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SUMMARY

The increasing transistor scale integration poses, among others, the thermal-aware floorplanning problem;
consisting of how to place the hardware components in order to reduce overheating by dissipation. Due to
the huge amount of feasible floorplans, most of the solutions found in the literature include an evolutionary
algorithm for, either partially or completely, carrying out the task of floorplanning. Evolutionary algorithms
usually have a bottleneck in the fitness evaluation. In the problem of thermal-aware floorplanning, the
layout evaluation by the thermal model takes 99.5% of the computational time for the best floorplanning
algorithm proposed so far. The contribution of this paper is to present a parallelization of this evaluation
phase in a master−worker model to achieve a dramatic speed-up of the thermal-aware floorplanning process.
Exhaustive experimentation was done over three dimensional integrated circuits, with 48 and 128 cores,
outperforming previous published works. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Consumers continuously demand faster applications, smaller devices and recently also ubiquitous
computing. So far, developments in materials and technology have allowed processor manufacturers
to provide chips that attained the expected serial performance. As we approach to the limits of
miniaturization, these demands become harder to accomplish. In order to remain competitive,
industry has moved to parallel architectures such as integrating more cores in a die, data-parallel
execution units, additional register sets for hardware threads, bigger caches and more independent
memory controllers to increase memory bandwidth. For instance, multi-core general purpose
computers are being shipped for years and data-centers implement heterogeneous many-core
systems. Multi-processor systems-on-chip (MPSoCs) are nowadays also considered as many-core
systems. Up to now, the top core integration silicon CPU chip is proposed by Intel Labs with an
experimental Single-chip Cloud Computer (SCC), a research microprocessor containing 48 Intel

∗Correspondence to: C/. Capitán, 39, 28300, Aranjuez (Madrid), Spain. E-mail: jmcolmenar@ajz.ucm.es

Contract/grant sponsor: Ignacio Arnaldo is supported by Spanish Government Avanza Competitividad I+D+I: TSI-
020100-2010-962 project. The work has also been supported by Spanish Government grants TIN 2008-00508 and MEC
CONSOLIDER CSD00C-07-20811

Copyright © 2012 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

ar
X

iv
:2

30
3.

03
77

9v
1 

 [
cs

.A
R

] 
 7

 M
ar

 2
02

3



2 ARNALDO, CUESTA-INFANTE, COLMENAR, RISCO-MARTÍN, AYALA

Architecture cores [1]. Also, novel 3D multi-processor chips have been recently presented [2] as the
alternative to provide the required area of integration and to reduce the communication delay among
the large number of cores.

While the fabrication techniques have driven the integration of an increased number of transistors
to provide the required throughput, these improvements have posed major problems regarding the
operating temperature, directly related to the power density [3]. As temperature increases, the carrier
mobility degrades, the leakage power consumption increases, gradient temperatures appear on the
surface creating electro-migrations and the lifetime of the chip decreases exponentially, all in all
reducing dramatically the reliability of the system [4]. In addition, the specific placement of the
functional units on the chip surface (floorplan) also affects to the temperature distribution because
of the diffusive nature of heat [5]. Besides, in the 3D configuration, the power density increases
with the number of layers. This effect is even more negative due to the problematic cooling of inner
layers of the 3D stack. The impact of power density in the microprocessor is augmented due to the
dielectric insulation layers inserted between active layers. The reason is that the thermal conductivity
of the formers is very low compared to silicon and metal.

Increasing the chip area to reduce the power density has two shortcomings: it is costly and
requires to solve all the geometric constraints. Static external coolers reduce the temperature of
the chip surface by a constant factor but do not reduce the temperature gradient across the chip.
Instead, thermal-aware floorplanning algorithms attempt to place functional units in order to achieve
a satisfactory temperature distribution; thus they tackle with both heat dissipation and component
placement at a time.

Floorplanning proposals are frequently formulated as combinatorial optimization problems that
can be smoothly fit to genetic algorithms (GA).

Broadly speaking, a GA performs a heuristic search throughout the solution space inspired on
Darwin’s principle of Natural Selection: The basic features are:
(i) each iteration tests a small number of solutions (known as population) compared to the cardinality
of the solution space,
(ii) each solution (referred to as individual) is represented in a way suitable both for evaluation and
for producing the subset of the next generation,
(iii) the next generation is obtained applying genetic operators such as crossover, mutation and
selection, and
(iv) there is a fitness function that evaluates the individuals.

Early floorplanning solutions tackled with GA proposed representations such as Polish notation
[6], combined bucket array [7] and O-trees [8] that are not satisfactory in the thermal-aware problem
because they were engineered to minimize area. On the contrary, the hottest elements should be
spread and placed as far as possible for reducing the heating produced by closer hot units. Thus,
in 2D, works like [9] decreased the peak temperature using genetic algorithms, and [10] using
simulated annealing; whereas on 3D stacked systems linear programming and simulated annealing
combinations may be found [11].

These works solve a single-objective optimization that takes into account only the impact that
temperature has on reliability. Therefore, they cannot provide a thermally optimal solution with
a minimum impact on the area of the chip and the delay due to wiring. A more comprehensive
approach in 3D systems is presented in [12] and [13]. Their proposal consists of a Multi-Objective
Evolutionary Algorithm (MOEA) that tackles with the thermal-aware problem (optimal placement
of blocks) and also with the performance of the system (minimum wire length delay) satisfying the
topological constraints. On the other hand, they show a critical bottleneck in the evaluation phase
due to the complexity of the computation, and can lead to very long execution times when complex
3D many-cores architectures are considered.

Our contribution in this paper is the parallelization of the thermal-aware floorplanner proposed in
[12] and [13], with the aim of reducing the optimization execution time.

Evolutionary algorithms (EA) are intrinsically parallel but it is in the fitness evaluation where
more speed-up can be gained. Table I shows the complete execution time of the sequential
version of the algorithm proposed in [12] until a solution is reached. The evaluation and reduction
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Table I. Execution time of the different methods involved in the algorithm proposed in [12].

Method/Operator Time (ms)

Evaluation 31264762
Selection 257
Reduction 251
Mutation 57.6
Crossover 1

phases correspond to methods devoted to compute the fitness and ranking of the individuals, the
rest implement the genetic operators of selection, crossover and mutation. In this case, fitness
is computed using a thermal model that takes 83.1% of the execution time. Due to the simple
representation chosen for the candidate solutions, a decodification phase is required before the
fitness computation. Adding the decodification phase time and the feasibility verification time, the
evaluation of individuals takes 99.5% of the total execution time. It is then clear that this task is by
far the most time consuming which justifies the necessity and effort of parallelization.

An EA is usually parallelized at two different levels: definition of population or fitness evaluation
[14]. At the former, the population is split in a number of non-overlapping subpopulations that
evolve independently but with a probability of interaction. The two most popular models are Islands
and Grid models [14]. In Islands, some individuals are allowed to migrate with a given frequency.
There is a rich variety of Islands topologies, being the most frequent rings, n-dimensional meshes
and stars. When migrating, the worst k individuals in the destination are replaced by the new-
comers, which are the best k individuals in their original island. In grids, each individual is placed
in a cell of a one- or two-dimensional grid. Genetic operations take place in a small neighborhood
of a given individual and their implementation is straightforward on clusters.

The fitness evaluation parallelization is a much simpler and intuitive approach. All the genetic
operations are performed sequentially over the whole population but, once a new generation is
obtained, the individuals are evaluated in parallel.

Regarding parallel MOEAs; they were early analyzed in [15]. Shortly afterwards, the master-slave
paradigm was employed in [16].

Since our baseline sequential algorithm presents a high computational load in the evaluation of
individuals, this paper proposes a master-worker algorithm to parallelize that phase. Our approach
was tested with a set of master-worker configurations, ranging from 1 to 9 workers, as well as
the sequential algorithm, in two experimental multi-core platforms with 48 and 128 3D stacked
core processors each. Speedup review, validation of the proposal, study of convergence and thermal
analysis are presented in this paper. Results suggest that a new representation could improve future
algorithms.

The rest of the paper is organized as follows. The parallel Multi-Objective Evolutionary
Algorithm proposal is presented in Section 2. Experimental results are shown and discussed in
Section 3. Finally, conclusions and future work are detailed in Section 4.

2. PARALLEL MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM

In this section we present a parallel thermal-aware floorplanner capable of optimizing many-core
heterogeneous platforms under a master-worker schema.

2.1. Details of the MOEA

In [12], a Multi-Objective Evolutionary Algorithm (MOEA) is proposed for the floorplanning of
3D stacked multi-processor single-chips. This kind of chips consists of a number of layers of
fixed area where the functional units (processors, memories and interconnection blocks) must be
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Figure 1. Block representation.

placed. Our approach considers this scenario performing a thermal-aware placement of the different
components while the wiring delay is also minimized. Moreover, it overcomes [12] with a parallel
implementation of the floorplanner that avoids the constraints imposed to the optimization time.

Block placement problem. All the components that model the functional units of the many-core
system must be placed in the 3D stack, which imposes the physical boundaries of maximum length
L, width W and height H . Each component is represented by a block Bi with length li, width wi,
height hi and it is denoted by its left-bottom-back corner, with coordinates (xi, yi, zi), taken the left-
bottom-back corner of the chip as origin of coordinates; where 0 ≤ xi ≤ L− li, 0 ≤ yi ≤W − wi,
0 ≤ zi ≤ H − hi. These blocks cannot overlap. A schematic representation is shown in Figure 1.

Blocks are placed sequentially. Since each component incorporates its coordinates, this method
leads to a floorplan whose components are not necessarilly adjacent; unlike the state of the art
works [6], [7] or [8]. This represents a great advantage because cores, which are the most likely to
increase the temperature, can be placed explicitly separated, thus reducing their impact in the overall
temperature of the 3D chip. In order to select the best placement coordinate ri = (xi, yi, zi) for block
Bi, given those already placed Bj , j < i, a dominance relationship is established. Therefore, a set
of objective functions that evaluate the fitness, as well as a suitable representation and appropriate
genetic operators, must be derived for the MOEA approach. The solution is obtained using a Non-
dominated Sorting Genetic Algorithm (NSGA-II) implementation [17].

Fitness. There are three objective functions. The first objective J1 is the number of topological
constraints violated by Bi with respect to the already placed Bj . The second objective is the
wire length, approximated by the Manhattan distance between blocks with coordinates ri and rj ,
J2 = |xi − xj |+ |yi − yj |+ |zi − zj |. Finally the thermal impact is measured through the power
consumed by the unitary cells of the chip. A thermal model that considers the power density of
such cells and their neighbors is used as an approximation to the steady state of the more accurate
thermal model that includes non-linear and differential equations. We evaluate the thermal response
of a given individual with the following model:

J3 =
∑

i<j∈1..n

(dpi ∗ dpj)/(dij) (1)

where dp is the density power of the block considered and dij is the euclidean distance between
blocks. This model has been shown to be accurate enough and close to the non-linear simulation
[18].
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Figure 2. Cycle crossover and Swap mutation for permutations of six elements.

Representation. Each individual is a possible configuration of the system, and each
configuration is represented through a chromosome that stores the order in which blocks are being
placed. The chromosome is an array whose components contain an identifier of the functional unit
that is going to be placed. For instance, if 3 cores (C1, C2, C3) and 3 memories (L1, L2, L3) are to
be placed, the search space will have cardinality 6!. A possible chromosome would be

[C1, L2, C3, L3, C2, L1]

meaning that C1 will be fist placed, then L2 and so on.
This decodification of the chromosome requires considering the size and boundaries of

the previously placed blocks. Therefore, the more the number of components, the more the
decodification execution time. As we will describe in the future work section of the paper, a different
representation encoding the location of the components could help reducing the evaluation phase.

Operators. Selection was carried out by tournament, taking two random individuals and
selecting the best among them. Individuals are mated in order to produce offspring. Crossover must
take into account that all the components must appear once and only once in the chromosome.
The so called cycle crossover assures that the resulting chromosomes are just permutations of the
parents. Mutation consists of swapping the content of two positions inside the chromosome or in
the rotation of a randomly chosen component. Both cycle crossover and swap mutation are depicted
in Figure 2.

2.2. Details of Parallelization

In this paper, we propose a parallel implementation of the MOEA described in the previous section
using the master-worker model. As we have previously shown, the evaluation phase of the algorithm
takes over 99% of the execution time. This is due to both the fact that the thermal response of all
the individuals of the population has to be evaluated in every generation of the process, and the
decodification of each individual, previous to its evaluation.

The master-worker model satisfies our needs because, even though the fitness is based on a
simplified thermal model, the computational cost of this evaluation increases quadratically with the
number of components. Therefore, it is interesting to exploit the fact that evolutionary algorithms are
intrinsically parallel and carry out the evaluation of the population in a concurrent manner. Figure
3 depicts the approach used in this work. The master distributes the population among n workers,
splitting the computational load in n ways so it does not carry out any evaluation. Once workers
have finished their task, they send the outcome together with the received population subset to the
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Figure 3. Master-worker configuration.

master. Although the algorithm stops and waits for all workers to finish, it is clearly much faster than
the sequential execution as long as each subset was large enough for compensating communication
times.

We propose a multi-threaded implementation where only the master executes the main thread of
the algorithm. Since only workers execute the evaluation of different subsets of the population, it
is expected to obtain a speed-up similar to the number of cores in the processor that executes the
algorithm.

3. EXPERIMENTAL RESULTS

The experimental work will analyze the speedup obtained with the parallel version of the MOEA
while making clear that the quality of the solutions remains the same. We will also analyze the
thermal optimization achieved by the floorplanner.

In order to evaluate our floorplanner, we study two heterogeneous 3D architectures where every
stacked layer is based on the Niagara platform. They differ, from each other, in the number of cores.
The first architecture is composed of 48 processor cores: 32 SPARC and 12 Power6 cores. Adding 72
memories and 6 crossbar for inter-processor communication they sum up a total of 126 components.
In the second architecture, 128 cores are included: 96 SPARC plus 32 Power6. In addition, 192
memories and 16 crossbars are considered, therefore 336 components need to be placed in this
scenario. The floorplanner will place the processors, the local memories and the crossbars in 4 and
9 layers respectively. Both architectures represent the current and the nearly future state-of-the-art
in 3D many-core integration.

3.1. Speedup Analysis

In the first analysis, we studied the speedup obtained with the parallel version of our floorplanner.
We aim to find the optimal number of workers leading to the maximum speedup. To this end, we
perform a parametric sweep of the number of workers, from 1 to 9, both in the 48 and 128 core
scenarios. In order to obtain the execution time of these optimizations, we run five times each one
of the worker configurations, obtaining the average execution time and speedup for both scenarios.
The experiments were carried out in a dedicated Intel Core-i5 machine, a 4-core processor, running
at 2.80GHz.

We set a fixed population size of 100 individuals and 250 generations evolution as the MOEA
parameters for the 48 core scenario optimization. Table II shows the average execution times and
corresponding speedups for these runs, with a number of workers ranging from 1 to 9.

Figure 4 shows the obtained speedups in the 48 core scenario. It shows see that the speedup
increases almost linearly until the number of workers reaches the number of cores of the processor
we used for these optimizations (4-core processor).

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
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Table II. Average execution times and speedups obtained in the 48 cores scenario.

# workers 1 2 3 4 5 6 7 8 9

time (s) 24171 12398 8904 6918 6380 6421 6665 6502 6386
speedup 1 1.95 2.72 3.49 3.79 3.76 3.63 3.72 3.79

Figure 4. Average speedup values obtained in the 48 cores scenario.

In our master-worker scheme, the execution time of each worker depends on the particular
evaluation time of the set of individuals that was assigned to the worker. Then, if the worker receives
a set of individuals that need more time to be evaluated, the worker will slow down. On the contrary,
if the individuals need less time to be evaluated, the worker will speed up.

Therefore, in configurations from 2 to 4 workers, the optimization follows this behavior: the
population is divided into as many sets as number of workers, then the set of individuals is sent to
a different worker and the evaluation begins. Once workers finish their evaluation task, they wait
until the slowest worker ends up, because the master synchronizes all the workers until the next
generation. As a result, the slowest worker establishes the execution time of the evaluation of each
generation, and the processor cores that run faster workers will be idle waiting for synchronization.

Each worker runs in a different thread, and the load assigned to one thread cannot be divided into
different processor cores. As a consequence, if the number of workers is higher than 4, the operating
system scheduler will distribute the execution of the worker threads among the 4 cores. Then, the
cores will swap between the threads, therefore advancing on the execution of each one. As can be
seen in Figure 4, results for 5 workers and above present an asymptotic trend on speedup because
the usage of resources is maximized. The particular case of the 5 workers configuration obtains the
maximum speedup because maximizes the resources occupation with the lowest number of threads.

These results confirm that the parallelization of the evaluation phase in the master-worker scheme
contributes to the best speedup gains. In addition, there is no remarkable penalty due to the
parallelization, because the speedup values above 4 cores tend to be similar.

In order to strengthen this hypothesis, the same tests were run for the 128 cores scenario, where
the evaluation time for each individual is much longer. Here, the number of generations of the
MOEA has to be scaled up because the number of components to be placed has been increased.
Therefore we consider a number of generations equal to the total number of components, which
is 336: 128 cores, 192 memories and 16 crossbars. The population size remains 100 individuals.
Table III shows the average execution time and speedup for this scenario from 1 to 9 workers
configuration. Figure 5 displays the speedup trend for these data.
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Table III. Average execution times and speedups obtained in the 128 cores scenario.

# workers 1 2 3 4 5 6 7 8 9

time (s) 634070 432160 264318 203749 198977 248527 235313 250021 221485
speedup 1 1.47 2.14 3.11 3.19 2.55 2.69 2.54 2.86

Figure 5. Average speedup values obtained in the 128 cores scenario.

As was shown, the 128 cores scenario presents the same behavior as the 48 cores one. The
resources of the CPU are maximized from the 5 workers configuration on, and higher numbers
of workers obtain similar speedup values. However, the performance improvement is lower than
in the 48 cores configuration. This behavior occurs because the individual evaluation time is much
higher in this 128 cores scenario, and the execution time of the threads does not differ so much. In
the 48 cores case, the processor slots available due to the different execution time between threads
allow the evaluation of more individuals than in the 128 cores configuration. As a consequence,
the workers queue, waiting for processor cores, advance more in their execution, obtaining higher
speedups. On the contrary, the workers of the 128 cores scenario are not able to exploit the processor
free slots to evaluate as many individuals as in the 48 cores case, therefore obtaining lower speedup
values.

3.2. Validation of solutions

Conceptually it is clear that the parallelization of the fitness evaluation should lead to the same
results than the sequential version of the algorithm. Nevertheless, we have included in this section a
brief consideration regarding the validation of the parallelization that assures such a baseline. Thus,
in order to show that the quality of the solutions proposed by the parallel version of the floorplanner
remains the same than in the sequential version, we compare the front of non-dominated solutions
obtained with the sequential version of the algorithm with the front obtained with the parallel version
using 4 and 5 workers in the 48 cores scenario. Figure 6 shows the fronts of non-dominated solutions
returned by the floorplanner in these cases.

In Figure 7, we compare the front of non-dominated solutions proposed by the floorplanner
working with 4 and 5 nodes for the 128 cores platform.
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Figure 6. Non-dominated fronts of solutions returned by the floorplanner in the 48 cores scenario.

Figure 7. Non-dominated fronts of solutions returned by the floorplanner in the 128 cores scenario.

For every run of the algorithm, the returned non-dominated front is different. In fact each
execution explores a different region of the solution space. We can see that the fronts cross each
other in at least one point. Therefore, none of the returned fronts dominates the others.

Since EA are intrinsically heuristic, two executions will not produce exactly the same results.
Hence, in order to prove that our proposal is valid it is necessary to define a measure that analyzes
the outputs (solution sets) both from sequential and parallel executions. Such a measure is usually
referred to as Indicator I . In this work, the Hypervolume indicator, proposed by Zitzler and Thiele
[19], has been used. The hypervolume I(A) measures the total amount of the objective space that
has been ‘covered’ by the solution set A; returning the hypervolume of that portion of the objective
space that is weakly dominated by A. To this end, the objective space must be bounded. Otherwise
a reference point that must be at least weakly dominated by all solutions in A is used. Finally higher
values of I correspond to higher quality of the measured set.

The comparison has been carried out between the sequential execution, the 4-workers and
the 5-workers versions of the parallel implementation. This choice was motivated because these
configurations had obtained the highest non-saturated speed-ups. Results are shown in Figure 8. All
were obtained after running 30 optimizations, each one with 250 generations in the 48 cores and
366 generation in the 128 cores. As expected, the three boxplots inside each picture show a similar
outcome; with 25th and 75th percentiles almost identical within the 48 and 128 core plots.
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Figure 8. Hypervolumes for 48 cores (left) and 128 cores(right) after 30 optimization runs. Both
hypervolumes measured in the sequential and in the parallel execution, the latter with 4 and 5 workers.
The central line is the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to

the most extreme data points not considered outliers, which are plotted individually (+ mark).

3.3. Convergence of the MOEA

The main benefit of parallelization is the considerable reduction in the fitness evaluation time and,
consequently, in the the whole procedure of finding a good floorplan. In addition, we can take
advantage of such a speed up for carrying out tests in order to detect possible weak points in the
algorithm that, using the sequential version, would take months to complete.

As the population in an EA evolves, it is desirable to keep their diversity. Otherwise the
exploration of the solution space will be guided towards a region, avoiding others which might
be more promising. The analysis of the convergence is a straightforward method for verifying that
diversity is maintained. At the same time, it reveals whether the EA is well engineered or there is
room for improvement. A slow convergence with good results is usually due to a poor representation
or not appropriate genetic operators.

Although this work tackles a three objective problem, convergence is studied only for J2 (wire
length) and J3 (thermal response) because J1 > 0 means that none floorplan satisfies the constraints.

Thus, values J2 and J3 of feasible solutions are extracted in arrays Wr,g and Tr,g respectively,
one for each optimization run r = 1 . . . 30 and each generation g = 1 . . . 250 for 48 cores and
g = 1 . . . 366 for 128. Then six matrices are constructed in the following way:

Wmin(r, g) = min {Wr,g} , Wmean(r, g) = mean {Wr,g, } Wmax(r, g) = max {Wr,g} ,
Tmin(r, g) = min {Tr,g} , Tmean(r, g) = mean {Tr,g, } Tmax(r, g) = max {Tr,g} .

This procedure is done for both 48 and 128 core configurations. Finally, all six matrices are scaled
between the minimum and maximum wire length and thermal response respectively, and plotted as
shown in Figure 9.

The left-most pictures, corresponding to the minimum values in each generation and optimization
run of J2 and J3, show a decreasing behavior eventually reaching the global minimum in almost all
optimization runs for 48 cores and, at much slower rate, for 128 cores. The middle pictures show
convergence of the mean values of J2 and J3. Their trend is decreasing, starting at 1/2 of the upper
bound down to 1/4 in the best cases and 1/3 in the worst. Finally, the convergence of maximum
values of J2 and J3 is shown in the right-most pictures. Values decrease down to 1/3 of the upper
bound in most of the optimization runs. To the light of these results it is clear that generations are
better fitted as evolution advances. Moreover, since the mean of the last generation is quite close

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
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Figure 9. Convergence evolution of the minimum, mean and maximum values for objectives J2 (wire length)
and J3 (thermal response), considering only feasible individuals; for 48 cores (above) and 128 cores (below).

to the maximum in both objectives, less fitted individuals still have a considerable probability of
being chosen, attesting that diversity is maintained. On the other hand, the slow convergence of the

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
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Table IV. Thermal response of the 48 cores configurations.

Wire L. TMAX TMEAN GradMAX

48 baseline 6733 411.82 K 344.29 K 109.75
48 opt. 6875 345.30 K 331.75 K 31.81

mean, especially in the larger problem of 128 cores, indicates that the representation could be better
engineered. Genetic operators were discarded as reason because the offspring is always valid. Thus,
no reconstruction is needed, which might lead to repeat certain schemas.

3.4. Thermal analysis

Finally, we analyze the thermal optimization obtained with our algorithm. The floorplanner works
with a fixed die size and aims to minimize both the total wire length and the maximum temperature
of the chip. As we want to perform a thermal optimization of the described platforms, we need to
provide the power consumption values and the areas of the different elements of the architectures as
inputs to the thermal-aware floorplanner. In [20] we find that the power consumption of the SPARC is
4W at 1.4GHz. In the case of the POWER6, we find that 2.6W is the estimated power dissipation [21].
We consider the following areas: 3.24mm2 and 1.5mm2 for the SPARC and POWER6 respectively
(see [20] and [21]). The power consumption values and areas of the memories are found with the
CACTI software [22].

48-cores configuration. We compare an optimized configuration of the 48-cores heterogeneous
platform to the 48-cores homogeneous platform represented in Figure 10. In this baseline
configuration, an original architecture composed of 12 cores is replicated in all the layers. As a
consequence, the SPARC cores (SPC) are placed above the others producing hotspots. On the other
hand, Figure 11 shows the thermal maps of the different layers of a non-dominated solution returned
by the thermal-aware floorplanner. This figure shows an optimized placement of the SPARC cores
(SPC), Power6 cores (P6), memories (L2) and crossbars (Cross) achieved by the floorplanner. In
this configuration the hottest elements (SPARC cores) are generally placed in the borders of the
chip and in the outer layers, separated as much as possible. In fact, the floorplanner avoids placing
cores above the others as vertical heat spread is also taken into account. The crossbars are placed in
intermediate layers to minimize the wire length.

The metrics considered for the thermal analysis of these two platforms are the maximum and
mean temperature of the chip and the maximum thermal gradient. In Table IV we present the
thermal response of these two different configurations. These results show that our floorplanner
proposes thermally optimized configurations. The peak temperature of 411.82K found in the original
configuration is reduced to 345.30K while the mean temperature is reduced in 12.54K. We can
see that the maximum thermal gradient of the optimized configuration is reduced from 109.75K
to 31.81K. Therefore, not only the temperature of the chip is reduced but it is also more evenly
distributed. On the other hand, the wire length of the optimized configuration is a 2.11% greater
than the original which translates into a small performance penalty.

128-cores configuration. For this larger configuration, we analyze one of the optimal floorplans
obtained with our parallel implementation. Figure 12 shows the thermal map of the chosen solution.
As for the 48-cores platform, we can see that the SPARC cores tend to be placed in the outer
layers and in the borders of the chip. The memories and the crossbars are placed in the inner
layers. This way both the chip temperature and the wire length are minimized. Nevertheless hotspots
appear in this configuration. Table V shows the thermal response of an optimized configuration of
the 128 cores platform. The hotspot visible in the first layer of the chip corresponds to the peak
temperature of the chip reaching 396.84K. The mean temperature is 362.50K while the maximum
thermal gradient is 75.80K. Further research and simulations with cooling techniques are required
to study the feasibility of these architectures.
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Figure 10. Thermal map of the 4 layers of the baseline configuration of the 48 cores platform.

Table V. Thermal response of the 128 cores configuration.

Wire L. TMAX TMEAN GradMAX

128 opt. 31587 396.84 K 362.50 K 75.80

4. CONCLUSIONS AND FUTURE WORK

Current and short term future state-of-the-art in 3D many-core integration requires thermal-aware
floorplanning techniques able to reduce peak and mean temperatures. However, current techniques
that take into account thermal issues spend the most of the execution time dealing with decoding
and evaluation of solutions.

This work has proposed a parallel implementation of a thermal-aware Multi-objective
Evolutionary Algorithm for 3D floorplanning using a master-worker scheme. This model has
provided optimized configurations for systems composed of 48 and 128 heterogeneous processor
cores.

We have shown that the highest speedup values are obtained when the number of workers is closer
to the number of cores of the processor that runs the algorithm. In our experiments, run on a 4-core
processor, we have obtained maximum speedup values of 3.79 and 3.19 respectively for the 48 and
128 core test configurations by selecting 5 workers in the optimization algorithm. Furthermore,
the parallelization presented in this work has made possible the study of the convergence of
the floorplanner. The performed analysis shows that convergence evolves successfully in our
experiments.

As a future work, we aim to overcome the drawbacks of the floorplanner presented in this work.
First, we plan to replace the current approximated thermal model with a validated thermal simulator.
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Figure 11. Thermal map of the 4 layers of a non-dominated solution of the 48 cores platform.

In fact, the implemented thermal model is motivated by its low computational cost but it might not
be obtaining accurately the thermal behavior of the different individuals. A recent work [23] has
shown that the integration of a thermal simulator in the floorplanning process leads to a simultaneous
reduction of the peak temperature and the wire length. Furthermore, the model proposed in the
referred work is claimed to be, not only more accurate, but also faster than the approximated thermal
model.

Another major improvement could be achieved with the use of a more suitable representation
of the solutions. In fact, most of the floorplanning proposals are based on representations that
require time consuming heuristics to decode the solutions. For instance, in our work, the decoding
of the solutions together with the evaluation remains the bottleneck of the optimization process.
A new representation allowing a direct mapping of the individuals into configurations of the
architecture would alleviate the computational cost of the algorithm as the decoding step would
be avoided. Furthermore, it would eliminate heuristics that might limit the exploration space and
cause premature convergence problems. Thus, such a representation would be more suitable for
fixed-outline floorplanning problems.

To propose a tool consistent with the state of the art of 3D chip design, thermal-aware
floorplanners have to be implemented in accordance with current thermal simulators that split
the IC into thermal cells (as done by 3D-ICE [24]). This way, the coding of the solutions has to
respect the grid-like structure used by this kind of simulators. Therefore, the thermal error due
to the different cell sizes used in the optimization and validation processes is eliminated. Thus, a
better thermal optimization can be achieved. The use of a grid-like representation together with the
removal of placement heuristics makes the process well adapted for execution in massively parallel
architectures such as GPUs.

A deeper study of new representations is our current and future work, and the preliminary results
are very promising.
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Figure 12. Thermal map of the 9 layers of a non-dominated solution of the 128 cores platform.

REFERENCES

1. Intel. http://techresearch.intel.com/ProjectDetails.aspx?Id=1 2012.
2. Loh GH, Xie Y. 3D stacked microprocessor: Are we there yet? Micro, IEEE may-june 2010; 30(3):60 –64, doi:

10.1109/MM.2010.45.
3. Borkar S. Design challenges of technology scaling. Micro, IEEE 1999; 19(4), doi:10.1109/40.782564.
4. Srinivasan J, Adve S, Bose P, Rivers J. The impact of technology scaling on lifetime reliability. Dependable Systems

and Networks, 2004 International Conference on, 2004; 177 – 186, doi:10.1109/DSN.2004.1311888.
5. Sankaranarayanan K, et al.. A case for thermal-aware floorplanning at the microarchitectural level. Journal of

Instruction-Level Parallelism 2005; 7(1):8–16.
6. Berntsson J, Tang M. A slicing structure representation for the multi-layer floorplan layout problem. EvoWorkshops,

2004; 188–197.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOI: 10.1002/cpe



16 ARNALDO, CUESTA-INFANTE, COLMENAR, RISCO-MARTÍN, AYALA
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