
Dynamic Branch Speculation in a Speculative Parallelization Architecture for Computer
Clusters

Joan Puiggali1, Boleslaw K. Szymanski2,3, Teo Jové1, Jose L Marzo1

1Broadband Communications and Distributed Systems
Institut d’Informàtica i Aplicacions (IIiA)

University of Girona, 17071 Girona, SPAIN
2Społeczna Akademia Nauk, ul. Sienkiewicza 9, 90-113 Łódź, POLAND
3NeST Center, Rensselaer Polytechnic Institute, Troy, NY, 12190, USA

{joan.puiggali, teodor.jove, joseluis.marzo}@udg.es, szymansk@cs.rpi.edu

Abstract:
This article describes a technique for path unfolding for conditional branches in parallel programs

executed on clusters. Unfolding paths following control structures makes it possible to break the
control dependencies existing in the code and consequently to obtain a high degree of parallelism
through the use of idle CPUs. The main challenge of this technique is to deal with sequences of
control statements. When a control statement appears in a path after a branch, a new conditional block
needs to be opened, creating a new code split before the previous one is resolved. Such subsequent
code splits increase the cost of speculation management, resulting in reduced profits. Several decision
techniques have been developed for improving code splitting and speculation efficiency in single
machine architecture. The main contribution of this paper is to apply such techniques to a cluster of
single processor systems and evaluate them in such an environment. Our results demonstrate that
code splitting in conjunction with branch speculation and the use of statistical information improves
the performance measured by the number of processes executed in a time unit. This improvement is
particularly significant when the parallelized programs contain iterative structures in which conditions
are repeatedly executed.

Keywords: Speculation, Multipath execution, Branch speculation, Computer clusters, Control

dependencies.

1. INTRODUCTION

The main obstacle in improving performance of speculative multithreaded architectures is the limited
degree of parallelization imposed by the intrinsic dependencies that exist among parallel threads.
These dependencies can be:

- structural, which arise when instructions in different threads might attempt to use the same
hardware resources at the same time;

- data, which arise when instructions in different threads refer to the same data item; or
- control, which arise when the flow of execution of some threads is dependent on a control

statement (a loop, a branch, etc.).

Speculation techniques in computer architectures are used to overcome execution constraints imposed
by control and data dependencies. Speculation is not always successful because incorrect prediction
of speculative values will start threads that should not be executed; if this happens, most of the

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text
 Concurrency and Computation: Practice and Experience, 2012, to appear

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

implementations erase all incorrectly started threads. Recent studies, such as [25], have not attempted
to eliminate the threads created by the wrong predictions of speculative values, but rather aimed at
applying new speculation control techniques to predict the usefulness of wrong-path episodes. This
article shows that execution of some wrong-path instructions, even if erased, still can improve the
performance because they might pre-fetch into caches data and instructions that are later needed by
correct-path instructions.

Branch speculation refers to predicting which branch of a control statement will be taken without
knowing all the values used in the corresponding control statement. Incorrect branch speculations
have a major impact on execution performance. A conventional way to reduce the performance loss
incurred by incorrect branch speculations is to increase the branch speculation accuracy [5], [30],
[43], which, however, requires predictors of increased complexity.

The idea of eager (multipath) execution [3], [14], [20], [56] [57], has been introduced to limit the
performance loss incurred by incorrect speculations about branches that are difficult to predict. To
this end, a branch predictor produces branch speculation together with its confidence level [27], [41]
in this speculation. For low-confidence speculations, many paths are unfolded and the instructions
from the different paths are executed. Otherwise, only the path predicted to be taken with high
confidence is started. When the branch outcome is eventually calculated, the executed paths are
selectively flushed to remove wrong paths. A major problem of these techniques is the complexity of
the resulting processor design and the complexity of implementation of the adequate predictor.

Experiments, such as the ones presented in [2], show that multipath execution can offer sizeable
instructions per cycle (IPC) improvements over the traditional single-path execution models.

A major idea of this paper is to take techniques designed for the improvement of single machine
architecture performance and apply them to a cluster of single processor systems. Hence, in this paper
we describe the application of multipath execution in a system developed to execute sequential
programs using parallel and speculative techniques for the computer cluster architecture that we
developed [34], [35], [36]. Our experiments show that the proposed approach yields high
performance even in environments with low branch predictability.

The term “unfolding” refers here to the parallel execution of two paths of a branch; that is, when a
branch is reached during the program execution, it creates two new threads, one for each path.

This paper is organized as follows. In section 2 we present previous work. Section 3 describes the
multipath (or eager) execution and the different methods of its application. Section 4 justifies the
method used in our implementation. Section 5 presents the Speculative Parallelization Architecture
for Computer Clusters which is a platform used in our implementation. In section 6, we describe how
we applied a dual path execution to a synthetic program. Section 7 explains how we adapted the
unfolding paths to repetitive structures. Finally, Section 8 summarizes the conclusions of the paper
and describes future lines of research.

2. RELATED WORK

Most of the multipath implementations of speculation have been done at the hardware level. The
greatest performance enhancement of multipath-enabled processors is improvement of the processor’s

throughput; it allows multiple path execution in the same pipeline through processor resource sharing.
It enables to control execution of each path through path identifiers that track each path execution
within the processor architecture.

The different paths are executed independently of one another until the corresponding branch is
resolved. Then, all the instructions executed on the incorrect paths created at the branch are discarded
and the instructions from the correct path continue normal execution. In a conventional speculative
processor, only one path is executed and the incorrect prediction of the speculating value delays the
execution of the correct path until the corresponding branch is resolved. Thus, the multipath
execution avoids the misspeculation penalty at the price of resource sharing (including sharing of
physical register files, functional units, and the reorder buffer and reservation station entries) and
control. With multipath execution, demands for the processor resources are increased because
instructions from all paths after unresolved branches share the hardware structures in the
microarchitecture. An example of such multipath processor architecture is presented in [56].

The emergence of the speculative multithreading models (see [1], [10], [22], [28], [31]) and
simultaneous multithreading (SMT) processors (e.g., [48], [49], [50] [56]), for speculative thread
execution allows the architecture-aware compiler to parallelize sequential applications without being
constrained by the data and control dependencies present in the program.

An SMT processor is able to issue instructions from multiple threads in the same cycle, thus, allowing
multiple hardware contexts, or threads, to dynamically share the resources of a superscalar
architecture. In [56], the SMT available resources are applied using the so-called threaded multipath
execution (TME) technique to achieve a high instruction level parallelism when there are only one or
a few processes running. By following both possible paths of a conditional branch, in the best case,
the misspeculation penalty can be completely eliminated if there is a significant progress down the
correct path when the branch is resolved. TME uses unused (spare) contexts to execute threads in
alternative paths of conditional branches. As a result, the SMT’s resources can be better utilized, and
the probability of executing the correct path is increased. TME can also provide significantly higher
processor utilization than conventional superscalar processors.

There are also combined compiler and architecture techniques to control the multithreaded execution
of branches and loop iterations [54]. These techniques can be applied by a compiler to replace
branches using speculative execution of both branch paths and speculative execution of loop
iterations. The resulting code needs to be tuned to a specific architecture. In [55] a compiler technique
called simultaneous speculation scheduling is proposed in combination with a ‘minimal’
multithreaded execution model to enable speculative execution of alternative program paths.

Some hardware implementations apply the different forms of eager execution. The ‘nanothreaded’
DanSoft processor [13] implements a multipath execution model using confidence information from a
static branch speculation mechanism. The PolyPath architecture [20] enhances superscalar processor
architecture through a limited multipath execution feature that employs eager execution. In [55],
eager execution is used in a simultaneous multithreaded processor model. Finally, [51] proposes
Disjoint Eager Execution, which assigns resources to branch paths whose results are most likely to be
used, that is, branches with the highest cumulative execution probability.

3. SPECULATION VERSUS MULTIPATH EXECUTION OF BRANCH INSTRUCTIONS

How processors handle conditional statements is very important for their performance considering
that one of every seven executed instructions is a branch. Low-level techniques are used to optimize
the time needed to evaluate the condition and the address of the jump, but this is not quite enough.
Waiting for the evaluation of a condition blocks the system and reduces its performance. Decreasing
this cost can be accomplished with one of two methods: condition speculation and path unfolding.

The use of a speculative method to evaluate a condition often results in having to manage new
conditions before the previous ones are resolved. The system must also be able to remove the path for
which the branch has not been correctly predicted. However, it should also be taken into account that
in most cases, it is highly probable that an instruction is executed more than once. Moreover, most of
the methods used in predicting jump conditions have a very high rate of success. In studies like [16],
[29], the application of speculation methods, regardless of whether implemented in hardware or
software, have shown an accuracy of over 85%. These results motivated us to introduce speculative
execution that relies on speculation about what will happen when a conditional statement is executed.
This includes the case when the condition is guarding a loop body.

Speculations can be divided into two groups: static and dynamic. In the static case, the branch
speculation is fixed, meaning it is always skipped or it does not depend on the information that the
compiler puts into the code. The disadvantage is that static speculation is not adapting to the
instruction behavior. In the dynamic speculation, the decision depends on the instruction’s behavior
during execution and therefore requires the historical evolution information of the address of the
instruction to which the jump is directed. The BTB (Branch Target Buffer) method is an example of
dynamic speculation in which the jump instruction target address and historical information (the latter
is typically limited to just 2 bits) are stored in a buffer [24].

Table 1: Comparison of different methods of speculation using the SPECint95 benchmark [11]; the

labels in misspeculation rate column denote: SAg - a variant of the second-level branch history
method; gshare - a two-level adaptive predictor with globally shared history buffer and pattern

history table; combining - two-bit predictor with the gshare predictor
Different variants of this method were introduced [19], each proposing different ways of making the
speculation decision (one-bit predictor, two-bit predictor, etc.). The more bits a predictor uses, the

Application
Committed
instructions
(in millions)

Conditional
branches

(in millions)

 Branches
taken
(%)

Misspeculation rate (%)
SAg gshare combined

compress 80.4 14.4 54.6 10.1 10.1 9.9
gcc 250.9 50.4 49.0 12.8 23.9 12.2
perl 228.2 43.8 52.6 9.2 25.9 11.4
go 548.1 80.3 54.5 25.6 34.4 24.1

m88ksim 416.5 89.8 71.7 4.7 8.6 4.7
xlisp 183.3 41.8 39.5 10.3 10.2 6.8

vortex 180.9 29.1 50.1 2.0 8.3 1.7
jpeg 252.0 20.0 70.0 10.3 2.5 10.4

mean 267.6 46.2 54.3 8.6 14.5 8.1

higher the cost of necessary hardware is. Hennessy and Patterson [15] conducted a study using two
bits of history. They showed that for programs in SPEC89 the speculation errors ranged from 1%
(nasa7, tomcat), to 9%(spice), to 12% (gcc), and even to 18% (eqntott) when the BTB table had up to
4,096 entries. Other methods rely on correlation-based predictors [32] that speculate about a branch
outcome taking into account the behavior of other branches. These methods are motivated by the
observation that the outcome of a branch is often affected by the outcomes of recently executed
branches. Other types of predictors, like two-level adaptive predictors [59] and hybrid predictors [29],
also work with information collected from other jumps.

One of the most important factors in deciding how to use a speculation is the speculation’s confidence
level [27], [41]. Considering that only a fixed percentage of accuracy can be achieved for all
conditions, the rate of success in opening new paths at level n can be expressed as:

n

Level
Level=1

Probability of success = Percentage of success

Figure 1: Speculation success rate at different levels of condition nesting

Table 2: Speculation success rate at different levels of condition nesting

Number of
levels

Single condition success rate

95% 90% 85% 80% 70% 60%

1 95.00 90.00 85.00 80.00 70.00 60.00
2 90.25 81.00 72.25 64.00 49.00 36.00
3 85.74 72.90 61.41 51.20 34.30 21.60
4 81.45 65.61 52.20 40.96 24.01 12.96
5 77.38 59.05 44.37 32.77 16.81 7.78
6 73.51 53.14 37.71 26.21 11.76 4.67
7 69.83 47.83 32.06 20.97 8.24 2.80
8 66.34 43.05 27.25 16.78 5.76 1.68

The confidence levels obtained in different studies [27], [41] show that the confidence goes down
considerably when speculations are made at increasing number of levels, as shown in Figure 1 and
Table 2. It is also worth mentioning that different branches may have different rate of speculation
success.

The unfolding paths or eager execution [3], [14], [20], [56] proceeds down both paths of a branch so
no speculation is made. When a branch is resolved, all operations on the non-taken path are discarded.
This method allows the system to take advantage of parallel hardware architecture. If there are idle
processors, two paths of a branch can be executed without waiting for the result of the control
condition. However, as we demonstrate later, parallelizing splits in the condition structures by
unfolding paths is not always beneficial. Each additional split must duplicate the split condition data
structure, so it increases the cost of management control but decreases the gain of splitting. For
example, consider an extreme case with a scheme in which all nodes are branches. If all paths are
open, as shown in Figure 2, the number of processors needed to run all levels would be:

actual level+1number of processors = 2 1

Figure 2: Rate of speculation success at the different levels of accuracy for a fixed condition

speculation success rate

If only the first branch splits, as shown in Figure 3, and the other branches use speculation about
which path to take to execute just one path, the number of needed processors can be expressed as:

number of processors = 2*actual level 1

This is because one-level unfolding executes the branch and splits the first level. Afterwards, a
processor of each path executes it in parallel with other paths.

Figure 3: One-level unfolding

Figure 4: Two-level unfolding

If we generalize this formula, assuming that we split n levels (see Figure 4) and speculate about the
paths taken at the remaining levels, the number of needed processors would be:

actuallevel 1

If :

 2 1

Else:

 2 2 1unfolding

unfolding actual

level
actual unfolding

level level

level level

The number of needed processors shown in Figure 5 and Table 3, demonstrates that from the third
level on, the number of processors required to split all possible branches is large (15 or more).
However, if only the first path is split and the other branches use speculation to execute one path, the
number of needed processors is small (at most 7).

Consequently, the majority of techniques relay on mixed methods. Many of those use confidence
estimation [42] to control speculation about the branch. For example, after a branch, if the confidence
level in the speculation is low, both of its paths will be executed, otherwise, the speculation is used to
execute the path predicted to be taken [52], [53].

Figure 5: Comparison of a number of processors required to achieve a certain level of unfolding

Table 3: Comparison of a number of processors required to achieve a certain level of unfolding

4. A MIXED METHOD WITH CONFIDENCE ESTIMATION AND SINGLE UNFOLDING

We have developed an execution environment that allows two execution threads to be unfolded when
a branch is found. A replication of the control structures is required to schedule the two branches as
shown in Figure 6. This replication is done automatically when a branch is reached and later, when it
is solved, these structures are merged back.

Figure 6: Replication of the control structures

Levels 1 2 3 4 5 6
Unfolding at all the levels 3 7 15 31 63 127
One-level unfolding 3 5 7 9 11 13
Two-level unfolding 3 7 11 15 19 23
Three-level unfolding 3 7 15 23 31 39
Four-level unfolding 3 7 15 31 47 63

{A,B,C,D,I,J,K,E,F,L,M}
{E,E}

{A}
{B}
{C,E,E,E}

{A,B,I,C,J,E,L,E,L,E,L}

The unfolding of threads of branch execution allows us to take advantage of the parallel architecture
of the execution system. Processors that would otherwise be idle execute processes of the two paths
of a branch (without waiting for the value of the condition). As discussed above, the generalization of
this approach to nested conditional processes may not always be beneficial. Hence, we have chosen to
study the optimal number of unfolding paths open simultaneously in the Speculative Parallelization
Architecture for Computer Clusters.

Let’s consider a parallel architecture with 11 processors executing 11 processes with the following
control diagram (without data dependencies) in which the loops at the bottom are executed three
times:

Figure 7: Control diagram without data dependencies

Assuming that the correct paths are the ones that follow “yes” branches of conditions A and B, when
all three branches are unfolded, the resulting execution would be:

(1)

On the other hand, the sequential execution of branches would require three steps:

(2)

If only the first condition is unfolded, and outcomes of the second and third conditions are speculated
about, the resulting execution under the same assumptions about conditionals would be:

(3)

 {A,B,I,D,J,F,L,F,L,F,L}
{C,E,E,E}

Since the sequential execution of branches would again be (2), the gain is higher in (3) than in (1) if
limited number of processors are available.

In the above case, the high gain in (3) is achieved because the speculation predicted the conditions
correctly. If the speculation predictions of the conditions are incorrect, for example, when the
condition B is predicted to follow “no” path, the result of unfolding of the first condition and
speculating about outcomes of the second and third conditions is:

(4)

Comparing (3) to (4), a reduction of single unfolding performance is observed. Taking into account
this loss and the gain obtained by successful speculation, and adding the extra cost imposed by
opening all branches, it is clear that in this case, it is more efficient not to open more than one branch
simultaneously. Clearly, when several processors are available, all processes belonging to the same
depth will be executed in parallel, without increasing the depth (with 19 processors available
unfolding of all levels will result in single step execution). Yet, while many branches are executed,
only one of them is correct. Hence, the more branches are opened, the smaller the gain and the higher
the management cost.

If there are as many processors as potential processes, for nested branches without loops a binary
execution tree will emerge. An example of such a tree with branches nested to level 3 is shown in
Figure 8.

Figure 8: The probabilities of taking each path in the execution tree

The percentages in the execution tree define the probabilities of following each path. It is assumed
that unlimited number of processors can be executed in parallel. The unfolding of one versus three
branches is compared using the following notation:

Cpisc = the execution time obtained with no path unfolding but with speculation on the longest path.
The best case is if we speculate about executing paths A,B,C,D that can be executed in parallel on
four processors in one step, and this is the end of execution for 1/8 of all cases. In the remaining 7/8
of all cases, the correct “right” path is executed (one additional step) since all the conditions are
known and all the partial results have been obtained.

0.125*1 0.875*2

1.875*
sc

sc

Cpi cycle cycle

Cpi cycle

Cpie1 = the execution time obtained with single unfolding and speculation on the longest path. In one
step, paths A,B are executed by unfolding while paths C,D, are executed by speculation. This gives
the final results in half of the cases when branch 1 resolves to “no”. In additional 1/8 of all cases, the
result is also obtained in one step when all three branches resolve to “yes”. However, in the remaining
3/8 of all cases, it is only necessary to execute either path F or path G, and we know which one
because the results of conditions B and C are known at this point, so the result is computed in two
steps.

1 1

1 1

0.625*1 0.375*2

1.375*
e

e

Cpi cycle cycle Cges

Cpi cycle Cges

Cpie3 = the execution time obtained with triple unfolding. Here, all seven processes are executed in 1
step and the right combination is selected to get the result because values of all branches are known at
that point of execution.

3 3

3 3

1*1

1*
e

e

Cpi cycle Cges

Cpi cycle Cges

Cges3 = the time of management with triple unfolding

Cges1 = the time of management with single unfolding (which is smaller than Cges3)

The unit of execution time is the time to execute a process. Hence, the larger the processes are, the
more beneficial the unfolding is. Clearly, when Cges1 < 0.5, single unfolding is more beneficial than
pure speculation. Additionally, it could be argued that Cges3 ≥ 3*Cges1 because triple unfolding
needs to duplicate at least three times more data than single unfolding. Under this assumption, triple
unfolding is better than single unfolding (and, of course, in this case it is also better than speculative
execution) when Cges1 < 0.1875.

This result confirms that in a scheme without loop structures, single unfolding is not always better
than speculation nor is triple or multiple unfolding always worse than single unfolding. The ratio
between the time of management of unfolding and the execution time of the processes determines if
single unfolding is better than the other methods.

This analysis is even more precise when more is known about the conditions of branches. For
example, if “no” paths have probabilities of only 10% and “yes” path 90%, then we get:

Cpisc = 0.729*1+0.271*2=1.271
Cpie1 = 0.829*1+0.171*2+Cges1=1.171+Cges1
Cpie3 = 1+Cges3

In this case, the single unfolding is best only if 0.0855< Cges1<0.1, so in a narrow interval, whereas
triple unfolding is better for a much wider interval of Cges1<0.0855.

These results confirm that when more levels unfold, the time needed for managing unfolding must be
low to achieve a gain over the other methods.

Finally, Figure 9 compares the unfolding performance of all levels versus unfolding performance of
one level as a function of the number of processors used. As can be seen in this figure, when all levels
are being unfolded, increasingly more processors are needed to descend to the subsequent level
because it is necessary to run all processes of that level.

level+1number of processors = 2 1

For example, seven processors are needed to unfold the second level.

If only the first level splits and the others are speculated about, the number of processors needed to
execute is smaller.

number of processors = 2*level 1

In this case, obtaining the second level results requires five processors, as shown in Table 4.

Level 1 2 3 4 5 6 7 8 9 10
Unfolding at all levels 3 7 15 61 33 127 255 511 1023 2047
Unfolding at one level 3 5 7 9 11 13 15 17 19 21

Table 4: Levels of unfolding versus the number of processors used in execution

Comparison of the two models run with 15 processors shows that unfolding all levels stops at third
level when all available processes are used. In contrast, with single level unfolding, there are enough
processors to execute up to 7 levels in parallel. However, the use of speculation in single unfolding
limits the guarantee of execution correctness to only the first level path. So, in the worst case (where
all speculations happen to be wrong) in single level splitting, two levels are lost compared to
unfolding all levels. Conversely, if all the speculations are correct, the single unfolding gains four
levels over unfolding of all levels. Considering that speculation success rates up to the third level are
quite high, it is very likely that single unfolding will not lose any levels to misspeculation.

Figure 9: Levels of unfolding versus the number of processors used in execution

For these reasons we choose to use a mixed method approach that does not allow more than one level
of splitting paths.

In this paper, we compare four methods (two of them unfolding branches and the remaining two
speculating on branches without unfolding them) to see which gives the best results. We also evaluate
the method without splitting to measure the benefits obtained by the investigated four methods.

5. SPECULATIVE PARALLELIZATION ARCHITECTURE FOR COMPUTER CLUSTERS

Speculative Parallelization Architecture for Computer Clusters [34], [35], [36], [37], [46], [47]
achieves parallelism by using speculation in distributed environments, allowing the parallel execution
of a sequential program in a computer cluster. It simulates the behavior of a superscalar system by
implementing instruction level parallelism that attempts to break true data and control dependencies
by speculating on future data values and future branch results, respectively. Speculation is based on
the fact that the program behavior is usually repetitive and consequently predictable, as demonstrated
in studies of branches [43], memory dependencies, and data values [4]. Software speculation has
recently shown promising results in parallelizing such programs [8], [18], [45]. The relevant
techniques can be classified into two types:

 Software speculation: Compilers carry out the necessary coding. The resulting speculation
cannot be applied dynamically [44], [23], [61].

 Hardware speculation: It requires duplicated hardware elements, e.g., adding extra registers to
store provisional values until they are resolved [4], [11], [17].

The above techniques allow the processor to divide program execution into several parallel threads,
and therefore increase the program’s degree of parallelism. Moore’s Law (processing power doubles
each 18 months) and Gilder’s Law (bandwidth triples each 12 months) show that the speed of
information transmission and synchronization between workstations decrease faster than processing
speed increases. These premises make the idea of transporting speculation techniques to a distributed
environment composed of cheap workstations attractive. The complete design of the Speculative
Parallelization Architecture for Computer Clusters system [34], [35], [36], [37] consists of three
subsystems:

 The parallelizing subsystem (see Figure 10) transforms the original sequential program into
the parallel format needed by the execution environment. The program is divided into blocks
that can be executed in parallel. Either two or three programs (depending on the type of the
original program) are generated as a result of the translation process: a farmer, a worker, and
optionally a farmer/worker. A prototype implementation of this subsystem automatically
transforms C code into MSSPACC format C code by splitting loops and conditions in the
corresponding blocks with their input and output variables. The description of its
implementation is omitted here for the sake of brevity1.When dividing a sequential program
into blocks, it is very important to choose the correct block size, since it can affect system
performance significantly. We are currently working on enhancing this aspect of the parallel
subsystem following three options for optimizing block size: (i) user annotations of the block
boundaries (the easiest but the least automatic choice), (ii) statistical information collected

1 For details see University of Girona Technical Report IIiA 12-02-RR titled “The parallelizing subsystem

implementation,” by J. Puiggalí, T. Jové, J. Marzo, and J. Suy.

prior to parallelization, and (iii) a dynamic subsystem that can join blocks to improve system
performance.
The farmer manages the parallelism and the speculation of the system. The worker runs at
each of the processors; it contains the code of one of the blocks into which the sequential
program has been divided. The farmer/worker program can reduce the farmer bottleneck by
distributing the tasks to some of the other processors, each of which works then as a sub-
farmer.

Figure 10: The parallelizing subsystem

 The execution subsystem (see Figure 11) applies speculation to run the parallelized

applications in a computer cluster composed of single processor machines running PVM
(Parallel Virtual Machine). The execution environment behaves like a superscalar processor,
where the blocks are like the instructions into which the sequential program has been divided,
and the processors on which the worker program runs are like the functional units. The
following data speculation mechanisms are used: data value speculation [26]; last value
predictor [26]; stride predictor [39]; and context-based value predictor [40]. Control
dependencies are managed with branch speculation techniques based on a BTB (Branch
Target Buffer) with 2-bit history [60]. Blocks executed because of incorrectly predicted values
or wrong branch speculations are discarded and their execution is restarted from the last stable
point.

Figure 11: Execution subsystem and simulation subsystem

 The simulation subsystem (see Figure 11) evaluates the impact of technological evolution or

the effects of using computer clusters larger than currently available. The simulation can run
on a single workstation, using the information obtained from the single processor execution

(the trace of the program) and the cluster execution model (the execution cost of different
blocks).

The study and development of both subsystems has been initiated simultaneously. The parallelization
subsystem is currently being designed. The execution subsystem has been already developed in C on
PVM. It runs in computer clusters of up to 20 (PC) units. The design of the execution subsystem is
based on both theoretical analysis and a new simulation subsystem that has been extensively used
[34][35][36]. This allows the extrapolation of the results to the PVM subsystem configurations of
ideal clusters, i.e. those that are not actually available. The simulation uses the runtime, transmission
and control values obtained from the actual executions in the cluster [34],[35]. The sequential
execution times have been obtained from the execution subsystem and from the simulator output. To
analyze and validate the performance, synthetic programs have been used. However, pending access
to the actual parallelization subsystem, two real applications have been manually adapted (the
travelling salesman problem [34] and a program to generate virtual scenes illuminated by radiosity
[47]).

In our recent work [37], the execution subsystem has been enhanced allowing out-of-order executions
(OoOE) [33], [58]. The introduction of OoOE in the processor design implies that the execution of
instructions can start any time and the final result will not be affected even when there is a blockage
caused by data dependencies. This takes advantage of instruction cycles that would otherwise be
wasted, and so yields an improvement in system performance. In current computer architectures,
OoOE is a paradigm already used in many microprocessors.

6. DUAL PATH EXECUTION OF A SYNTHETIC PROGRAM

In this section, we describe how a synthetic program is used to measure the efficiency of unfolding
two paths. The program has a loop before the branch and two loops inside each branch (see Figure
12). We use a simulation tool [35] that takes into account the overhead of each technique to obtain the
results.

Figure 12: Algorithm 1

During the simulation, the result of the first branch was delayed to allow the other branches to be
executed before knowing their results. The first version of the synthetic program has no data
dependencies, while the second version has exactly two such dependencies (function 2 and function
4). In both cases, the dependencies can be addressed through speculation in two iterations. The
control dependency created by the loop is solved by speculation, so there is no delay of the execution
due to such dependencies. The resulting algorithm is shown in Figure 12.

The first part of the experiment was carried out on both synthetic program versions assuming that the
condition is true and using two approaches—one with unfolding paths and the other without. In the
second case, the condition is solved through speculation (the speculation predicts that the condition is
true). The execution times obtained are shown in Table 5.

The

number
of cpu’s

Without dependencies With dependencies
With

unfolding
paths

Without
unfolding

paths

 % With
unfolding

paths

Without
unfolding

paths

 %

1 170.11 170.11 0.00 0.00 170.11 170.11 0.00 0.00
2 90.42 86.85 -3.57 -4.11 98.19 98.19 0.00 0.00
3 64.50 61.23 -3.27 -5.34 80.46 80.46 0.00 0.00
4 54.84 50.05 -4.79 -9.57 68.20 68.20 0.00 0.00
5 47.92 44.68 -3.24 -7.25 65.28 65.28 0.00 0.00
6 43.20 40.61 -2.59 -6.38 62.22 62.21 -0.01 -0.02
7 40.13 38.34 -1.79 -4.67 59.47 59.41 -0.06 -0.10
8 39.56 38.19 -1.37 -3.59 58.30 58.19 -0.11 -0.19
9 38.16 34.37 -3.79 -11.03 58.33 58.17 -0.16 -0.28
10 36.77 34.22 -2.55 -7.45 57.58 57.37 -0.21 -0.37
11 36.64 34.07 -2.57 -7.54 57.03 57.02 -0.01 -0.02
12 35.89 34.07 -1.82 -5.34 56.55 56.50 -0.05 -0.09
13 35.37 34.07 -1.30 -3.82 56.37 56.37 0.00 0.00
14 35.19 34.07 -1.12 -3.29 56.37 56.37 0.00 0.00
15 34.42 34.07 -0.35 -1.03 56.37 56.37 0.00 0.00
16 34.32 34.07 -0.25 -0.73 56.37 56.37 0.00 0.00
17 34.27 34.07 -0.20 -0.59 56.46 56.37 -0.09 -0.16
18 34.22 34.07 -0.15 -0.44 56.64 56.37 -0.27 -0.48
19 34.17 34.07 -0.10 -0.29 55.15 55.10 -0.05 -0.09
20 34.17 34.07 -0.10 -0.29 55.05 54.90 -0.15 -0.27
21 34.14 34.07 -0.07 -0.21 55.83 54.88 -0.95 -1.73
22 34.14 34.07 -0.07 -0.21 55.33 54.88 -0.45 -0.82
23 34.12 34.07 -0.05 -0.15 56.68 54.88 -1.80 -3.28
24 34.07 34.07 0.00 0.00 56.48 54.88 -1.60 -2.92
… … … … … … … … …
35 34.12 34.07 -0.05 -0.15 58.96 54.88 -4.08 -7.43

Table 5: Execution times of a synthetic program when the speculation correctly predicts the
condition; columns contain the absolute difference while % columns contain the percentage of the
difference between execution times with and without unfolding paths

Table 5 demonstrates that the synthetic program without data dependencies executed with a small
number of processors performs better with the speculation without unfolding the branch. Yet, as the
number of processors increases, the difference decreases until the execution times are equal. This is
because in speculation without unfolding, if the path chosen is the correct one, all executing processes
contribute towards the progress of the computation. In contrast, with unfolding, both paths are opened
after the branch, so some processes will be assigned to the path that have been started but do not need
to be executed. This is reflected in the results shown in Table 5. The difference in the execution times
of these two methods decreases when the number of available processors increases. This is because
the unused processors can execute the processes corresponding to the erroneous branch without
delaying the execution of the correct path. With 24 processors available, the execution times are
identical in both methods but the number of processes started without unfolding is 33, while with
unfolding it is 58.

In the synthetic program with data dependencies, the method that speculates on branches, even in the
case when the speculation prediction is correct, the executed path of the branch still has a dependency
that requires a second iteration to speculate on the data value. On the other hand, the method that
unfolds new execution paths for branches assigns the paths for which the speculation incorrectly
predicted data to idle processors. Thus, as shown in Table 5, there is almost no difference in
performance of the method speculating on branches and the method unfolding new execution paths
on branches.

The same experiment was carried out assuming the contrary outcome of the condition—that is that
the condition is false—and the results obtained are shown in Table 6.

In this case, unfolding the paths gives good results regardless if there are data dependencies in the
synthetic program or not. The results for the synthetic program without data dependencies are better
than the results for the synthetic program with data dependencies. This is because in the latter, the
incorrect path has data dependencies and the process executing this path is blocked until the
dependency is resolved.

The improvement achieved by unfolding paths versus speculating on branches reaches 17.45% using
14 processors for the synthetic program without data dependencies and 15.52% for the synthetic
program with data dependencies. This is because in speculation without unfolding, the system starts
the execution of processes in the incorrect path and proceeds until the value of the condition is
obtained. Once the misspeculation is detected, the processes on the incorrect path are erased.
However, in speculation with unfolding, the system starts process execution of both paths and later
keeps the one that was started with the correct value of the condition.

The

number
of cpu’s

Without dependencies With dependencies
With

unfolding
paths

Without
unfolding

paths

 % With
unfolding

paths

Without
unfolding

paths

 %

1 170.11 170.11 0.00 0.00 170.11 170.11 0.00 0.00
2 91.17 95.25 4.08 4.28 93.37 98.2 4.83 4.92
3 67.07 71.95 4.88 6.88 69.00 79.72 10.72 13.45
4 53.79 61.29 7.50 12.24 57.24 66.16 8.92 13.48
5 48.72 56.05 7.33 13.08 52.30 62.22 9.92 15.94
6 44.85 50.38 5.53 10.98 48.64 58.75 10.11 17.21
7 40.13 45.96 5.83 12.68 46.49 56.70 10.21 18.01
8 39.06 44.04 4.98 11.31 45.06 54.78 9.72 17.74
9 38.16 43.97 5.81 13.21 44.91 54.71 9.80 17.91
10 37.09 44.17 7.08 16.03 44.81 54.91 10.10 18.39
11 36.64 42.90 6.26 14.59 44.81 53.64 8.83 16.46
12 35.87 42.70 6.83 16.00 44.81 53.44 8.63 16.15
13 35.37 42.50 7.13 16.78 44.81 53.24 8.43 15.83
14 34.92 42.30 7.38 17.45 44.81 53.04 8.23 15.52
15 35.14 42.17 7.03 16.67 44.81 52.91 8.10 15.31
16 35.64 42.17 6.53 15.48 44.81 52.91 8.10 15.31
17 36.14 42.17 6.03 14.30 44.81 52.91 8.10 15.31
18 35.64 42.17 6.53 15.48 44.81 52.91 8.10 15.31
19 37.14 42.17 5.03 11.93 44.81 52.91 8.10 15.31
20 37.64 42.17 4.53 10.74 44.81 52.91 8.10 15.31
21 37.66 41.08 3.42 8.33 44.81 51.82 7.01 13.53
22 38.16 41.08 2.92 7.10 44.81 51.82 7.01 13.53
23 38.19 41.08 2.89 7.04 44.81 51.82 7.01 13.53
24 38.14 41.08 2.94 7.16 44.81 51.82 7.01 13.53
… … … … … … … … …
35 38.14 41.08 2.94 7.16 44.81 51.82 7.01 13.53

Table 6: Execution times of a synthetic program when speculation incorrectly predicts the condition;
 columns contain the absolute difference while % columns contain the percentage of the difference
between execution times with and without unfolding paths

According to Table 7, with speculation predicting the incorrect value and the synthetic program with
data dependencies, the number of processes executed in a system with 15 processors is smaller with
path unfolding than without. When the number of processors is larger than 15, the number of
executed processes stays the same, regardless of the number of processors. This is because in the
system using path unfolding and with unused processors, all processes executing both paths of a
branch start execution before having the value of the condition. The difference in time between the
two methods of dealing with branches arises because without path unfolding, the system must wait
for the condition evaluation to start the processes of the correct path, thereby wasting CPU time.
Presence of data dependencies in the synthetic program improves the performance of path unfolding

because the execution of an incorrect path with such data dependencies is blocked until the
dependency is resolved.

 WITHOUT DEPENDENCIES WITH DEPENDENCIES
 Incorrect speculation Correct speculation Incorrect speculation Correct speculation

Cpu
count

Without
unfolding

With
unfolding

Without
unfolding

With
unfolding

Without
unfolding

With
unfolding

Without
unfolding

With
unfolding

1 34 33 33 34 35 34 33 34
2 38 36 33 35 36 34 33 36
3 43 38 33 37 37 34 33 42
4 47 40 33 40 38 34 33 44
5 52 43 33 42 39 34 33 49
6 54 44 33 43 40 34 33 53
7 53 43 33 43 41 34 33 57
8 57 45 33 45 41 34 33 59
9 59 47 33 47 41 34 33 59

10 59 49 33 49 44 34 33 59
11 59 51 33 51 42 34 33 59
12 59 53 33 53 45 34 33 59
13 59 55 33 55 40 34 33 59
14 59 57 33 57 42 34 33 59
15 59 59 33 58 44 34 33 59
...
35 59 59 33 58 64 34 33 59

Table 7: Number of processes started in the synthetic program in all investigated cases

Comparing the performance of the two possibilities, unfolding paths of branches or not (see Figures
13 and 14), we realized that the loss that can take place using unfolding in the worst cases is smaller

Figure 13: Comparison of the absolute differences between execution times when speculating
correctly and incorrectly on the outcome of a condition

Figure 14: Comparison of the relative differences between execution times with correct and incorrect
speculation

than the benefit that unfolding can obtain in the best cases. Moreover, this loss decreases with the
number of available processes, becoming zero for the large number of such processors, while the
benefit is sustained. This is due to the use of processors which otherwise would stay inactive (see
Figures 15 and 16). This demonstrates that the use of path unfolding is beneficial in our approach.

Figure 15: Number of processes created without data dependencies

Figure 16: Number of processes created with data dependencies

7. ADAPTING THE UNFOLDING PATHS TO REPETITIVE STRUCTURES

The behavior of a condition in a repetitive structure is very different from the previously considered
case because in speculation without path unfolding, the branch target buffer (BTB) method can be
used to decrease the probability of selecting the incorrect path. As an example, consider a synthetic
program from Figure 17 that contains a repetitive structure. There is a condition present in function 3
which is called four times during execution. We assume that the correct path corresponds to the
condition yielding false. We also use a 2 bit BTB that defaults initially to the condition yielding true.
We have the following cases when comparing the behavior of each speculative method chosen:

1) Speculation using BTB in the election (see Figure 18). In this method the first time the iteration

(process 3) is reached, it assumes that the condition will yield true and process 4 is executed.
Other processes are also started and execute until process 3 finishes its execution. At this point it
can be seen that a wrong execution was done. Subsequently, the scheduler eliminates all the
processes executed erroneously from the point where the error has taken place. In the second
iteration the same thing happens again because the BTB continues indicating that the condition
will yield true. In the third iteration, the BTB predicts the condition correctly and from this point
forward, it continues predicting all speculations are correctly.

2) Speculation without the use of the BTB in the election (see Figure 19). If the BTB is not used,
speculation is always done by choosing the branch set by default. In our case, the election in all
four iterations will be incorrect. Therefore, the processes will execute incorrectly after the
evaluation of the condition (block 3).

3) Speculation with unfolding paths (see Figure 20). As we have explained previously, in this
method every time a branch is found and no unfolding is currently active, the branch will be
unfolded and its two paths will be executed in parallel. In this example, we would be executing in
parallel four iterations of the two paths. When the branch is evaluated, the incorrect path would be
automatically eliminated.

Figure 17: Synthetic program with repetitive structure

A comparison of the three methods reveals that speculation without BTB obtains the worst results.
This is because it must eliminate the blocks and redo the states of all iterations. In the other two
methods, the speculation unfolding paths are good if the number of iterations is small. However,
when the number of iterations increases, the advantage is reduced because the speculation with BTB
is increasingly successful. This implies that to maintain a good performance, speculation with path
unfolding requires a larger number of processors than the speculation with BTB does.

Figure 18: Execution times using speculation with BTB

Figure 19: Execution times using speculation without BTB (set value)

Figure 20: Execution times using speculation with unfolding paths

To overcome this disadvantage of the iterative structures for speculation with path unfolding, we
introduced a modification of this method: the introduction of the historical statistic of process
behavior.

A number of passes through the condition and threshold of the percentage of the same values will
dictate what types of method the predictor will use. A branch whose chosen answer is statistically
significant is likely to take the same path repeatedly. For such branches, we will not unfold their paths
because we expect unfolding to be unnecessary.

It is important to decide what value to use as a threshold, or in other words what percentage of the
same values we will consider to be statistically significant. The decision tree for making this decision
is shown in Figure 21.

Figure 21: Scheme of the mix system for speculation with unfolding paths

Figure 22: Execution using speculation with unfolding paths according to statistical values

If we apply this modification to the path unfolding method in the previous example, assuming that the
threshold was three passes and over 75% of the same values, the result would correspond to Figure
22. As can be observed, it preserves the benefits that we obtained with the path unfolding method
versus the speculation with BTB method. There is also an added benefit of using this modification in
the speculation with the BTB method to improve the speculation success rate. In conclusion, the
modification improves both of the discussed above methods.

We executed the synthetic program in the simulator obtaining the results for the four methods shown
in Figure 23.

 Execution Time

Figure 23: Comparison of execution times of the different methods

Cpu
count

Speculation
without BTB

Speculation
with BTB

Unfolding
paths

Unfolding
mix

1 689.82 689.82 689.82 689.82
2 379.42 379.42 365.40 361.08
3 281.23 281.23 257.92 254.10
4 235.06 235.06 212.16 208.17
5 217.56 217.56 186.62 183.23
6 220.36 194.64 184.22 180.83
7 181.54 181.52 164.76 162.19
8 175.29 202.16 162.56 159.99
9 176.62 176.51 181.23 177.84
10 195.84 195.57 176.79 173.40
11 173.27 172.90 162.30 159.73
12 168.78 168.36 166.22 161.93
13 198.46 171.56 164.22 159.93
14 195.04 172.71 154.92 152.35
15 159.89 159.11 155.47 152.90
16 160.64 160.46 152.82 150.25
17 181.90 153.46 162.29 158.00
18 182.14 154.96 153.69 151.12
19 156.53 156.31 150.46 145.82
20 184.98 155.70 152.82 148.54
21 163.66 161.98 147.53 142.55
22 180.06 150.32 130.18 126.01
23 192.32 162.18 130.39 128.84
24 188.71 164.33 129.95 128.21
25 173.05 166.48 132.08 126.92
26 142.55 141.37 124.27 122.22
27 162.50 166.15 126.02 123.92
28 174.92 169.93 126.62 123.62
29 148.00 144.67 125.67 124.17
30 152.60 147.03 128.42 124.97

…
35 156.65 147.52 133.92 127.72

Table 8: Comparison of execution times of the different methods

The plot in this figure starts with the execution times for six processors because the very high
execution times with a smaller number of processors would distort the graph. The graph demonstrates
that speculation without BTB obtains the worst result and its execution times are very high because of
the large number of paths executed that ultimately are erased. The method of path unfolding performs
very well. Although this method executes faster than the speculation method with BTB, when there
are many processors available, the difference is reduced. This is because starting from the second

iteration, the speculation with BTB finds the correct path. Finally, the mixed method of path
unfolding always yields the fastest execution.

 The number of started processes

Figure 24: Comparison of the number of processes started by the different methods

Cpu
count

Speculation without
BTB

Speculation with
BTB

Unfolding
paths

Unfolding mix

1 136 136 136 136
2 154 154 146 144
3 171 171 155 151
4 195 195 167 160
5 210 206 180 170
6 255 206 180 170
7 237 228 184 174
8 246 271 189 179
9 275 268 183 173

10 334 311 186 176
11 304 274 193 183
12 309 277 196 187
13 397 280 199 190
14 404 274 205 195
15 316 276 208 198

...
20 464 281 233 222
25 434 291 262 239
30 350 285 247 232
35 367 296 269 243

Table 9: Comparison of the number of processes started by the different methods

Figure 24 shows the number of processes started by each method. Clearly, the speculation without
BTB starts the largest number of processes but it also makes the most mistakes. Both unfolding paths
and speculation with BTB produce values quite similar to each other. The speculation for mixed
unfolding paths is the best due to combining advantages of the previous two methods.

Figure 25: Comparison of the number of processes erased by the different methods

Cpu
count

Speculation
without BTB

Speculation
with BTB

Unfolding
paths

Unfolding mix

1 0 0 0 0
2 18 18 10 8
3 35 35 19 15
4 59 59 31 24
5 74 70 44 34
6 119 70 44 34
7 101 92 48 38
8 110 135 53 43
9 139 132 47 37

10 198 175 50 40
11 168 138 57 47
12 173 141 60 51
13 261 144 63 54
14 268 138 69 59
15 180 140 72 62

...
20 328 145 97 86
25 298 155 126 103
30 214 149 111 96
35 231 160 133 107

Table 10: Comparison of the number of processes erased by the different methods

As shown in Figure 25, the behavior of the methods in terms of the number of erased processes is
very similar to behavior observed in terms of the number of the started processes, so the same
conclusions apply.

8. EXAMPLES OF REALISTIC PROGRAMS USING MSSPACC

 Matrix vector multiplication

In this example, a real algorithm is used (instead of a synthetic one shown in previous section). We
selected the following algorithm for the dense matrix (of size NxN) multiplication:

Figure 26: Selected dense matrix multiplication algorithm

It contains three nested loops. To parallelize this algorithm, the parallelizing subsystem uses the two
internal loops as code for the worker and the external loop to define the number of execution times
(controlled by the farmer process)2. There is a dependence caused by variable "i". This data
dependency would cause blocking until the current iteration is ended. Some parallel implementations
would resolve this by applying the "loop unrolling" technique (i.e. unfolding all the iterations).
Instead, MSSPACC uses speculation in a dynamic way. Therefore the results obtained by MSSPACC
would be equivalent to those obtained by a parallel execution when implementing "loop unrolling".
The original version of the problem is a sequential one, written in “C” and compiled without loop
unrolling or heavy optimization. In comparisons, we report only execution times.

Different matrix sizes have been used to observe the system performance: N = 500, 1000, 2000. A
cluster of 22 Intel Core2 Duo E4700 2.60GHz with 1 GB RAM was used. The comparison does not
include supercomputers or multiprocessor system because the proposed system is not intended to
compete with explicitly parallel programs executed on multiprocessors or scalar processors. Instead,
MSCPACC aims at extracting and exploiting parallelism from sequential program executed on
computer clusters.

The management time incurred by the farmer process includes the following components (Figure 27):

- Initialization time (Ti) needed to initialize all processes, start up all workers and initialize
all data structures: 7.07 10-3 sec.

2 the codes of workers and the farmer and messages sent between them are described in in detail in [36].

- Start up time (Tg1) needed to check if a process can start and to obtain its input values,
speculating them if necessary: 1.46·10-5 sec.

- Message transmission time (Tt) consumed sending and receiving a message between 2
processes: 2·10 -6 sec.

- Block execution time (Tb).
- Data update time (Tg2) representing the average time that the farmer process needs to read

the worker's messages and to store the resulting values, plus the time needed to sort data
writes and to correct speculation errors: 1.9·10-5 sec.

-

Figure 27: Management time components

It should be noted that the management times used by the farmer process are very small with respect
to the execution times. The measured absolute values were normalized to the sequential execution
time. Figure 28 shows that with larger matrixes, the performance improves thanks to more efficient
use of worker processors. Similarly, increasing the number of processors improves performance and
lowers management overhead.

Figure 28: Normalized execution times for MSSPACC

In Table 10 the actual values of the executions are shown. The results (execution time) of the three
different experiments are normalized with respect the sequential execution time which is shown in the
second column.

 # of CPU Seq. 2 3 4 5 6 7 8 9 10 11 12 13 14
500x500 0,81 2,15 0,71 0,43 0,39 0,38 0,35 0,33 0,25 0,2 0,19 0,16 0,15 0,14

1000x1000 11,12 12,16 5,74 3,99 3,78 2,56 2,06 1,73 1,56 1,38 1,26 1,13 1,07 1,02

2000X2000 78,08 75,57 39,45 26,21 19,63 15,97 13,13 11,22 10,01 8,8 8,03 7,22 6,6 6,27

Table 11: Execution time (sec) for MSSPACC

The results show that time management is small relative to run time of blocks. Thus, after applying
loop unrolling to the parallelization of matrix multiplication on a cluster, the execution times of the
resulting code under PVM or MPI would be similar to MSSCPACC execution times.

In conclusion, the MSSPACC performs well being at least as good as a system using “loop unrolling”
in the parallelization of matrix multiplication on a cluster. The main difference is that MSSPACC
executes dynamically using speculation.

 Travelling salesman problem

The first example showed that using the MSSPACC we can automatically parallelize the sequential
algorithm for execution on a cluster getting the same results as the explicit parallelization via loop
unfolding would achieve. The second example shows the case in which parallel algorithm restricted
by dependencies benefits from speculation introduced by MSSPACC system using the farmer/worker
model. We use the well-known “Travelling Salesman Problem” (also studied in [7]) that calculates
the shortest Hamiltonian circuit in a graph [6][9][38]. The problem is NP-hard.

We selected the following optimized algorithm [34], designed for parallel execution with or without

speculation on a cluster of 20 Pentium III, 1.7 Ghz computers with 512MB RAM:

Figure 29: Selected “Travelling Salesman Problem” algorithm

Figure 30 shows the execution times as a function of the number of start cities (varying from 3 to 10)
and execution methods: parallel execution without speculation and parallel execution with
speculation. In the latter, two different size implementations are used: with a farmer with three
workers and three sub-farmers, each of which supervises also three workers, dnoted as (1/3)*4

system with a total of 16 processors, and the similar system with four sub-farmers, denoted as (1/4)*3
system with 20 processors. As it can be observed in Figure 30, the speculative execution method is
able to reduce the execution time drastically. Data and control dependences limit the maximum
parallelism that the algorithm can efficiently use. In this example, the speculation is able to predict
the values of the induction variables easily which significantly increases the parallelism degree of the
program. On the other hand, the use of different numbers of farmer-worker groups does not offer a
significant enhancement of the execution time.

Figure 30: Execution times for non-speculative and speculative techniques (MASSAPCC)

9. CONCLUSIONS

The use of unfolding paths in the branch structures allows us to break the control dependencies
existing in the code and obtain a high degree of parallelism through the use of currently inactive
CPUs. The main challenge of implementing this technique is to efficiently deal with multiple
branches. Within longer branches, opening two new paths by unfolding a conditional branch before
the previous unfolding is resolved would increase the cost of management, thereby reducing the
benefits of such unfolding. To avoid this drawback, we propose to suppress unfolding additional
branches until the current branch is resolved and apply speculation to the subsequent branches
instead.

In this paper we have compared four possible implementations of dealing with a branch. Two of them
use speculation without splitting paths (one with historical information about the behavior of the
condition and one without). Two others split paths when a new branch is encountered (one with
historical information about the behavior of the condition and one without).

The results demonstrate that the use of unfolding combined with speculation using statistical
information (the BTB technique) achieves the best time performance and the highest number of
processes executed correctly. These gains are especially high for iterative structures in which the
conditions are repeatedly executed. This is due to not splitting the very high percentage of branches
that are predicted correctly. In contrast, splitting branches without BTB executes more paths that must

be later discarded and therefore gives worse results. When the number of CPUs is large, the results of
splitting without BTB improve because the discarded processes use processors that would be
otherwise idle and this helps to match the results of the technique without splitting.

In future research we will study how performance evolves when process sizes vary at runtime. The
environment will be also modified to enable higher degrees of parallelism and evaluation of the
impact of system enhancements on performance.

REFERENCES

[1] Akkary H, Driscoll MA. A Dynamic Multithreading Processor. Proc. Annual ACM/IEEE
International Symp. Microarchitecture (MICRO-31), 1998: 226–236.

[2] Ahuja P, Skadron K, Martonosi M, Clark D. Multipath Execution: Opportunities and Limits.

Proc. 12th International Conference on Supercomputing, 1998: 101–108.

[3] Aragón JL, González J, González A, Smith JE. Dual Path Instruction Processing. Proc. 16th

International Conference on Supercomputing, 2002: 220–229.

[4] Calder B, Reinman, G, Tullsen, D. Selective Value Prediction. Proc. 26th Annual International

Symp. Computer Architecture, 1999: 64–74.

[5] Chang PY, Evers M, Patt YN. Improving Branch Prediction Accuracy by Reducing Pattern

History Table Interference. Proc. International Conference on Parallel Architectures and
Compilation Techniques, 1996: 48–57.

[6] Christofides, N. Worst‐Case Analisys of a New Heuristic for the Travelling Salesman Problem.

Management Sciences Research Report 388, 1976.

[7] Dantzig G.B., Fulkerson R., Johnson S.M. Solution of a large-scale traveling salesman problem.
Operations Research 2, 1954: 393-410.

[8] Ding C, Shen X, Kelsey K, Tice C, Huang R, Zhang C. Software Behavior-oriented

Parallelization. Proc. Programming Language Design and Implementation, San Diego, USA,
2007: 223–234.

[9] Eilon, S., Watson‐Gandy, C., & Christofides, N. Distribution Management. Londres: Griffin,
1971.

[10] Franklin M. Multiscalar Processors. Kluwer Academic: Cambridge, Massachusetts, 2002.

[11] Gonzalez J, Gonzalez, A. The Potential of Data Value Speculation to Boost ILP. Proc. 12th

International Conference of Supercomputing, 1998: 21–28.

[12] Grunwald D, Klauser A, Manne S, Pleszkun A. Confidence Estimation for Speculation
Control. Proc. 25th Annual International Symp. Computer Architecture. Barcelona, 1998: 122–
131.

[13] Gwennap L. DanSoft Develops VLIW Design. Microprocessor Report 1997; 11(2):18–22.

[14] Heil TH, Smith JE. Selective Dual Path Execution. Technical Report, University of Wisconsin-

Madison, ECE, 1997.

[15] Hennessy JL, Patterson DA. Computer Architecture: A Quantitative Approach, 2nd edition,

Morgan Kaufmann Publishers Inc: San Francisco, California, 1996.

[16] Hwu WW, Conte TM, Chang, PP. Comparing Software and Hardware Schemes For Reducing

the Cost of Branches. Proc. 16th Annual International Symp. Computer Architecture, 1989: 224–
233.

[17] Jacobson Q, Bennett S, Sharma N, Smith, J. Control Flow Speculation in Multiscalar Processors.

Proc. 3rd International Symp. High-Performance Computer Architecture, 1997: 218–229.

[18] Jiang Y, Mao F, Shen X. Speculation with Little Wasting: Saving Cost in Software Speculation

through Transparent Learning. Proc. 15th International Conference Parallel and Distributed
Systems (ICPADS), 2009: 543–550.

[19] Khanna R, Verma S, Biswas R, Singh JB. Implementation of Branch Delay in Superscalar

Processors by Reducing Branch Penalties. Proc. International Advance Computing Conference
(IACC), 2010: 14–20.

[20] Klauser A, Paithankar A, Grunwald D. Selective Eager Execution on the PolyPath Architecture.

Proc. International Symp. Computer Architecture, 1998: 250–259.

[21] Klauser A, Grunwald D. Instruction Fetch Mechanisms for Multipath Execution Processors.

Proc. Annual ACM/IEEE International Symp. Microarchitecture (MICRO-32), 1999: 38–47.

[22] Krishnan V, Torrellas J. A Chip-Multiprocessor Architecture with Speculative Multithreading.

IEEE Trans. Computers, 1999, 48(9): 866–880.

[23] Larson E, Austin T. Compiler Controlled Value Prediction Using Branch Predictor Based

Confidence. Proc. 33rd Annual ACM/IEEE International Symp. Microarchitecture (MIRCO-33),
2000: 327–336.

[24] Lee J, Smith A. Branch Prediction Strategies and Branch Target Buffer Design. Computer, 1984;

17:6–22.

[25] Lee CJ, Kim H, Mutlu O, Patt Y. A Performance-Aware Speculation Control Technique Using

Wrong Path Usefulness Prediction, HPS Technical Report, TR-HPS-2006-010, The University of
Texas at Austin, 2006.

[26] Lipasti M, Wilkerson C, Shen J. Value Locality and Data Speculation. Proc. 7th International

Conference on Architectural Support for Programming Languages and Operating Systems, 1996:
138–147.

[27] Malik K, Agarwal M, Dhar V, Frank MI. Paco: Probability-based Path Confidence Prediction.

Proc. International Symp. High Performance Computer Architecture (HPCA), 2008: 50–61.

[28] Marcuello P, Gonzalez A. Clustered Speculative Multithreaded Processors. Proc. International

Conference Supercomputing, 2001: 365–372.

[29] McFarling S, Hennessy J. Reducing the Cost of Branches. Proc. 13th Annual International Symp

on Computer Architecture, 1986: 396–404.

[30] McFarling S. Combining Branch Predictors. WRL Technical Notes TN-36, DigitalWestern

Research Laboratory, 1993.

[31] Olukotun K, Hammond L, Willey M. Improving the Performance of Speculatively Parallel

Applications on the Hydra CMP. Proc. International Conference Supercomputing, 1999: 21–30.

[32] Pan S, So K, Rahmeh J. Improving the Accuracy of Dynamic Branch Prediction Using Branch

Correlation. Proc. 5th International Conference on Architectural Support for Programming
Languages and Operating Systems, 1992; Boston, MA: 76–84.

[33] Petit S, Sahuquillo López JP, Ubal R, Duato J. A Complexity-Effective Out-of-Order

Retirement Microarchitecture. IEEE Transactions on computers, 2009; 58(12):1626–1639.

[34] Puiggali J, Jové T, Salanova S, Marzo J. Execution Speed Up Using Speculation Techniques in

Computer Clusters. Proc. International Mediterranean Modelling Multiconference (IMM), 2006:
561–568.

[35] Puiggali J, Jové T, Salanova S, Marzo J. Limit of TLS Execution of Sequential Programs on

Clusters. Proc. International Symp. Performance Evaluation of Computer and Telecommunication
Systems (SPECTS), 2006: 12-19.

[36] Puiggali J, Jové T, Segovia J, Marzo J. Master/Slave Speculative Parallelization Architecture

for Computer Clusters. ACS/IEEE International Conference on Computer Systems and
Applications (AICCSA), 2007: 1-16

[37] Puiggalí J, Jové T, Marzo JL. Out-of-Order Execution in Master/Slave Speculative

Parallelization Architecture for Computer Clusters. Proc. International Simulation Multi-
Conference (ISMC), 2011: 179–184.

[38] Ravikumar, C. Parallel techniques for solving large scale travelling salesperson problems.

Microprocessors and Microsystems, 16(3), 1992: 149‐158.

[39] Sazeides Y, Vassiliadis S, Smith J. The Performance Potential of Data Dependence Speculation
and Collapsing. Proc. Annual IEEE/ACM International Symp. Microarchitecture (MICRO-29),
1996: 238–247.

[40] Sazeides Y, Smith J. The Predictability of Data Values. Proc. Annual IEEE/ACM International

Symp. Microarchitecture (MICRO-30), 1997: 248–258.

[41] Seznec A. Storage Free Confidence Estimation for the TAGE Branch Predictor. Proc. 17th

International Symp. High Performance Computer Architecture (HPCA), Feb. 2011: 443–454.

[42] Šilc J, Ungerer T, Robic B. Dynamic Branch Prediction and Control Speculation. International

Journal High Performance Systems Architecture, 2007; 1(1): 12–13.

[43] Smith J. A Study of Branch Prediction Strategies. Proc. International Symp. Computer

Architecture, 1991: 135–148.

[44] Steffan J, Colohan C, Zhain A, Mowry T. Improving value communication for thread-level

speculation. Proc. International Symp. High-Performance Computer Architecture (HPCA), 2002:
65–75.

[45] Tian C, Feng M, Nagarajan V, Gupta R. Copy or Discard Execution Model for Speculative

Parallelization on Multicores. Proc. Annual ACM/IEEE International Symp. Microarchitecture
(MICRO-41), 2008: 330–341.

[46] Trias A, Aciar S, de la Rosa JL, Puiggalí J, Jové, T. An Agents Approach for Master/slave

Hierarchical Clusters. 6th European Workshop on Multi-Agent Systems (EUMAS), 2008: 59-70.

[47] Trias A, Puiggalí J, Castro F, Jové T, Sbert M, Marzo JL. Speculative Parallelization of

Multipath Radiosity Algorithm. Proc. 12th International Symp. Performance Evaluation of
Computer & Telecommunication Systems (SPECTS), 2009: 89–95.

[48] Tullsen D. Simulation and Modeling of a Simultaneous Multithreading Processor. Proc. 22nd

Annual Computer Measurement Group Conference, Dec. 1996: 819–828.

[49] Tullsen D, Eggers S, Emer J, Levy H, Lo J, Stamm R. Exploiting choice: Instruction Fetch and

Issue on an Implementable Simultaneous Multithreading Processor. Proc. 23rd Annual
International Symp. Computer Architecture, 1996: 191–202.

[50] Tullsen D, Eggers S, Levy H. Simultaneous Multithreading: Maximizing On-chip Parallelism.

Proc. 22nd Annual International Symp. Computer Architecture, 1995: 392–403.

[51] Uht A, Sindagi V. (1995) Disjoint Eager Execution: an Optimal Form of Speculative Execution.

Proc. Annual ACM/IEEE International Symp. Microarchitecture (MICRO-28), Ann Arbor, MI,
1995: 313–325.

[52] Ungerer T, Robic B, Šilc J. Multithreaded Processors. The Computer Journal, 2002; 45(3):320–
348.

[53] Ungerer T, Robic B, Šilc J. A Survey of Processors with Explicit Multithreading. ACM

Computing Surveys, 2003; 35(1):29–63.

[54] Unger A, Zehendner E, Ungerer T. A Combined Compiler and Architecture Technique to

Control Multithreaded Execution of Branches and Loop Iterations. ACM SIGARCH Computer
Architecture News, 2000; 28(1):53–61.

[55] Unger A, Ungerer T, Zehendner E. Static Speculation, Dynamic Resolution. Proc. 7th Workshop

on Compilers for Parallel Computers, Linkoping, Sweden, 1998: 243–253.

[56] Wallace S, Calder B, Tullsen D. Threaded Multiple Path Execution. Proc. International Symp.

Computer Architecture, 1998: 238–249.

[57] Xekalakis P, Cintra M. Handling Branches in TLS Systems with Multi-Path Execution. Proc.

International Symp. High Performance Computer Architecture (HPCA), 2010: 1–12.

[58] Yanyan G, Xi L. Formal Verification of Out-of-order Processor. Proc. International Conference

on Computer Modeling and Simulation (ICCMS), 2009: 129–135.

[59] Yeh T, Patt Y. A Comparison of Dynamic Branch Predictors that Use Two Levels of Branch

History. Proc. 20th Annual International Symp. Computer Architecture, San Diego, CA, 1993:
257–266.

[60] Yeh T, Patt Y. Two-level Adaptive Branch Prediction. Proc. Annual ACM/IEEE International

Symp. Microarchitecture (MICRO-24), 1991: 51–61.

[61] Zilles, C, Sohi G. Master/slave Speculative Parallelization. Proc. Annual ACM/IEEE

International Symp. Microarchitecture (MICRO-35), 2002: 85–96.

