
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2012; 24:1775–1791
Published online 20 December 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.1878

RESEARCH ARTICLE

Large improvements in application throughput of long-running
multi-component applications using batch grids

Sivagama Sundari M 1, Sathish S. Vadhiyar 1,*,† and Ravi S. Nanjundiah 2

1Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
2Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, India

SUMMARY

Computational grids with multiple batch systems (batch grids) can be powerful infrastructures for executing
long-running multi-component parallel applications. In this paper, we evaluate the potential improvements
in throughput of long-running multi-component applications when the different components of the applica-
tions are executed on multiple batch systems of batch grids. We compare the multiple batch executions with
executions of the components on a single batch system without increasing the number of processors used for
executions. We perform our analysis with a foremost long-running multi-component application for climate
modeling, the Community Climate System Model (CCSM). We have built a robust simulator that models the
characteristics of both the multi-component application and the batch systems. By conducting large number
of simulations with different workload characteristics and queuing policies of the systems, processor alloca-
tions to components of the application, distributions of the components to the batch systems and inter-cluster
bandwidths, we show that multiple batch executions lead to 55% average increase in throughput over single
batch executions for long-running CCSM. We also conducted real experiments with a practical middleware
infrastructure and showed that multi-site executions lead to effective utilization of batch systems for execu-
tions of CCSM and give higher simulation throughput than single-site executions. Copyright © 2011 John
Wiley & Sons, Ltd.

Received 23 June 2009; Revised 18 July 2011; Accepted 21 August 2011

KEY WORDS: grids; co-allocation; long-running applications; multi-component applications; climate
modeling; CCSM; throughput; batch systems; queue waiting times

1. INTRODUCTION

Computational grids have been increasingly used for executing large scale scientific applications
[1–5]. Most of the benefits from using grids are primarily due to increase in the number of proces-
sors available for execution. In this work, we focus on the use of grids when the processor space for
application execution is not increased. Specifically, we deal with grids with multiple batch systems
(batch grids, for brevity) and show that employing multiple batch systems can improve the appli-
cation throughput of long running multi-component applications, where application throughput is
defined as the amount of work performed by the application in a certain amount of wall-clock time.

Multi-component Multiple Program Multiple Data (MPMD) applications [6,7] consist of compo-
nent applications, which are parallel applications themselves. In these applications, the components
are loosely synchronized and communications between components are lighter and less periodic

*Correspondence to: Sathish S. Vadhiyar, Supercomputer Education and Research Centre, Indian Institute of Science,
Bangalore, India.

†E-mail: vss@serc.iisc.ernet.in

Copyright © 2011 John Wiley & Sons, Ltd.

1776 S. S. M, S. S. VADHIYAR AND R. S. NANJUNDIAH

than within components. We consider multi-component applications with malleable components in
which the number of processors used for a component execution can be changed. Although the
components of the multi-component applications are malleable, they cannot cannot be split across
multiple sites because of large amount of interactions within components. The emphasis on multi-
component applications in our work is important because these components are coupled, that is,
they are separate applications by themselves but communicate with each other, and they all need
to be executed simultaneously together to make progress. Hence, co-scheduling of components
and migration of entire components across the queues will have to be considered by scheduling and
rescheduling mechanisms. We differentiate the multi-component applications from traditional work-
flow applications [8–10] that contain a sequence of levels of executions with well-defined control
and data dependencies. In workflows, the components in a level are dependent on the earlier levels,
whereas components within a level are independent and execute concurrently. The communications
on an edge of a workflow application mostly happen once after the completion of an applica-
tion component. In contrast, multi-component applications like Community Climate System Model
(CCSM) [6, 7] involve coherent and continuous execution of the same set of components through-
out application execution, with complex communication patterns and data exchanges between
the components.

The primary reason for the improvement in application throughput on batch grids is due to the
potential decrease in queue waiting times incurred by a multi-component application when its
components are simultaneously submitted as individual jobs with small processor requirements
to multiple batch systems than when the entire application is submitted as a single job with the
total processor requirements of all the components to a single batch system. This is because the
queue waiting times of the jobs submitted to a batch system generally increase with their processor
requirements as illustrated in Figure 1. The figure shows the average queue waiting times for jobs
with different processor requirements on two IBM systems in San Diego Supercomputer Center.
The job traces were obtained from the logs maintained by Feitelson [11]. We find that except for
some outliers, the general trends in the graphs show that the queue waiting times increase with
request sizes.

However, batch systems or queues are associated with maximum execution time durations for the
jobs. The number of active batch systems available for simultaneous execution of the components
of a long-running multi-component application varies at different points of execution. Components
will have to be checkpointed and continued from the previous executions on possibly different batch
systems as the set of active batch systems changes because of the execution times of some com-
ponent jobs exceeding the maximum execution time durations of the systems on which they are
executing. Thus, whereas the reduced queue waiting times because of multiple batch submissions

1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 18 20 24 25 28 32 43 48 640

2

4

6

8

10

12

14

16

18

Number of processors

M
ea

n
qu

eu
e

w
ai

t t
im

e
fo

r
re

qu
es

ts
 (

in
 s

ec
on

ds
)

1 2 3 4 5 8 10 12 15 16 19 25 32 35 50 63 64 1280

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of Processors

M
ea

n
qu

eu
e

w
ai

t t
im

e
of

 r
eq

ue
st

s

x 104 x 104

(a) (b)

Figure 1. Average queue wait times for jobs on two San Diego Supercomputer Center (SDSC) systems.
(a) SDSC 64 processor system; (b) SDSC 128 processor system.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1775–1791
DOI: 10.1002/cpe

IMPROVEMENTS OF MULTI-COMPONENT APPLICATIONS ON BATCH GRIDS 1777

of application components can lead to improvement in the throughput of a long-running multi-
component application, the overheads because of checkpointing and restarting of the components
can adversely impact the throughput. The improvement in application throughput also depends on
various factors including the frequency and amount of communications between the different com-
ponents, the interconnection speeds on the links connecting the batch systems and characteristics
of the batch queues, namely, queuing and scheduling policies, the loads, and the processor require-
ments of the jobs submitted to the queues. Hence, the benefits of multi-site execution are not clear
and require further studies.

In this paper, we study the improvements in throughput of a foremost long-running multi-
component parallel application, CCSM [6, 7], because of simultaneous submissions of the com-
ponents to multiple batch systems of a grid over submission of the entire application to a single
batch system. We developed a performance model for CCSM for predicting the execution times
of CCSM for different number of clusters and processors. By using the performance model with
a multi-cluster system simulator that simulates submissions of jobs with different processor and
execution time requirements to batch queues of different queue scheduling policies and different
interconnection speeds between the batch systems, we performed a large number of simulations
with different application and system configurations. We show that multiple batch executions can
lead to 60% average reduction in queue waiting times for CCSM jobs and 55% average increase
in application throughput of CCSM over single batch executions. Our primary focus on simula-
tions is, because our application case study, namely CCSM, takes one-to-several weeks of execution
for a single system configuration (batch queue loads, scheduling policy, network, etc.), and it is
impossible to perform large scale evaluations and comparisons of single and multi-site executions
using a large number runs with different values of system parameters, using real executions. We
also developed a practical grid middleware infrastructure for execution of CCSM across multiple
batch systems. We conducted real experiments with the infrastructure and showed that multi-site
executions lead to effective utilization of batch systems for executions of CCSM and give higher
simulation throughput than single-site executions.

Although performance benefits because of co-allocation of multiple batch systems for application
execution have been analyzed for applications with small execution times [12–14], our work is the
first effort, to our knowledge, that studies the improvement in throughput of long-running multi-
component applications in which the execution times of the components are significantly greater
than the execution time limits associated with the batch systems. We employ a novel execution
model in which the set of active batch systems available for execution is dynamically shrunk and
expanded, and the components are checkpointed and continued or rescheduled on possibly different
batch systems. Although various efforts exist on execution strategies for malleable single compo-
nent applications [15–17] on interactive systems, starting from the early 2000s, our work differs
from all these strategies in the aspects of malleability of multi-component multi-physics applica-
tions and rescheduling because of batch queue events of queue waiting and execution time limits.
These are very important contribution of our work, since our analysis and our demonstration with
real experiments will motivate and allow leveraging the power of multiple batch systems for solving
large-scale scientific problems, both (batch systems and large applications) of which are becoming
widely prevalent.

Thus, the primary novel aspects of work that distinguishes from other efforts are the follow-
ing. Our work focuses on improving the simulation rate of a single long running multi-component
application where the different components are submitted multiple times to different batch queues.
Although submissions are made to the queues of all the clusters, an execution of the multi-
component application can proceed when at least one of the clusters become available for execution.
Our work also considers independently administered multiple batch sites with predefined and pos-
sibly different job execution policies. Thus, our work is practical and can be applied directly to a
given batch grid, whereas their efforts require changing the scheduling policies. The primary contri-
butions of our work are as follows: (i) a novel execution model for long-running multi-component
applications in which the set of active batch systems changes during execution, and the compo-
nents are coscheduled, submitted multiple times to different systems, checkpointed and continued
for coherent execution; (ii) a simulation framework that models submissions of the components

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1775–1791
DOI: 10.1002/cpe

1778 S. S. M, S. S. VADHIYAR AND R. S. NANJUNDIAH

on different batch systems with different queue scheduling policies, job arrival dynamics, queue
waiting times and inter-cluster network speeds; and (iii) large-scale analysis of decrease in queue
waiting times and increase in resource availability and application throughput because of multiple
batch submissions.

Section 2 describes the execution model used for executing different components of CCSM in
multiple batch systems and explains the metrics used for comparison of single and multiple batch
executions. Section 3 describes in detail the various components of our simulation architecture
including the application simulator and scheduler. Section 4 describes our experiment setup and
presents various results related to simulations of single and multiple batch simulations. Section 5
details our attempts to develop a practical middleware infrastructure for executing multi-component
applications on batch grids. In Section 6, we briefly compare our work with other existing efforts
for co-allocation on batch systems. Section 7 summarizes our work and lists our future plans.

2. EXECUTION MODEL AND EVALUATION METHODOLOGY

In this work, we consider a classic and foremost example of a multi-component application, CCSM
[6]. CCSM is a global climate system model from National Center for Atmospheric Research [18]. It
is a MPMD application consisting of five components, namely, atmosphere, ocean, land and ice and
a coupler component, which transforms data and coordinates the exchange of information across
the other model components. CCSM is typically executed for long periods to simulate climate sys-
tems for multiple centuries. The execution times for such runs can be several weeks. To support
such long running simulations, CCSM contains restart facilities where the application can be made
to store its execution state as restart dumps at periodic intervals or after some simulated days and
simulations for an execution can be continued from the previous executions using the restart dumps
of the previous executions. Batch queue systems are associated with limits for execution time for
a job. If a job submitted to batch queue exceeds the execution limit of the queue, it is aborted by
the system. The execution time limits are typically few days. Hence a long running application like
CCSM involving multi-century simulations will not be able to complete execution within the exe-
cution time limit of a batch system. The CCSM application executing on a batch system will have to
be made to create a restart dump before the execution time limit, stopped, resubmitted to the batch
system and continued from the previous execution using the restart dump.

In our execution model, when CCSM is executed on B batch systems or queues, B job submis-
sions are made to the queues with different processor requirements or request sizes. We refer to a job
submission to a queue and the corresponding batch system as becoming active when the job com-
pletes waiting in the queue and is ready for execution. When some subset of submissions become
active, the components of CCSM are executed on the corresponding subset of active batch systems,
BA � B . When a submission reaches the execution time limit of the corresponding queue, the
batch system becomes unavailable for components that were executing on the system and is hence
removed from BA. In this case, the CCSM is made to create a restart dump and all the components
are remapped or rescheduled to the new/updated active batch systems, BA, and continued execution
from the restart dump. Also, a job submission is made to the batch system that became unavail-
able for execution. At some point, when this batch system becomes active, the CCSM executing
on the already active systems is made to create a restart dump, the set BA is updated to include
the system that became newly active, components are remapped to new/updated BA and continued
execution from the restart dump. Specifically, CCSM is rescheduled whenever the set BA changes,
either because of some batch systems becoming active or because of one of the active batch sys-
tems becoming unavailable upon the corresponding submission reaching its execution time limit
on the system. These points of execution at which the application are rescheduled are denoted as
rescheduling points. This process continues until CCSM completes simulation of a certain num-
ber of simulated years. The process is illustrated in Figure 2 with an example of a two-component
application executing on two batch sites.

We evaluate and compare the single-site and multi-site executions of CCSM in terms of the queue
waiting times of the submissions, the resource availability rate (RAR), and application throughput.
RAR gives a measure of the amount of processor-hours the resources were available for CCSM

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1775–1791
DOI: 10.1002/cpe

IMPROVEMENTS OF MULTI-COMPONENT APPLICATIONS ON BATCH GRIDS 1779

Resubmit
request

Pr
oc

es
so

rs
Pr

oc
es

so
rs R

equest size
R

equest size

Time

Restart file
transfer

Queue wait
phase

Restart
overheads

Component2

Component 1

Active
phase

B
at

ch
 q

ue
ue

 1
B

at
ch

 q
ue

ue
 2

In
tr

a
si

te
 r

un

In
tr

a
si

te
 r

un

In
te

r
si

te
 r

un

Figure 2. Execution of a long-running two-component application on two sites.

execution. Processor-hours for a submission is defined as the product of the number of processors
used for the execution and the execution time corresponding to the submission. For a long-running
execution consisting of multiple submissions, RAR is calculated for a system as the ratio of the
sum of processor-hours for the submissions to the total execution time considered for evaluation.
For multi-site executions, RAR is calculated as the ratio of the sum of the processor-hours between
the rescheduling points and the total execution time considered for evaluation. We also compare the
single and multi-site executions using application throughput. For CCSM, throughput is calculated
as the number of climate days simulated per wall-clock day. For comparison of single and multiple
system executions, we generated a set of four batch systems with different number of processors and
considered the largest of the systems for single system executions. This is to enable fair comparison
because single-system users would typically want to use the largest batch system available to them
for better performance, larger problem sizes, and smaller queue waiting times.

3. SIMULATION METHODOLOGY

Our simulation setup comprises of five major components: (i) a workload simulator, (ii) a multiple
batch system simulator, (iii) statistic calculator, (iv) CCSM (re)scheduler, and (v) CCSM simulator
as shown in Figure 3.

The workload simulator produces a list of jobs with submission time, processor request size and
expected execution time for each job. This produces the external load of non-CCSM jobs for our
experiments. We used the workload model developed by Lublin and Feitelson [19]. This model was
developed by applying rigorous statistical procedures to logs collected from real batch systems of
three different locations and was shown to be the most representative model available in a general
sense. For all our job traces, we specified the maximum execution time of 2 days for the jobs. In
order to generate job traces of different job characteristics, we categorize the jobs in terms of their
execution times and processor requirements. We call jobs with small execution times (mean execu-
tion time of 3-4 min) as short jobs (S) and those with large execution times (mean execution time
of 6 h) as long jobs (L). Similarly, jobs with small processor requirements (< 10 processors) are
called narrow jobs (N) and those with large processor requirements (> 10 processors) as wide jobs
(W). We then tuned the input parameters of the workload model to generate job traces consisting of
predominant number of jobs belonging to one of the four job categories, namely, S, L, N, and W.
The mean inter-arrival times of the jobs in our queue traces were set to 3000 s.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1775–1791
DOI: 10.1002/cpe

1780 S. S. M, S. S. VADHIYAR AND R. S. NANJUNDIAH

Workload
Simulator

Multiple Batch System
Simulator

Number of Queues

Input Trace
Workload

Job Type

Queueing Policy
[NOBF, CONS, EASY]

MCA
Execution Traces

[L,N,S,W,LN,LW,SN,SW]

Throughput
Calculator

RAR Calculator

Statistic
Calculator

CCSM throughput

Best schedule
CCSM

Scheduler

CCSM
Simulator

and rate

execution rate
CCSM

Bandwidth

Resource Availability Rate

[10 Mbps, 100 Mbps, 1 Gbps]

Figure 3. Simulator architecture.

The batch system simulator uses the job traces produced by the workload simulator and sim-
ulates the job executions on a given set of batch systems with given queue scheduling policies.
Three queue scheduling policies, namely, FCFS (First Come First Serve), conservative (CONS) and
EASY backfilling were used for scheduling or selecting jobs in the queues for allocation to proces-
sors. The simulator also simulates submissions corresponding to CCSM application by adding the
submissions to the job traces of each batch queue. A CCSM submission is added to the job trace
immediately after the completion of the execution time limit for the previous CCSM execution.
The simulator using the specified queuing policy for each batch queue or system, produces multi-
component application execution traces containing the queue waiting times in addition to the arrival
and execution times and request sizes of the CCSM jobs. The batch simulator has been developed
using C and Message Passing Interface (MPI). The simulations thus can be conducted in parallel.

The statistic calculator uses the multi-component application execution traces to calculate the
application throughput and RAR. To calculate application throughput, the statistic calculator needs
to determine the allocation of processors in the different batch systems to the different components
of CCSM whenever the number of active batch systems for CCSM execution changes in the exe-
cution traces. The calculator invokes the CCSM scheduler, described in Section 3.2, component to
determine the schedule for CCSM execution for a given number of active batch systems, namely, the
systems. The CCSM scheduler evaluates different candidate schedules for CCSM execution in terms
of predicted execution times and chooses the schedule with the minimum predicted execution time.
To determine the predicted execution time for a particular candidate schedule, the CCSM scheduler
invokes the CCSM simulator, described in Section 3.1, which simulates the execution flow and the
computational and communication phases of the different components of CCSM on the processors
of the different batch systems to predict the execution time.

3.1. Application simulator

We developed a discrete-event simulator for CCSM for modeling the execution flow of the compo-
nents. Each component communicates the data processed by it to the coupler at periodic intervals.
This interval of communication, coupling period (CP), can be different for different components.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1775–1791
DOI: 10.1002/cpe

IMPROVEMENTS OF MULTI-COMPONENT APPLICATIONS ON BATCH GRIDS 1781

Within each CP, a component performs some computations of its local data, receives data from the
other components through the coupler, performs some computations of this received data and sends
its processed data to the other components through the coupler. These phases are denoted as send-
to-recv computations (S-R), recv communications (Re), recv-to-send computations (R-S), and send
communications (Se), respectively.

The CCSM simulator takes as input, the total wall-clock time for CCSM execution, the CPs for the
four components, the periodicity of anomalous phases, the number of clusters, the inter-cluster band-
width, and the allocation of processors in the clusters for the components. The simulator then models
the execution flow of CCSM until the execution pattern per simulated-day converges. The number
of simulated days and the execution time for the simulation are obtained, and the ratio between the
two values is scaled to obtain the total number of simulated days or application throughput for the
total wall-clock time available for CCSM execution.

In order to model the execution flow and predict the number of simulated days for a given execu-
tion time (simulation rate), the simulator uses models for the different phases, namely, S-R, Re,
R-S, Se, and An, for each component. These phase models predict the execution times for the
phases for a given number of processors. To construct these phase models, we conducted many
experiments by executing CCSM with T42_gx1v3 resolution, a medium resolution climate model
with Eulerian dynamical core for atmosphere components, across two AMD Opteron clusters,
fire-16 and fire-48, with different application and system configurations. We used a simple equa-
tion, computeT ime D a C b=componentSi´e, for modeling each of the computation phases
of a component. componentSi´e is the number of processors allocated for the component and
computeT ime is the execution time corresponding to the computation phase. a and b denote the
model coefficients and were obtained by linear regression using the observed execution times cor-
responding to the actual experiment. For modeling a communication phase for a given inter-cluster
bandwidth, we used the average of the observed communication times for the phase corresponding
to the actual experiments across the two clusters. Thus, the phase models for a given inter-cluster
bandwidth can be used for predicting the simulation rate of CCSM for any number of processors
allocated to the components for an inter-cluster bandwidth of 10 Mbps, 100 Mbps or 1 Gbps. We
validated the accuracy of the application simulator by conducting different experiments with CCSM
using fire-16 and fire-48 AMD clusters. We use our performance models primarily to rank the can-
didate schedules for determining the best CCSM configuration and best schedule for execution of
the application. We found that in most cases, our performance models resulted in good correlations
between the predicted and the actual execution times for different configurations involving different
component sizes and distributions, with correlation coefficients of 0.98.

3.2. CCSM scheduler/rescheduler

In our execution model, the CCSM components are scheduled and rescheduled to the available
batch systems at various points of execution. Scheduling involves determining the set of proces-
sors for each component to minimize the application execution time. Scheduling for single batch
executions involves determination of processor allocation or the number of processors for each
component. Scheduling for multiple batch executions involves processor allocation and component
mapping. Component mapping determines the mapping of the different components to the different
active batch systems. A processor allocation is valid if it adheres to the processor restrictions for
the CCSM components. A component mapping is valid if the number of processors determined for
each component is less than the number of processors available in the corresponding batch system
on which it is allocated.

Because our primary focus is on showing the benefits with multiple batch executions without
increasing the number of processors used for single batch executions, we determine for multiple
batch executions, a processor allocation that is similar to the best processor allocation or schedule
determined for single batch execution. Hence, we first determine the single-system best schedule
for the largest batch system by evaluating all valid processor allocations and choosing the pro-
cessor allocation or schedule for which the application simulator predicts the minimum execution
time. To restrict the number of valid processor allocations, the scheduler chooses only power-of-two

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1775–1791
DOI: 10.1002/cpe

1782 S. S. M, S. S. VADHIYAR AND R. S. NANJUNDIAH

number of processors for some components. The single-system best schedule is used for execution
of CCSM on a single batch system and as a base processor allocation for determining the schedule
for multiple batch executions.

Because the base processor allocation may not give the best schedule for multiple batch execu-
tions because of communications on the slow inter-cluster links and may not yield a valid component
mapping, it cannot be directly used for multiple batch executions. Hence, we consider valid proces-
sor allocations equivalent to the base processor allocation by considering for each component, few
valid processor allocations immediately lower and higher than the number of processors for the
component in the base processor allocation. For each of the valid processor allocations, the sched-
uler evaluates all valid mappings of the four components to the four batch systems in terms of the
execution times predicted by the application simulator for the mappings and chooses the schedule
with the minimum predicted execution time. During rescheduling, for each of the valid mappings,
the predicted cost for the transfer of the restart dumps of the components corresponding to the pre-
vious mapping for the previous execution is added to the predicted execution time for evaluation
of the mapping. We found that our scheduler typically spends less than 5 s to determine the best
schedule for multiple batch executions. In real settings, the scheduler will be invoked only once in
several hours and hence scheduling overheads of even few minutes are tolerable.

4. EXPERIMENTS AND RESULTS

4.1. Experiment setup

We conducted 1000 simulation experiments for single and multiple batch executions for each inter-
cluster or inter-site bandwidth to analyze the gains in executing long-running CCSM applications
on batch grids. For our experiments, we used three different inter-cluster bandwidth values, namely,
10 Mbps, 100 Mbps, and 1 Gbps. The first two bandwidths are commonly observed on the links
connecting two clusters located at two different sites in many grid systems. The last bandwidth is
seen on the links connecting two batch systems in a single site and on the links connecting two
different submissions in a single batch system.

For each simulation experiment for a given inter-cluster bandwidth, we randomly chose four
queues corresponding to execution of four components of CCSM. For each queue, the total number
of processors in the queue is randomly chosen from f32, 64, 128, 256, 512g. The workload charac-
teristics, namely, the number of long (L), short (S), wide (W), and narrow(N) jobs submitted to a
queue, were randomly generated for each queue. The queue scheduling policy for each queue is
also randomly chosen from one of FCFS, CONS and EASY policies. We used the four queues to
simulate long running CCSM execution on multiple batch systems and used the largest of the four
queues to simulate execution on a single batch system. We then compared the multiple and single
batch CCSM executions in terms of queue waiting times, RARs and application throughput.

4.2. Results

The primary reason for the potential improvement in throughput of CCSM when executed on mul-
tiple batch systems is the reduction in queue waiting times incurred by the CCSM component jobs
on the individual queues. For each simulation experiment, we compared the queue waiting times of
the CCSM jobs in the largest queue when used for single and multiple batch executions. The largest
queue, besides being common to single and multiple batch executions, also contributes most of the
processor space for CCSM application in multiple batch executions. Figure 4(a) shows the average
queue waiting times for single and multiple batch executions for different number of processors in
the largest queue. We find that the average reduction in queue waiting times because of multiple
system executions is 60%. Figure 4(b) compares the percentage difference in queue waiting times
between single and multiple batch systems for different ratios of request size for CCSM and total
size of the largest queue in multiple batch executions. We find that for small ratios or for large gaps
between request sizes and total sizes, the percentage reductions in queue waiting times because of
multiple batch executions are large.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1775–1791
DOI: 10.1002/cpe

IMPROVEMENTS OF MULTI-COMPONENT APPLICATIONS ON BATCH GRIDS 1783

32 64 128 256 512
0

2

4

6

8

10

12

14

Size of the Largest Queue (processors)

A
ve

ra
ge

 Q
ue

ue
 W

ai
tin

g
T

im
e

fo
r

C
C

S
M

 (
se

co
nd

s)

Single Batch Executions
Multiple Batch Executions

0.05−0.15 0.15−0.25 0.25−0.35 0.35−0.45 0.45−0.55
0

10

20

30

40

50

60

70

80

P
er

ce
nt

ag
e

di
ffe

re
nc

e
in

 Q
ue

ue
 W

ai
tin

g
T

im
e

(%
)

Request Size / Total Size of Largest Queue

x 105

(a) (b)

Figure 4. Queue waiting times for Community Climate System Model jobs. (a) Queue waiting times in sin-
gle and multiple batch; (b) Percentage reduction in queue waiting times because of multiple batch executions
for different (request size/total size) ratios of largest queue executions for different sizes of largest queues.

Figure 5(a) shows the average RARs for single and multiple batch executions for different sizes
of the largest queue. The figure shows that the average increase in RAR because of multiple batch
executions is 12%. Figure 5(b) shows the average RARs for different request sizes of CCSM on the
largest queue for multiple batch executions. The figure shows that when the request sizes are less
than 55 processors on the largest queue, the RAR increases with the request sizes because of more
processors available for CCSM execution. When the request sizes are greater than 55, the RAR sat-
urates because the benefits because of larger number of processors for execution are negated by the
larger queue waiting times incurred for higher number of processors.

32 64 128 256 512
0

50

100

150

200

250

Size of Largest Queue (processors)

R
es

ou
rc

e
A

va
ila

bi
lit

y
fo

r
C

C
S

M
 E

xe
cu

tio
n

(p
ro

ce
ss

or
−

da
ys

/d
ay

)

Single Batch Executions
Multiple Batch Executions

5−15 15−25 25−35 35−45 45−55 55−65 65−75 75−85 85−95
0

20

40

60

80

100

120

140

160

180

200

Request Size of Largest Queue (processors)

R
es

ou
rc

e
A

va
ila

bi
lit

y
fo

r
C

C
S

M
 E

xe
cu

tio
n

(
pr

oc
es

so
r−

da
ys

/d
ay

)

(a) (b)

Single Batch Executions

Multiple Batch Executions

Figure 5. Resource availability rates (RARs) for Community Climate System Model jobs in single and mul-
tiple batch executions. (a) RARs for different sizes of largest queue; (b) RARs for different request sizes of

Community Climate System Model on largest queue.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1775–1791
DOI: 10.1002/cpe

1784 S. S. M, S. S. VADHIYAR AND R. S. NANJUNDIAH

Figure 6 shows the comparison of average CCSM simulation rates with single and multiple batch
executions for different queue sizes or number of processors of the largest batch system and for
three different inter-cluster bandwidths. The figure shows that irrespective of the number of proces-
sors available in a single system, adding more processors from other system for execution of CCSM
will yield performance benefits to CCSM. We find that the average number of simulated days with
multiple batch executions for a given size of the largest queue is at least 8% greater than the average
with single batch executions. These results show that CCSM, in spite of involving periodic commu-
nications between different components through a coupler, is highly suitable for execution across

32 64 128 256 512
0

20

40

60

80

100

120
CCSM Simulation Rates for Different Queue Sizes

Queue Sizes of the Largest Batch System

N
um

be
r

of
 S

im
ul

at
ed

 D
ay

s

Single Batch Executions
Multiple Batch Executions

32 64 128 256 512
0

50

100

150

200

250
CCSM Simulation Rates for Different Queue Sizes

Queue Sizes of the Largest Batch System

N
um

be
r

of
 S

im
ul

at
ed

 D
ay

s

Single Batch Executions
Multiple Batch Executions

32 64 128 256 512
0

50

100

150

200

250
CCSM Simulation Rates for Different Queue Sizes

Queue Sizes of the Largest Batch System

N
um

be
r

of
 S

im
ul

at
ed

 D
ay

s

Single Batch Executions
Multiple Batch Executions

(a) (b)

(c)

Figure 6. CCSM simulation rates in single and multiple batch executions for different queue sizes of largest
queue. (a) 10 Mbps; (b) 100 Mbps; (c) 1 Gbps.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1775–1791
DOI: 10.1002/cpe

IMPROVEMENTS OF MULTI-COMPONENT APPLICATIONS ON BATCH GRIDS 1785

different batch systems on batch grids. These results also illustrate that batch grids involving batch
systems with complicated queuing and workload dynamics can be used for efficient executions of
multi-component applications.

Comparing the results across the three inter-cluster bandwidths, we find that the number of
simulated days increases when the inter-cluster bandwidth increases from 10 Mbps to 100 Mbps.
However, the application throughput saturates at 100 Mbps and does not increase when the inter-
cluster bandwidth is increased to 1 Gbps because the communications of small messages exchanged
between the CCSM components reach the maximum speed at 100 Mbps. In general, we find that
the bandwidth of the links connecting the different batch systems do not impact the percentage
increase in application throughput because of multiple batch executions. This is due to high ratios
of computations to inter-component communications in the individual components of CCSM.

Figure 7(a) shows the percentage increase in the number of CCSM simulated days for all the
experiments with single and multiple batch executions for different averages of queue sizes of mul-
tiple batch systems and for inter-cluster bandwidth of 100 Mbps. Similar results were observed for
inter-cluster bandwidths of 10 Mbps and 1 Gbps. We find that multiple batch executions provide
55% average improvement in throughput over single batch executions and provide huge gains for
some small queue sizes. This is because when small queues are used for single system executions,
the request sizes for CCSM are almost equal to the queue sizes. This leads to large queue waiting
times for CCSM on single batch executions because of the presence of other jobs in the system.
However, the request sizes of CCSM are split into small request sizes when executed on multiple
batch executions leading to significant decrease in queue waiting times in the largest queue. This
results in high gains in throughput in multiple batch executions.

Figure 7(b) shows the percentage increase in the number of CCSM simulated days for all the
experiments with single and multiple batch executions for different averages of CCSM request sizes
on the multiple batch systems and for 100 Mbps inter-cluster bandwidth. The figure also shows that
for very large average request sizes, the gains because of multiple batch executions are low. This is
because very large request sizes lead to similar large queue waiting times on both single and mul-
tiple batch systems. This result regarding limiting request sizes to obtain high benefits because of
co-allocation agrees with the conclusions in the work by Bucur and Epema [12].

5. A PRACTICAL IMPLEMENTATION

We have developed a middleware framework realizing our execution model for execution of multi-
component applications like CCSM across multiple batch systems. Our framework consists of three

0 100 200 300 400 500 600
−100

0

100

200

300

400

500

600

700

800

900

Average Queue Sizes

P
er

ce
nt

 In
cr

ea
se

 in
 N

um
be

r
of

 S
im

ul
at

ed
 D

ay
s

du
e

to
 M

ul
tip

le
 B

at
ch

 E
xe

cu
tio

ns

Increase in Throughput with Multiple Batch Executions
for Different Queue Sizes

0 10 20 30 40 50 60 70 80 90 100
−100

0

100

200

300

400

500

600

700

800

900

Average Request Sizes

P
er

ce
nt

 In
cr

ea
se

 in
 N

um
be

r
of

 S
im

ul
at

ed
 D

ay
s

du
e

to
 M

ul
tip

le
 B

at
ch

 E
xe

cu
tio

ns

Increase in Throughput with Multiple Batch Executions
for Different Request Sizes

(a) (b)

Figure 7. Percentage increase in CCSM simulation rates because of multiple batch executions for different
averages of queue and request sizes in multiple batch (100 Mbps). (a) For different averages of queue sizes;

(b) For different averages of request sizes.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1775–1791
DOI: 10.1002/cpe

1786 S. S. M, S. S. VADHIYAR AND R. S. NANJUNDIAH

primary components to synchronize the executions of the components on multiple batch systems: a
coordinator that determines mapping of components, and schedules and reschedules the component
executions on the systems, a job monitor on each front end node of the batch systems that interfaces
with the coordinator, and a job submitter on the front end node that repeatedly submits a CCSM
job upon completion of the previous CCSM job. Our framework also consists of a CCSM job script
that executes and re-executes the CCSM MPI application on a system corresponding to specified
mappings of components to processors at various points of time within a CCSM job submitted by
the job submitter. The architecture is illustrated in Figure 8.

The coordinator daemon is the most significant daemon and is executed on a location that is
accessible from the front-end nodes of all the systems. The coordinator contains a record of all the
information pertaining to the queues and the CCSM jobs. Because the coordinator has knowledge
of the state of the entire system, it can take actions and/or instruct other daemons to take actions.
Some of the actions taken by the coordinator include determining the mapping of components to
batch systems, scheduling and rescheduling component executions and transferring restart files.
The job monitor daemons track the local behavior of the CCSM jobs on the batch systems and
interfaces with the coordinator. It sends messages to the coordinator related to the corresponding
batch queues becoming active and inactive. The job monitor also processes the configuration data,
related to mapping of components to the processors in the queue, supplied by the coordinator at
every reconfiguration event and writes the configurations to local files for reading by the CCSM
jobs. Job submitter is another daemon that is started for each queue and runs on the front-end node
of the respective batch system. Its main functionality is to iteratively submit CCSM jobs to the queue
through a CCSM job script. The job submitter submits the CCSM job script to the batch queue using
the local queue submission mechanisms. The MPI application with a set of CCSM components is
executed on a set of processors in a queue by the execution of the CCSM job script on the queue.
Within a CCSM job submission, corresponding to the execution of the CCSM job script by the job
submitter, the job script executes multiple MPI applications corresponding to multiple rescheduling
events with the component mappings specified by the coordinator.

We used our framework for performing real execution of CCSM across multiple batch queues.
For our experiments, we used three batch queues in two clusters, namely, fire-48, a AMD Opteron
cluster with 12� 2 dual-core 2.64 GHz processors, and varun, an Intel Xeon cluster with 13 8-core
2.66 GHz processors. Three queues were configured on these systems with OpenPBS: one queue,
queue-48, of size 48 on fire-48, two queues, queue-32 and queue-64, of sizes 32 and 64, respectively,

SITE IISITE I

...

Job Script

JobMonitor
File

System
Front End Node

JobMonitor

Front End Node

File
System

Coordinator

Processor QueueProcessor Queue

Job Script

Figure 8. A practical infrastructure.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1775–1791
DOI: 10.1002/cpe

IMPROVEMENTS OF MULTI-COMPONENT APPLICATIONS ON BATCH GRIDS 1787

on varun. The AMD cluster is located at the Supercomputer Education and Research Centre, and
the Intel Xeon cluster is located at the Centre for Atmospheric and Oceanic Sciences and are con-
nected through a campus network with a bandwidth of around 500 Kbps. The connections within
the two clusters are using switched Gigabit Ethernet. We performed our multi-site execution of
CCSM for 2 days and 14 h and compared with a same-duration execution of single-site execution.
For the single-site execution, we used queue-64 of the varun cluster. For the multi-site execution,
we used all the three batch queues of the two clusters for coordinated executions. External loads
were simulated by submitting synthetic MPI jobs to the queuing systems based on the workload
model developed by Lublin and Feitelson [19]. The maximum execution time limit for all jobs on
all queues was set to 12 h. The coordinator was started on the front-end node on fire-16. A job
monitor and a job submitter corresponding to each queue were started on the front-end of its cluster.

The comparison of simulation rates is shown in Figure 9. and 10. As shown in Figure 9, we find
that the single-site run on queue-64 performed climate simulations of 1090 days (2 years, 11 months
and 25 days), whereas the multi-site run performed climate simulations of 1200 days (3 years,
3 months and 14 days). The multi-site grid execution gives better overall progress of executions than
the single-site executions in spite of the various overheads related to multi-site executions including
restart overheads, multiple rescheduling, inter-site communication, reconfiguration and rebuilding
overheads. Figure 10 shows the percentage of wall-clock time of 2 days and 14 h spent by the single

0

200

400

600

800

1000

1200

1400

C
C

S
M

 p
ro

gr
es

s
(in

 n
um

be
r

of
 s

im
ul

at
ed

cl
im

at
e

da
ys

)

Single Site Execution
Multiple Site Execution

The bars indicate the number of
CCSM climate days simulated
in a period of 2 days and 14 hours
each with single site and multi site
executions.

Figure 9. Comparison of simulation progress with single and multi-site runs of 2 days and 14 h.

38%

62%

Single−Site Execution

88%

12%

Multiple−Site Execution

Active period
Inactive period

*Active period for multi−site is that during which atleast one of the
four queues is active

Figure 10. Comparison of active and inactive periods with single and multi-site runs.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1775–1791
DOI: 10.1002/cpe

1788 S. S. M, S. S. VADHIYAR AND R. S. NANJUNDIAH

and multi-site executions in active states corresponding to execution of CCSM in at least one of the
batch queues and inactive states corresponding to waiting in the queues. Single-site executions incur
large inactive periods, spending more than 1.5 days (62%) in inactive state, whereas multi-site exe-
cutions result in only about 7.5 h of inactive periods. We also noted that the total overhead involved
was about 5% of the total experimental duration: 3% because of overheads related to restart I/O and
transfer, and 2% because of compilation at reconfigurations. About 2 days and 6.5 h were spent in
useful executions for multi-site run. Thus, the multi-site executions lead to effective utilization of
systems for CCSM executions.

6. RELATED WORK

There has been increasing interest in co-allocating parallel applications across multiple clusters
[12–14]. Casanova analyzed the impact of redundant submissions on the other jobs in the system
[20]. In our work, we do not replicate jobs on multiple batch queues but decompose a single job
into multiple sub-jobs and submit these sub-jobs to many batch queues. The work by Nurmi et. al.
[21] deals with execution of workflow applications on different batch systems of a grid. In our work,
we consider multi-component applications that contain periodic communications between different
batch systems unlike the workflow applications. The work by Platt et al. [22] and Bal et al. [13]
analyzed the impact of inter-cluster speeds on the performance of parallel applications when exe-
cuted across wide-area clusters and the benefits of wide-area computing because of the increase in
the number of processors made available to the applications. In our work, we analyze the benefits
of wide-area computing over computing in a local cluster for the same number of processors.

The work by Ernemann et al. [14] analyzes the mean response times of synthetic applications
when executed across multiple clusters for different ratios of execution times of applications when
executed on a single local cluster and on multiple clusters. Their results show that multi-cluster
computing can yield improved response times because of decreased queue waiting times as long
as the execution times because of multi-cluster computing does not increase more than 1.25 times
the execution times on local clusters. Bucur and Epema have extensively studied the benefits of
co-allocation of processors from different clusters in a grid for job executions [12, 23–25]. In their
work, they analyze the impact of using different scheduling policies, component sizes, and number
of components on co-allocation. Their work considers three different scheduling policies, namely,
GS policy in which there is a single global scheduler with a single global queue for submitting both
single and multi-component jobs from all clusters, LS policy that deals with only local queues of the
clusters where both single and multi-component jobs from a cluster are submitted to the local queue
of the cluster and LP policy that considers both a single global queue for multi-component jobs and
local queues of the clusters for single-component jobs from the clusters. Using large number of sim-
ulations with various workload logs, application characteristics and inter-cluster speeds, they show
that execution of multi-component jobs across multiple clusters can reduce mean response times of
jobs and improve processor utilization.

The efforts by Bucur and Epema and by Ernemann et al. consider improving mean response times
of short jobs where the different components of a job are submitted to the different batch queues
only once and the components complete executions within the execution time limits associated with
the batch queues. However, our work focuses on improving the simulation rate of a single long
running multi-component application where the different components are submitted multiple times
to different batch queues. The execution of a component is stopped within the execution time limit
associated with its submission to a batch queue and the component is submitted again to the same
or different batch queue and continued from its previous execution. Another important difference is
that unlike their efforts that assume that all clusters become simultaneously available for execution
of components, in our model, whereas submissions are made to the queues of all the clusters, an
execution of the multi-component application can proceed when at least one of the clusters become
available for execution. The third primary difference is that, whereas their efforts assume control
over local queuing policies, our work considers independently administered multiple batch sites
with predefined and possibly different job execution policies. Thus, our work is practical can be
applied directly to a given batch grid, whereas their efforts require changing the scheduling policies.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1775–1791
DOI: 10.1002/cpe

IMPROVEMENTS OF MULTI-COMPONENT APPLICATIONS ON BATCH GRIDS 1789

In our previous work [26], we explored the possibility of improvements in response times because
of submissions of multiple components to multiple batch systems. Although the concept of splitting
a job and submitting as multiple subjobs on multiple batch systems is common to our current and
previous work, our current work differs significantly from our previous work in terms of using a
completely novel execution model which, unlike the model in our previous work, does not require
the application to start execution only upon all the batch systems becoming active and considers
cases for non-overlapping active periods of queues. Further, that work was statistical in nature and
used single queue simulations to estimate average queue wait times, that were analytically com-
bined to estimate multi-queue simulation measures. And because of the simplistic modeling, only
the probabilities of benefits could be estimated. However, with the new execution model and a real-
istic simultaneous multi-queue simulation framework used in this work, we are able to simulate
realistically the execution of CCSM across multiple queues along with other jobs, and thus obtain
‘actual’ benefits. Other factors new to this work include scheduling and rescheduling policies, a
robust application simulator, use of queues equal to the number of CCSM components (only two
queues in our previous model) and an analytical model for a new metric, RAR.

A recent work by Ko et al. [27] deals with multi-physics application execution on batch queues.
However, this work deals with applications that finish execution within the execution time limits,
and not long-running multi-physics applications that span multiple execution time limits and the
associated rescheduling and migration dealt in our work.

Workflow applications also consist of multiple component applications [8, 10]. However, our
application is a time-marching or time-evolving MPI MPMD application consisting of multiple
‘components’ executing concurrently throughout the execution duration. Our applications involve
complex communication patterns and data exchanges between the components unlike the well-
defined interfaces and data-flow patterns or dependencies in traditional workflow applications. In
most of the practical workflow applications, the components perform similar tasks. Hence, our appli-
cation, in its current form, is different from a workflow application and cannot be supported by any
of the existing workflow-based technologies [28, 29].

Our work can also complement or use existing middleware infrastructures. Cactus [30] is a
generic and modular middleware framework for enabling execution of scientific applications on
high performance systems. Our work can be integrated with the Cactus framework by develop-
ing specific ‘thorns’ [31] for the different components in our framework, our rescheduling policies
and component-level migrations, and using the common thorns and core components of Cactus for
I/O of restart file, batch queue monitoring, resource discovery, prediction, resource selection, basic
scheduling, and checkpointing functionalities. Many of our coordinator’s functionality can be per-
formed by the Cactus flesh. Such integration will help efficient executions of our multi-component
applications in a generic and portable manner. In this work, we had assumed that sub-components
executed on different batch systems can communicate with each other. This assumption is reason-
able because some MPI communication libraries including PACX-MPI [32] and MPICH-GX [33]
support communications between MPI applications executed on different batch systems by means
of special communication processes or proxies executed on the front-end nodes of the batch sys-
tems. Another solution called Smartsockets [34] has been proposed to facilitate direct connections
between multiple MPI processes executing on different grid sites.

7. CONCLUSIONS AND FUTURE WORK

In this work, we analyzed in detail the benefits of using multiple batch systems of a grid for improv-
ing the throughput of a long-running multi-component parallel application over using a single
batch system for executions. We constructed an application-level simulator for modeling a fore-
most multi-component application, CCSM, and a comprehensive system simulator for modeling the
characteristics of multiple batch systems. By means of large number of simulations with different
application and system configurations, we showed that multiple batch executions can reduce the
queue waiting times of CCSM jobs by an average of 60% and increase the throughput of CCSM
application by an average of 55% over single batch executions. We also analyzed in detail, the

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1775–1791
DOI: 10.1002/cpe

1790 S. S. M, S. S. VADHIYAR AND R. S. NANJUNDIAH

impact of request sizes of CCSM jobs, inter-cluster bandwidths, characteristics of external work-
loads on the batch systems, and queue scheduling policies on the benefits because of multiple batch
executions. We found that small request sizes of CCSM jobs and presence of large number of narrow
and short jobs in the external workloads lead to larger benefits, whereas inter-cluster bandwidths and
queue scheduling policies do not impact the benefits because of multiple batch executions. We also
conducted real experiments with a practical middleware infrastructure and showed that multi-site
executions lead to effective utilization of batch systems for executions of CCSM and give higher
simulation throughput than single-site executions.

In this work, we had analyzed the benefits of multiple batch executions when the number of pro-
cessors are not changed from single batch executions. We plan to analyze the additional benefits
because of increase in the number of processors. We plan to develop more scheduling and processor
allocation strategies for multiple batch executions and compare the benefits using real executions
on different batch systems. We also plan to develop efficient rescheduling strategies for migration
of the components to different systems in response to resource and application dynamics.

ACKNOWLEDGEMENTS

This work is supported partly by Department of Science and Technology, India, project ref no.
SR/S3/EECE/59/2005/8.6.06 and partly by Ministry of Information Technology, India, project ref no.
DIT/R&D/C-DAC/2(10)/2006 DT.30/04/07.

REFERENCES

1. Mueller C, Dalkilic M, Lumsdaine A. High-performance direct pairwise comparison of large genomic sequences.
IEEE Transactions on Parallel and Distributed Systems 2006; 17(8):764–772.

2. Espinal X, Barberis D, Bos K, Campana S, Goossens L, Kennedy J, Negri G, Padhi S, Perini L, Poulard G, et al.
Large-Scale ATLAS Simulated Production on EGEE. E-SCIENCE ’07: Proceedings of the Third IEEE International
Conference on e-Science and Grid Computing, Bangalore, India, 2007; 3–10.

3. An C, Taufer M, Kerstens A, III CB. Predictor@Home: a p̈rotein structure prediction supercomputer’ based on global
computing. IEEE Transactions on Parallel and Distributed Systems 2006; 17(8):786–796.

4. Gardner M, chun Feng W, Archuleta J, Lin H, Mal X. Parallel genomic sequence-searching on an ad-hoc grid: experi-
ences, lessons learned, and implications. SC ’06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing,
Tampa, Florida, USA, 2006; 104.

5. Jayawardena M, Holmgren S. Grid-enabling an efficient algorithm for demanding global optimization problems in
genetic analysis. E-SCIENCE ’07: Proceedings of the Third IEEE International conference on e-Science and Grid
Computing, Bangalore, India, 2007; 205–212.

6. Community Climate System Model (CCSM). Available from: http://www.ccsm.ucar.edu.
7. Collins W, Bitz C, Blackmon M, Bonan G, Bretherton C, Carton J, Chang P, Doney S, Hack J, Henderson T, Kiehl J,

Large W, McKenna D, Santer B, Smith R. The community climate system model: CCSM3, 1998.
8. Fox GC, Gannon D. Wokflow in grid systems. Concurrency and Computation: Practice and Experience 2006;

18(10):1009–1019.
9. Yu J, Buyya R, Ramamohanarao K. Workflow scheduling algorithms for grid computing. In Metaheuristics for

Scheduling in Distributed Computing Environments, Xhafa F, Abraham A (eds). Springer: Berlin, Germany, 2008.
SBN: 978-3-540-69260-7.

10. Ramakrishnan L, Koelbel C, Kee Y-S, Wolski R, Nurmi D, Gannon D, Obertelli G, YarKhan A, Mandal A, Huang T,
Thyagaraja K, Zagorodnov D. VGrADS: enabling e-Science workflows on grids and clouds with fault tolerance. Sc
’09: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, Portland,
Oregon, USA, 2009; 1–12.

11. Logs of real parallel workloads from production systems. Available from: http://http://www.cs.huji.ac.il/labs/parallel/
workload/logs.html.

12. Bucur A, Epema D. Scheduling policies for processor coallocation in multicluster systems. IEEE Transactions on
Parallel and Distributed Systems 2007; 18(7):958–972.

13. Bal H, Plaat A, Bakker M, Dozy P, Hofman R. Optimizing parallel applications for wide-area clusters. Proceedings
of the International Parallel Processing Symposium, Orlando, Florida, USA, 1998; 784–790.

14. Ernemann C, Hamscher V, Schwiegelshohn U, Yahyapour R, Streit A. On advantages of grid computing for parallel
job scheduling. Ccgrid ’02: Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and
the Grid, Berlin, Germany, 2002; 39.

15. Fernandes R, Pingali K, Stodghill P. Mobile MPI programs in computational grids. PPoPP ’06: Proceedings of the
eleventh ACM SIGPLAN symposium on Principles and Practice of Parallel Programming, New York, USA, 2006;
22–31.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1775–1791
DOI: 10.1002/cpe

IMPROVEMENTS OF MULTI-COMPONENT APPLICATIONS ON BATCH GRIDS 1791

16. Wrzesinska G, Maassen J, Bal H. Self-adaptive applications on the grid. PPoPP ’07: Proceedings of the 12th
ACM SIGPLAN symposium on Principles and Practice of Parallel Programming, San Jose, California, USA, 2007;
121–129.

17. Vadhiyar S, Dongarra J. A performance oriented migration framework for the grid. CCGRID ’03: Proceedings of the
3rd International Symposium on Cluster Computing and the Grid, Tokyo, Japan, 2003; 130.

18. The National Center for Atmospheric Research (NCAR). Available from: http://www.ncar.ucar.edu.
19. Lublin U, Feitelson D. The workload on parallel supercomputers: modeling the characteristics of rigid jobs. Journal

of Parallel and Distributed Computing 2003; 63(11):1105–1122.
20. Casanova H. Benefits and drawbacks of redundant batch requests. Journal of Grid Computing 2007; 5(2):235–250.
21. Nurmi D, Mandal A, Brevik J, Koelbel C, Wolski R, Kennedy K. Evaluation of a workflow scheduler using inte-

grated performance modelling and batch queue wait time prediction. SC ’06: Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, Tampa, Florida, USA, 2006; 119.

22. Plaat A, Bal HE, Hofman R, Kielmann T. Sensitivity of parallel applications to large differences in bandwidth and
latency in two-layer interconnects. Future Generation Computer Systems 2001; 17(6):769–782.

23. Bucur A, Epema D. Trace-based simulations of processor co-allocation policies in multiclusters. HPDC ’03:
Proceedings of the 12th IEEE International Symposium on High Performance Distributed Computing, Seattle,
Washington, USA, 2003; 70.

24. Bucur A, Epema D. The performance of processor co-allocation in multicluster systems. CCGRID ’03: Proceedings
of the 3st International Symposium on Cluster Computing and the Grid, Tokyo, Japan, 2003; 302.

25. Bucur A, Epema D. The maximal utilization of processor co-allocation in multicluster systems. IPDPS ’03:
Proceedings of the 17th International Symposium on Parallel and Distributed Processing, Nice, France, 2003; 60.1.

26. Sivagama Sundari M, Vadhiyar S, Nanjundiah R. Grids with multiple batch systems for performance enhance-
ment of multi-component and parameter sweep parallel applications. Future Generation Computer Systems 2010;
26(2):217–227.

27. Ko S, Jha S. Efficient runtime environment for coupled multi-physics simulations: dynamic resource allocation
and load-balancing. CCGRID 2010: The 10th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, Melbourne, Australia, 2010.

28. Blythe J, Jain S, Deelman E, Gil Y, Vahi K, Mandal A, Kennedy K. Task scheduling strategies for workflow-based
applications in grids. CCGRID ’05: Proceedings of the Fifth IEEE International Symposium on Cluster Computing
and the Grid (CCGRID’05) - Volume 2, Cardiff, UK, 2005; 759–767.

29. Wieczorek M, Podlipnig S, Prodan R, Fahringer T. Bi-criteria scheduling of scientific workflows for the grid.
CCGRID ’08: Proceedings of the 2008 Eighth IEEE International Symposium on Cluster Computing and the Grid
(CCGRID), Lyon, France, 2008; 9–16.

30. Cactus Computational Toolkit Webpage. Available from: http://www.cactuscode.org.
31. Allen G, Angulo D, Foster I, Lanfermann G, Liu C, Radke T, Seidel E, Shalf J. The cactus worm: experiments

with dynamic resource discovery and allocation in a grid environment. International Journal of High Performance
Computing Applications 2001; 15(4).

32. Gabriel E, Resch M, Beisel T, Keller R. Distributed computing in a heterogenous computing environment,
EuroPVMMPI’98, Liverpool, UK, 1998.

33. Park K, Park S, Kwon O, Park H. MPICH-GP: a private-IP-enabled MPI over grid environments. Proceedings of
Second International Symposium on Parallel and Distributed Processing and Applications, ISPA04, Hong Kong,
China, Dec 2004; 469473.

34. Maassen J, Bal H. Smartsockets: solving the connectivity problems in grid computing, HPDC ’07: Proceedings of
the 16th International Symposium on High Performance Distributed Computing, Monterey, California, USA, 2007;
1–10.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1775–1791
DOI: 10.1002/cpe

