (circled in the spectrum of Fig. 1) in
order to estimate the optimal timestep of the initial value solver. In this case, Krylov
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Table 1: Test case I: GENE configuration for a very unstable kinetic ballooning mode
with growth rate of 0.2055 and frequency of 0.2872 and another unstable mode (0.1227−
0.4494i).

Dir. Resol. Boxsize Geom. & other params. Param. Ions Electrons

s 2 geom. circular R/Ln 2.0 2.0
x 12 lx 125.628 ŝ 0.8 R/LT 3.125 3.375
y 1 ky,min 0.25 q0 1.4 mass 1.0 0.00027
z 24 trpeps 0.18 charge 1.0 -1.0
v 48 lv 3.0 β 0.001 T 1.0 1.5
µ 12 lµ 9.0 (hypz, hypv) (2, 0.5) dens 1.0 1.0

Table 2: Test case II: GENE configuration similar to test case I but with a more realistic
species configuration: deuterium, tritium, helium and electrons.

Dir. Resol. Boxsize Geom. & other params. Param. 2H 3H He e-

s 4 geom. circular R/Ln 2.5 2.5 2.5 2.5
x 12 lx auto ŝ 0.8 R/LT 3.5 3.5 3.5 4.0
y 1 ky,min 0.25 q0 1.4 mass 2.014 3.016 4.002 5.4e-4
z 24 trpeps 0.18 charge 1 1 2 -1
v 48 lv 3.0 β 0.001 T 1.0 1.0 1.0 1.5
µ 8 lµ 9.0 (hypz, hypv) (2, 0.5) dens 0.45 0.45 0.05 1.0

solvers converge very fast. In a different context, SLEPc is also used for computing the
subdominant unstable modes, i.e., the rightmost eigenvalues (crosses in Fig. 1). Due to
the shape of the spectrum, these eigenvalues are much more difficult to compute. In [17],
it is shown that the Krylov-Schur method with harmonic extraction has a reasonably
good performance, compared to plain Krylov-Schur with spectral transformation. In the
next section, we will show that our Jacobi-Davidson implementation performs even better.
Computing these rightmost eigenpairs very fast is critical for some kind of analyses, e.g.,
when tracking the subdominant modes for varying values of several parameters [13], in
which case a sequence of eigenproblems has to be solved.

COMPUTATIONAL RESULTS

This section summarizes the experiments carried out in order to evaluate the performance
of our implementation, particularly in terms of scalability to a large number of processes.

Table 3: Test case III: GENE configuration corresponding to a stellarator device.

Dir. Resol. Boxsize Geom. & other params. Param. Ions Electrons

s 2 geom. tracer R/Ln 0.0 0.0
x 3 lx auto file hm128.dat R/LT 4.0 0.0
y 1 ky,min 0.3 ŝ -0.1088 mass 1.0 0.0025
z 128 q0 1.11 charge 1.0 -1.0
v 48 lv 3.0 β 0.001 T 1.0 1.0
µ 12 lµ 9.0 (hypz, hypv) (5, 0.5) dens 1.0 1.0
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The experiments are executed on Tirant, a machine consisting of 256 JS20 blade com-
puting nodes, each of them with two 64-bit PowerPC 970+ processors running at 2.2 GHz,
and interconnected with a low latency Myrinet network. Only 256 processors are used due
to account limitations.

The following software is employed: GENE 1.4, PETSc 3.1, SLEPc 3.1 and LAPACK
3.2.1. All of them are built with the IBM compilers XL for C and Fortran, and linked
with the BLAS routines in ESSL and MPICH 1.2.7.

Three different GENE parameter settings are used, detailed in the Tables 1, 2 and
3. These can be considered real use scenarios. In our previous work [18], only a lower
resolution version of the test case 1 was employed. The GENE parameters shown in
the tables determine the size and the spectrum of the associated eigenproblem (which
influence the convergence of the solvers), and change the performance of matrix-vector
products (which is an important part of the overall performance).

All experiments in this section are run using the default domain distribution (how
many groups of processes there are in each direction) computed by GENE. For instance,
when running test case II with 64 processes the default is to split the s, x, y, z, v, and µ
directions in 4, 2, 8, 1, 1, 1, respectively. The impact of different domain distributions on
parallel performance is studied in [17] and [19].

The Jacobi-Davidson solver will be compared with the fastest alternative found in [17],
that is the Krylov-Schur method with harmonic extraction, which is available in SLEPc.
Both solvers are configured for computing the two eigenvalues with largest real part (that
correspond to the two instabilities with largest growth rates), with a tolerance of 10−5

for the residual norm relative to the magnitude of the eigenvalue. The search subspace is
limited to 64 vectors, and when it is full, Krylov-Schur restarts with 32 vectors whereas
Jacobi-Davidson keeps only 8. We have used block size 1, since larger values do not
improve the performance in this case.

The harmonic procedure in both eigensolvers needs a target (called τ in Algorithm
1), that is, a point in the complex plane whose nearest eigenvalues are the desired ones.
In the experiments the target is set to 1, which is a reasonable assumption for the upper
bound for the real part of the eigenvalues for the problem at hand.

Stopping criterion for the correction equation solver

As already remarked, the way in which the correction equation is solved has a significant
impact on the overall performance of the method. Our study in [20] compares the per-
formance of Jacobi-Davidson when solving the correction equation with 110 iterations of
GMRES and BiCGstab(2), showing that the latter obtained better results (this can be
attributed to the high overhead of basis orthogonalization in GMRES). In this work, we
extend the analysis by testing more flexible criteria with BiCGstab(2).

Figure 2 shows the time spent by Jacobi-Davidson using four processes when solving
test case I with the BiCGstab(2) solver configured to perform 25, 50 and 80 (inner)
iterations. We also consider modified versions of these configurations using a variable
tolerance, that is, the iterative solution of the correction equation is stopped earlier if

‖r(j)‖2 ≤ 2−i‖r(0)‖2,

where r(j) is the residual of the correction equation at the linear solver iteration j, and i
is the current outer iteration. This criterion comes from Newton methods and its use in
the context of Jacobi-Davidson is suggested in [6], and is also used in [7].

From the figure, we observe that the best times are obtained limiting the number of
iterations to 80, and in general the more iterations, the better time. In all cases, the
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Figure 2: Time (in seconds, left axis) and number of reductions (right axis) spent by
Jacobi-Davidson solving the test case I with four processes. The correction equation is
solved with BiCGstab(2) and a maximum number of iterations of 25, 50 and 80. The cases
labeled as “var” use a variable tolerance for the stopping criterion. The total time is split
into matrix-vector products (MV) and vector operations without (Ops 0) and with (Ops
1) communication.

Table 4: Total number of matrix-vector products (#MV), total time spent by them (T.
MV) in seconds, average time spent by one product (T./#MV), and number of reductions
(#red.) performed by both methods when solving the test cases with four processes.

Krylov-Schur Jacobi-Davidson
Case #MV T. MV (s) T./#MV (s) #red. #MV T. MV (s) T./#MV (s) #red.

I 119776 5226.2 0.0436 177000 297147 7185.15 0.0241 865900
II 67136 5299.4 0.0789 100700 169685 5754.05 0.0339 494000
III 45216 2439.6 0.0539 66960 110499 2527.2 0.0228 321100

variable tolerance criterion slightly reduces the time and, more importantly, significantly
reduces the number of parallel reductions. Parallel reductions require the synchronization
of all processes and constitute a great penalty for the scalability of the method. If we repeat
the analysis for a larger number of processes, we will see that using more iterations may be
counterproductive because overhead associated to collective communication becomes more
important. Therefore, in subsequent experiments we use the variable tolerance criterion
with a maximum number of inner iterations of 50.

Jacobi-Davidson versus Krylov-Schur

Figure 3 compares the results of Jacobi-Davidson and Krylov-Schur for test cases I, II and
III. With four processes (left plot) the advantage of Jacobi-Davidson is clear. However,
the difference between both methods is reduced significantly when the number of processes
increases, as can be appreciated in the results with 256 processes (right plot) and in the
speedups in Figure 4 commented below.

One of the possible causes is that Jacobi-Davidson needs more than twice as many
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BiCGstab(2) solving test cases I, II and III with 4 (left) and 256 (right) processes. The
total time is split into matrix-vector products (MV) and vector operations without (Ops
0) and with (Ops 1) communication.

matrix-vector products as Krylov-Schur (see Table 4), but the order in which they are
performed (quite consecutive compared to Krylov-Schur) allows the cache to reduce this
penalty. When the local problem size is small enough, Krylov-Schur performs the matrix-
vector product as fast as Jacobi-Davidson and the excess of matrix-vector products in
Jacobi-Davidson is reflected in the time (see matrix-vector product times in the bottom
right plot of Figure 4).

Another explanation is the fact that Jacobi-Davidson performs approximately five
times more parallel reductions than Krylov-Schur (see Table 4). Some parallel reduc-
tions are performed in the orthogonalization procedure and others in the iterations of
the solution of the correction equation. The latter is the main source of parallel reduc-
tions in Jacobi-Davidson, and keeping their number small is necessary for a competitive
implementation.

Speedup and Scalability

Figure 4 illustrates the speedups, in the strong scaling sense, of Jacobi-Davidson and
Krylov-Schur solving the test cases I, II and III. The time spent by Jacobi-Davidson in
four processes is selected as the reference time for the speedup in each test case. The
bottom right plot shows the speedup of the matrix-vector product taking as basis the
performance in Jacobi-Davidson.

We can observe that there is a clear connection between the speedup of the matrix-
vector product and the total speedup. The reason is that this operation approximately
accounts for 50% of the total time in Jacobi-Davidson and just 33% in Krylov-Schur, with
256 processes. This can explain the poor speedup results for test case I. In each test case,
the trend of the global speedup inherits the trend of the matrix-vector product as the
number of processes grows.

Finally, Figure 5 illustrates the weak scaling scenario, plotting the time spent by the
eigensolvers in the solution of the cases I (left plot) and II (right plot) with the resolution
of the v direction increased. It is observed that both solvers are comparably good, with
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the exception of the anomalous and punctual malfunction of Krylov-Schur with 16 and 32
processes due to extremely slow convergence (this may not happen with a different set of
parameters).

CONCLUSIONS

We have presented a parallel implementation of the Jacobi-Davidson eigensolver for com-
plex non-Hermitian matrices. The proposed solver incorporates all the ingredients neces-
sary to be competitive with other solvers, such as restart and locking with Schur vectors.
It is also equipped with harmonic extraction for finding interior eigenvalues, and several
options for the efficient solution of the correction equation (projectors, preconditioning,
and the fix parameter). The implementation has been carried out in the context of SLEPc,
where the user is able to easily adjust the different parameters for the best performance.

In order to analyze the performance of the new solver, we have addressed a rele-
vant scientific computing application, namely the computation of micro-instabilities in
fusion plasmas as implemented in the GENE code. This application requires computing
the rightmost eigenvalues (unstable modes) of a discretized advection dominated partial
integro-differential equation, where the matrix has almost pure imaginary eigenvalues.
This problem is a challenge for iterative eigensolvers.

The comparison, in terms of time, with the harmonic Krylov-Schur method is very
favorable, being Jacobi-Davidson up to four times faster in some cases. However, this gain
is diminished when the local problem size is small, that is, both methods become nearly
equivalent when increasing the number of processes, although in absolute terms Jacobi-
Davidson is still faster, at least up to 256 processes with the problems tested. The reason
for this behaviour is that the Jacobi-Davidson eigensolver, in order to be competitive
with respect to Krylov-Schur, needs to perform many inner iterations. In this way, the
cost is dominated by the matrix-vector product operation. In the considered application,
the parallel efficiency of the matrix-vector product is rather variable, depending on the
configuration of the GENE parameters.

The developed solver is included in the latest version of SLEPc with all the features
already described, except for the variable tolerance stopping criterion for the correction
equation solver that will be included in future versions. The latter will be especially
important for GENE and similar applications.

In terms of practical use, we have shown that Jacobi-Davidson is a competitive method
for GENE, even without using a preconditioner. It remains as a topic for further research
the addressing of the correction equation preconditioning by, for instance, the use of flexible
inner-outer Krylov methods [21] (preconditioning with a Krylov method is possible in the
case of implicit operators), or designing a specific preconditioner for the GENE linearized
operator. Furthermore, it may be interesting to consider other iterative methods for
solving the correction equation, such as deflated restarting GMRES [15], and advanced
stopping criteria, such as those proposed in [11].
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