This is the peer reviewed version of the following article: Servat, H. [et al.]. Detailed and simultaneous power and performance analysis. "Concurrency and computation.
Practice and experience", Febrer 2016, vol. 28, num. 2, p. 252-273, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/cpe.3188. This

article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exp€000;00:1-??
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Detailed and simultaneous power and performance analysis

Harald Servdat Gernén Llort, Judit Ginénez and Jés Labarta

c/Jordi Girona, 29. Barcelona, 08034, Catalunya, Spain.

SUMMARY

In the road to the Exascale computing, it is known that the target is not only to increase the performance, but
also to achieve an affordable level of power drained by such kind of systems. The energy issue needs to be
tackled at different levels, from the system level to the processor level. There are studies that show that the
processor itself is the component of the system that is responsible for most of the energy consumed.
Performance tools will play an important role to make the applications take benefit of the performance of
these systems. These tools can be extended to provide power metrics and thus report for each region of code
its energy consumed in addition to the performance achieved. We present in this paper a performance tool
that takes advantge of recent processor capabilities to measure its own power consumption. The results of the
tool are passed to a mechanism called folding that produces detailed metrics and source code references by
using coarse grain sampling. We have used the tool with multiple serial benchmarks and also with some MPI
applications to demonstrate its usefulness by locating hotspots in terms of performance and power drained.
Copyright © 0000 John Wiley & Sons, Ltd.

Received ...

KEY WORDS: High Performance Computing; Performance analysis; Power analysis; Instrumentation;
Sampling

1. INTRODUCTION

Supercomputers have improved their performance in every new generation, but as supercomputers
grow, so does their energy consumptidn P]. This tendency will continue in the road to the
Exascale computing during the forthcoming yeass 4]. While in the past the supercomputer
community has mainly targeted to increase the performance efficiency to reduce the amount of time
needed to execute the applications, now they are focusing also on the power efficiency. In either
the performance or power context, it is important to have a mechanism to measure the efficiency
of a system before having any possibility of improving it. Some experiméitsgve shown that

the CPU is responsible for half of the power needed by the whole system. Thus, as it happened
in the performance analysis area, it is important to observe the evolution of the power in order to
ultimately reduce it)].

In the performance context, performance tools are pieces of software to assist in the optimization
of applications by giving comprehensive details of their inefficiencies. These tools use different
techniques to inject monitors into the application so as to get information as the application
runs. The monitors are responsible for gathering performance metrics (including time, number of
occurrences, hardware counters) so as to allow a subsequent analysis that correlates the metrics with
the application region of code. Tools like Scalasch Yampir [8], HPCToolkit [9], TAU [10] and
Paraver [11] have not only proven useful by providing different levels of insiglasléad the user

*Correspondence to: Harald Servat. E-mail address: harald.setvdisc.es, Postal address: c/Jordi Girona, 29,
Barcelona, 08034, Catalunya, Spain.

Copyright © 0000 John Wiley & Sons, Ltd.
Prepared usingpeauth.cls [Version: 2010/05/13 v3.00]

2 H.S. ANDOTHERS

to understand and even improve the performance of their applicatiorisbuaher information of
the application in a simple fashion without excessive overhead.

Opposite to the performance monitoring, power monitoring is rather more conmiiexe are
several methods to evaluate the power consumption: by attaching a powetina¢teamples the
consumed power to the power supply unit by the whole system or by indivichimponents
[12, 13, 14, 15], by simulating and estimating the CPU power consumption by using low-level
simulators [L6, 17, 18, 19], or by using power models derived from the performance counters
[20, 21, 22]. In order to provide detailed performance and power measuremeidisgaal device
to each node of a in production supercomputer is not a feasible appbeaause most of the
supercomputers have the physical access restricted and it would irgsuli costly solution.
Using low-level simulators is not feasible either because they cannotehesmble executions of
applications, and when the execution is reduced, they need long exetiniesmto provide the
results. Finally, power models derived from the performance countsrd several performance
counters to be read simultaneously, a capability that cannot be alwayilbed by the processor,
and also the power model may vary between different versions of the maroessor. To alleviate
such problem, Intel has recently introduced into their SandyBridge psocgthe Running Average
Power Limit (RAPL) infrastructure 43, 24]. RAPL offers a mechanism to limit, control and
monitor of the power and energy usage of a single processor soakd®AdPl [25] has added a
componentthat interfaces the RAPL monitors thus offering a seamless integration trperfice
tools that already use PAPI. The inclusion of this component into PAPI, alfbevaforementioned
performance tools to integrate the power and energy metrics without any cadidifi and gain a
correlation between the power consumption with other performance metgegithe application
source code.

In this paper we present a performance tool that uses the RAPL infsagire to measure the
energy consumption. We demonstrate that power and energy consungstibe studied in a similar
way to performance when analyzing full application executions in produeiwironments. Here
we show and analyze the energy consumption and efficiency of multiplénimemks and parallel
applications in different execution conditions. While most of the tools typicaibyide average
performance information at application or routine level, our work focupromiding instantaneous
metrics of the energy and performance behavior along the application tod® so, we take the
advantage of one existing performance tool, named foldgy fhat finely describes the behavior
of the performance of the application and we adapt it to use the energy sn&¥aowill present the
instantaneous power consumption of these applications compared to theatpplferformance
and activity and will also analyze the results. We will also study whether thaDjc Voltage and
Frequency Scaling (DVFS) mechanism impacts the overall performaxloenangy behavior of the
applications, and also the effects of using the multiple cores available in tketsoc

The rest of the paper is structured as follows. In the following sectionbriedly review the
related work. In sectio we introduce the RAPL mechanism as described by Intel which is used
to gather the power and energy usage. In sectiove present the mechanism used to extremely
detail the evolution of both power and performance in a region of codesiglcoarse grain
sampling and we also present the modifications applied to the mechanism to actat@rntie
counters offered by RAPL. We continue by doing a thorough study optiveer and performance
of different benchmarks and parallel applications in SechioRinally, we draw some conclusions
in Section6.

2. RELATED WORK
We present in this section different approaches to generate repgtsvef consumption. As we

mentioned, there are several methods to analyze the power consumptisgstém, but contrary
to our solution, none of them report instantaneous performance aner pogasurements for full

f Available in their GIT repository when this paper was writserd it will be publicly available in PAPI version 5.0.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp€a000)
Prepared usingpeauth.cls DOI: 10.1002/cpe

application runs in production conditions. Here we select and summarizeafahework that use
each of these methods and we compare them with our work.

PowerMon [L2] is a device intended to produce accurate, fine-grained power measuiein
computing systems. The device interfaces directly with most computing systémgshes standard
ATX pin configuration and provides fine measurement by using sampling éfitbquency up to
1024 Hz). It can monitor disks, graphical processing units (GPUsptrat peripherals, as opposite
to RAPL. RAPL, however, does not need neither need to plug any dewicehe computer nor
using a special piece of software. The usage of PAPI to access the R&BRstructure allows an
easy mechanism to gather RAPL instead of requiring physical accessedechby PowerMon.
We combine performance and power metrics so as to study their possibdéations in order to
mitigate the overall energy consumption. Our solution uses the folding meahamisch converts
the performance and power data gathered using sampling into a continumet®of of time,
allowing us to provide much more finer details, even at microsecond level.

Wattch [L8] is a cycle-level architectural simulator that estimates CPU power consunggtion
every component of the socket by applying power consumption modeis.tyife of simulation
requires full instrumentation of the application, making the power estimation dtithexecution
unmanageable, not only because the data size to be gathered, but@seebthe time needed
to produce the results. The solution we propose takes advantage eftcperformance tools, to
integrate the power consumption into their available metrics. These perfoeniaois typically
show small or negligible overhead, giving the user or the analyst thebidggo analyze the full
execution.

Bertran and others presented iB0] a methodology for producing power models based on
performance monitoring counters. They focus on the responsivendss modelj.e. a model that
rapidly adapts to power changes. The inputs of the model proposedmaponent activity ratios,
which summed up results in a power estimation of the whole system. The workopeser takes
advantage of a component of the CPU that works as a powermeter by ediifetipower and
energy consumption based on the processor execution. This compsawvestus using additional
performance counters, which would end up in implementing a multiplexing algotdlgather all
the performance counters needed with the consequent accuracgndsalso avoids the need to
generate and, specially, to validate a power model for each procksear.work we do rely on the
monitors provided by the chip manufacturer.

The work described in1f5] combines a self designed and implemented power meter that is
attached to the computer with the Paraver performance analysis tool. Thieedtt@evice emits
at a frequency that range from 25 to 100 Hz the power consumption afygtem. The resulting
combination allows the authors to enrich the traces that contain information witr firformation,
giving the analyst the chance to correlate the source code and the paraii®me calls with power
metering reads. Their method of work consists on getting accumulated povesurements at
node level by using low sampling rates for previously instrumented regiboed®. Their work
requires that all the cores have to execute one of the instrumented re@ibils the work we
propose tackles the same problem, our work is aimed at generating extrestaled power and
performance results by combining instrumentation and sampling informationr lapproach, we
do only need to instrument the entry and exit points of a region and by smartipining the
sampling and instrumentation information we are able to present the tempohali@vef the
power and performance metrics along the instrumented region. Also, thedescribed here, use
a component embedded into the processor, thus removing the need oingtiaatevice into the
system to obtain power measurements.

Other performance tools like Scalasca, Vampir, HPCToolkit and TAU, anubingrs, provide
performance information based on the processor hardware cougtersinty the PAPI interface.
These tools provide performance metrics for different sections of thkcapion code. Although
these tools would benefit from using the RAPL component from PAPI tplg@mergy consumption
for the application code, to our knowledge our mechanism is the first oneedhe integrated
mechanism to report the processor power usage.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp€a000)
Prepared usingpeauth.cls DOI: 10.1002/cpe

4 H.S. ANDOTHERS

3. TRACKING POWER CONSUMPTION

The Intel® SandyBridge processors introduce a new infrastructuréwiita chip named Running
Average Power Limit (RAPL). The RAPL infrastructure is responsiblertmining within user-
given (or system-given) power constrains. The functional partihist charge for such feature is
called Package Control Unit (PCU) and is a combination of dedicated baedstate machines and
an integrated controller. The PCU is connected to power management afpictisare responsible
for collecting information such as power consumption and temperature,lsodfer controlling
transitions between processor performance states (P-states) amggmooperating states (C-
states). To predict the socket’s active power consumption, the PCU tsoffeents from the cores,
the 1/0O and the integrated GPU and weights them with energy factors thaidlepghe processor
itself. The resulting power consumption is scaled accordingly with operataditions such as
voltage and frequency of execution.

The RAPL infrastructure is accessible through the processor modefispegisters (MSR).
Although the usage of MSR is restricted to be accessed only from thel keote, a regular user
can read them in the Linux operating system if tidev/ cpu/ =/ nmsr files have the appropriate
read flags. The RAPL interface exposes several domains of powgbulied for every processor
socket and each can be monitored and limited in an independent way. Tike 6Anains consist
of package domairi.g.the whole socket), the basic power plane.fhe cores of a single processor
socket), memory domain.€. the directly-attached DRAM), and, optionally, an additional power
plane (.e.typically assigned to the integrated GPU).

As noted earlier, RAPL allows gathering information about energy consampf every
RAPL domain through its power metering interface. According to the Intel mlaniie energy
consumption information is updated at a frequency rate of 1 KHz, and fapldethe processor
socket reports the energy measurements in multiples of 15.2 nJoules. Assimiortant to note
that, opposite to the performance counters which count events for aybarfirocess, the RAPL
component sums up all the energy used by the entire socket. Althoughetheefrcy rate seems
high, we will discuss in the following section how to convert the energy nreasents into a almost
continuous function so as to provide finer information for a region of code

4. FOLDING

There are two mechanisms a performance tool can use to gather metricavrampplication:

sampling and instrumentation. Whereas the former is meant to gather metricsiing ipsobes

periodical and independently from the application source code, the lefensrto inject probes
at specific application points. To give more insights of the application behaki® performance
tool may increase the sampling frequency or instrument other applicatiots pBiat, no matter
what mechanism a tool uses, the more detailed results requested, the erieaohthe application
suffers during execution.

To alleviate the problem, the folding mechanis@6][combines performance information
(including callstack references and performance counters) gatlienedboth instrumentation
and sampling points to describe the performance evolution in a synthetic rédienfolding
mechanism takes advantage of the repetitive patterns found in many appkctatiprovide very
detailed progression of the application performance even using caaisesgmpling. It has been
demonstrated ird[7] that, the longer the application run, the lesser difference between thiesrek
fine grain-sampling and those obtained by the combination of coarse gnajiiisg and folding (up
to a difference of 5%). Thus the usage of coarse grain sampling andlttieg mechanism brings
the analyst detailed application performance data without incurring a ndglmibrhead during the
application run.

tFor further reference, seatel® 64 and IA-32 Architectures Software Developers’ Mainiolume 3 (3A, 3B & 3C):
System Programming Guide.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp€a000)
Prepared usingpeauth.cls DOI: 10.1002/cpe

[nd . ad Ind . lod F: g . lad lod
initialization' Iteration#1 ' Iteration#2 | lteration #3 ' finalization '
e >
Time
1 2 31 2
[o ol o o
Synthetic iteration
T >

Figure 1. The top figure shows the actual execution of theiegtmn with the data gathered at sampling
(through flags) and instrumentation points. The bottom &gepresents the folded results and where the
flags are colored and indexed according to the originaltiterahey come from.

4 Task 1 Thread 1 - ad T o e resiarocsl o ety i the kineiic ameroy,
Duration = 1383.79 ms Counter = 8099479.93 Kevents 226 and the speed of sound. v o

0 0.4 0.6 0.8 1

1 6600

4 6400
0.8

4 6200

0.6

Z_solv

E 6000

MIPS

enddo

compute_rhs

1 5800
/{ enddo

0.2
T
[
=2
o
N
x
0.4 % enddo
5600
do j = start(2,c), cell size(2,c)-end(2,c)-1
4 5400 do i = start(1,c) (L,0)-1
0.2 il
Counter rate s
c) +
> b

Normalized instructions

Curv¢ fitting 1 5200
Samples (3000)
- - 5000
0 276.71 553.42 830.13 1106.83 1383.54
Time (in ms)

(a) Evolution of the instruction counter and the MIPS ratébp Folding results of the instruction counter
NAS BT annotated into the source code using GVim

Figure 2. Folding results for the main time-step functiadi() in the NAS BT benchmark.

Folding works by projecting the performance data associated to each sartplgynthetic
representative instances of a computation region that has been delimitestrioynientation. The
folding uses the instrumented and the sampled information for two differgattokes. While
the instrumented data delimits the duration and the aggregate performandercthersampled
information tracks the progression of the performance counter and bhsiteareferences within
the region. More precisely, the folding maps every sample found within a etati@n region into
their respective synthetic region by preserving their relative time. As @tret doing this for
every sample, the synthetic regions get populated with performance meaiakettict the internal
evolution of the computing region as depicted in Figiire

In Figure 2(a) we illustrate the results of the folding mechanism applied to the executed
instructions counter when applied to the NAS bt][time-step function &di). The set of red
crosses are shown on the left Y-axis and describes the cumulativeiobthgctions executed since
the beginning ofdi . That is, a cross at positigiX, V') represents a sample that occurred at time
X within adi and that has executéd instructions since the beginning of the routine (&t0)).
Once the samples are mapped into the synthetic region we apply a contoudrithaigvhich will
report a continuous evolution of the aggregated metric within the regionsByg uhis continuous
evolution we calculate the instantaneous counter rate by calculating thatderiof the contoured
results. We show the instantaneous rate by using a blue line that travexsegitin using the right
Y-axis. We do notice that, although the progression of the samples doeshibit a clear variance
across time, the derivative is capable of showing differences. In flagtjnstantaneous metric
(Millions of Instructions Per Second or MIPS, in this example) shows xhabl ve, y_sol ve
andz _sol ve runs uniformly at 6300, 5800 and 5600 MIPS, respectively. And aovs that
conput e_r hs does not have uniform behavior, and the metric ranges from 5600 M80S.

The folding is also capable of attributing the performance to the sourcete@dlew the user to
correlate the performance and the source code when looking for Hatadeh spots. In Figur@(b)

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp€a000)
Prepared usingpeauth.cls DOI: 10.1002/cpe

6 H.S. ANDOTHERS

Accumulated Counter Evolution

>
>

Time

Figure 3. Filtering applied in the folding mechanism. Theagr line refers to the curve fitting result when
using with the samplegd and the grey color shows the area (ranging betweenX o). Those samples that
have to be taken into account are shown in red whereas thdesathpt can be ignored are colored in black.

we show a capture of the GVim editor showing three different parts affise f file from the bt.B
benchmark and the performance achieved by each by using a col@ergrtdht ranges from green
(meaning low) to blue (meaning high). In this Figure, the first section (betwees 24 and 29)
refers to the lowest performing code iofis. f which is at the very beginning d¢f(b). The latter
section of the code (which involves the loop ranging from line 385 to line 898lated to the
rightmost part of theeonput e_r hs function depicted ir2(b) and is executed by the processor at
approximately 6000 MIPS.

4.1. Folding improvements to accommodate power measurements

As we have discussed before, the folding mechanism mainly consists omfguldurve fitting for
all the samples gathered during the execution. To generate such curgg fitéiriolding mechanism
has a pre-filter mechanism that removes the instances that are too differerms of duration in
respect of the mean duration. This pre-filter step allows ignoring thosegestdhat have suffered
from any sort of perturbation (for instance, the application perforntseakpoint, there network is
congested or the node is overloaded). By applying the pre-filter thiingsiolding sighal becomes
less noisier and allows applying a more much strict curve fitting parameters.

By using such pre-filter step, the folding mechanism has proven usefaflezt the evolution
of the performance hardware counters. However, the performantears and the energy counters
differ in their update frequency and also in their granularity. While thegperénce counters are
updated at every processor cycle and report the events occunred garticular thread of the
application, the energy counters are updated at every millisecond by tbeirPfactors of 15.2
nJoules and report the whole socket energy consumption. As a resuurite fitting results follows
the energy counters and shows staggered results.

To address this issue, we have improved the folding mechanism in two diffeeys. First, we
have added an additional filter step based on the distance to the curve &ty To apply this
filter, the folding interpolates all the samples and constructs a curve fittifigoesurred normally.
The folding does not stop at this point, but calculates the distance fromathplas to the curve
fitting and keeps only those samples that lie within- X * o, 1 + X * o], as shown in Figuré,
being the interpolation point ane the standard deviation of the distance to the curve fitting. The
value of X defaults to 2.0, which means that the range includes about 95% of the sgbupliésan
be modified by the user.

The second modification relies on adapting the fitting parameter of the interpo#dgorithm
to the counter being used. The fitting parameter determines how strict is thigngesterpolation.
Thus the fitting parameter acts as a low-pass filter in the sense that the smaparaheeter, the
more fitted and noisier the results. When applying the curve fitting to the folelmdts of the
processor performance counters we set the fitting parameter toHowever, if we apply the same

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp€a000)
Prepared usingpeauth.cls DOI: 10.1002/cpe

Task 1 Thread 1 - adi Task 1 Thread 1 - adi
Duration = 1383.79 ms Counter = 25322093.06 Kevents Duration = 1383.79 ms Counter = 25322093.06 Kevents
0

0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1

>
\/\,“Z

. 41 18000
02 Countgr rate 4 17500

1 20000 1 20000

19500 19500

0.8 0.8

compute_rhs

19000 4 19000

0.6 0.6

18500

x_solve
_solve

X z_sol I\
add

mw

/ 18500
0.4

x_solve
N\ y_solve
§ z_solve
s -

18000

mw
Normalized consumed energy
o
R
T T T T
g compute_rhs.

Normalized consumed energy

0.2

4 17500

Countgr rate

Curvg fitting Curvd fitting
Samples [2806) Samples [2806)
0 . 17000 0 . 17000
0 276.76 553.52 830.28 1107.03 1383.79 0 276.76 553.52 830.28 1107.03 1383.79
Time (in ms) Time (in ms)
(a) Fitting parameter 0~ (b) Fitting parameter 20—*

Figure 4. Folding results using different fitting paramstir the consumed energy of the main time-step
function @di) in the NAS BT benchmark.

value to the fitting parameter when doing the curve fitting of the energy cathteresults are much
more noisier, as depicted in Figuté&). The plot in Figuret(b) shows a smoother result by using the
same data as in the previous example, but using a more relaxed fitting par@itietrwWe consider
that, although producing smoother results, the relaxed parameter gives aigderstanding of the
power consumption evolution across time and thus will be the default valtigefpower and energy
counters.

5. EXPERIMENTS

We have designed a twofold experiment to demonstrate the usefulnessomifngdthis new
mechanism to capture the power consumption from the processor itselfir$hexperiment is
aimed at studying the performance and power consumption in a single dncksing widely-
known serial benchmarks. To address this experiment we have usstdoé serial benchmarks
that use iterative methods from different benchmarks suites, includiBE@€ $HPU 2006 29, NAS
Parallel Benchmarks, and also the Stredf] fand Lulesh B1] benchmarks. We also evaluate
the impact of changing the processor frequency in terms of perfornamt@ower. The second
experiment focuses on analyzing the performance and power consurirpéiparallel environment
by using three MPI applications.

We have executed all the experimentsAitlamira. This supercomputer consists of 160 nodes,
each containing two Intel® Xeon® CPU E5-2670 (SandyBridge-EP)r8-poocessors running
at a nominal frequency of 2.60 GHz with maximum thermal design power (TWDRL5 Watts.
The system runs Linux kernel 2.6.32 and allows changing the procéssprency between 1.2
and 2.6 GHz in 0.2 GHz steps. The Intel® Turbo Boost, which can accelitratéeon E5-2670
processor up to 3.3 GHz incurring in additional power consumption, hes disabled from BIOS
to perform all the tests at a uniform frequency. We have used the GNipiter suite version 4.4.6
with - @3 - g as compile flags and OpenMPI version 1.6 for the parallel applications.a¥e h
used the Extrae3p] instrumentation package to gather performance and power metrics byitssing
sampling and instrumentation capabilities. In reference to the sampling respluédrave set the
sampling frequency to 50 Hz, which is the same sampling frequency useefényitcby the gprof
profiler [33]. So as to use the RAPL power counters, we compiled Extrae against laliBrsiey
with the RAPL component enabled. Finally, in every execution we have gitireeprocesses to a
particular core so as to disallow process migration, which would affectgplécation performance
and its consumption. For the serial benchmarks, we have executed thaensally and we have
pinned them to the first core of the socket. For the parallel applicationgjrthexg depends upon

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp€a000)
Prepared usingpeauth.cls DOI: 10.1002/cpe

8 H.S. ANDOTHERS

Benchmark Suitg Name Time-step code region
434.zeusmp src/ zeusnp. F 675-709
435.gromacs src/ md. ¢ 413-820
436.cactusADM| sr c/ PUGH Evol ve. c 96-147
437 .leslie3d src/tm . f 330-435

SPEC CPU 2008 444.namd src/ spec_nand. C184-225
465.tonto src/ nol . F90 13617-13629
470.lbm src/ mai n. ¢ 44-58
481 .wrf src/ nodul e_i nt egr at e. F90 274-288
bt.B BT/ adi . f 8-20
ft.B FT/ appft.f 62-72

NPB 3.3 is.C | S/is.c446-641
lu.B LU ssor. f 102-232
mg.B MZ ng. f 255-264

Stream stream st ream c 220-262

Lulesh lulesh full/1ul esh. cc 2893-2904

Table I. Benchmarks used for the experiments and the latafithe begin and end points for the iterative
part of the application.

the execution configuration applied in therms of processes per sodkeelgranted that each core
executes a single process.

5.1. Analysis of serial benchmarks

The selected benchmarks are listed in Tdbl€he Table illustrates the subset of benchmarks and
also shows the location within the source code where a time-step beginsdmdka placement of
the begin and end points of the time-stepper region of code determines thienestation points.

The plots shown in Figuré describe time-step routine of the benchmarks listed in Talble
using performance and power metrics. In each plot, the instantaneo&(Mifion of Instructions
Per Second) is shown in black and it is referred to the left Y-axis. Ipewsto the power metrics,
they are referred to the right Y-axis and are colored in blue, greemneghiibr the DRAM, the cores
and the total of the package, respectively. From these plots we olibatwiespite the performance
achieved by the application, the cores consume essentially the same (béd6vaed 18 Watts).
437 .leslie3d %(d)), 481.wrf 6(h)) and ft.B 6(j)) show the largest difference in MIPS within the
time-stepper region (from 1000 to 7500, 3000 to 9000, and from 250000, fespectively) with
small variation of the core power consumption. Not only this, but we noteeagtid of lu.B 6(1))
and ft.B (())), that the more MIPS achieved the lesser power drained. The readelsoagbserve
that the power consumption of the DRAM is mostly uncorrelated with the perfazcendn all
executions but in 437 .leslie3d(d)), 481.wrf((h)) and is.C b(k)) where the high peak performance
results in higher consumption of the DRAM. Regarding the total power e¢opgan, we note that
the DRAM and core do not sum up for the total consumption of the packageguess is that,
although the processors of the system we have used do not have amgtietieGPU on their power
plane, there would be some power drain, possibly in the I/O, that sums theftotal. Finally, and
although the package wattage follows the core wattage shape, the resultsisHu.B (5(1)), ft.B
(5())), 434.zeusmpX{(f)) and 437.leslie3d5(d)) reflect that the power consumed by the DRAM is
underweighted in terms of energy factors by the PCU when summing up fosttleeonsumption
of the package.

5.2. Application of the DVFS techniques to the serial benchmarks
The power dissipated by a processor using the current CMOS teclynisldgvided in two parts,
the static and the dynamic power, being the latter the main source of powemngpisn. Dynamic

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp€a000)
Prepared usingpeauth.cls DOI: 10.1002/cpe

9000 40 9000 40 9000 40
8000 35 8000 35 8000 35
7000 20 7000 [N\ SN AN 30 7000 20
6000 25 6000 2 6000 25

© 5000 2 5000) ¢ 5000)

o 20 ¥ o 20 § a 20 §

S 4000 = S 4000 = = 4000 F——— | =
3000 ® 3000 ® 3000 M“" g 15
2000 10 2000 10 2000 10
1000 5 1000 5 1000 5

0 0 0 0 0 0
0.0 7221 14443 2166.4 2888.6 3610.8 00 172 343 515 686 858 00 1536 307.2 460.8 6143 767.9
Time (ms) Time (ms) Time (ms)
(a) 434.zeusmp (b) 435.gromacs (c) 436.cactusADM
9000 40 9000 40 9000 40
8000 35 8000 35 8000 35
7000 20 7000 20 7000 20
6000 2 6000 25 6000 2

¢ 5000) © 5000 2 ¢ 5000 2

o 20 ¥ o /2:{;\ (3 D an (j 20 & [20 ¥

S 4000 = S 4000 E S 4000 =
3000 ® 3000 ® 3000 »
2000 10 2000 10 2000 10
1000 5 1000 5 1000 5

0 0 0 0 0 0
00 351 702 1052 1403 1754 0.0 2706.4 54129 8119.3 10825.813532.2 0.0 14040.128080.242120.356160.470200.5
Time (ms) Time (ms) Time (ms)
(d) 437.leslie3d (e) 444.namd (f) 465.tonto
9000 40 9000 40 9000 40
8000 35 8000 35 8000 35
M — A1
7000 [\/\/J\/\MW\J\., 20 7000 20 7000 20
6000 2 6000 2 6000 (\r—\u 2

@ 5000) 5000 2 @ 5000 2

e 20 § o 20 & e 20 §

S 4000 S S S = = 4000 s = 4000 3
3000 1 3000 ® 3000 1
2000 10 2000 10 2000 10
1000 5 000 NN NN 8 1000 |7\ i°

0 0 0 0 0 0
00 282 564 846 1128 1410 00 4130 8261 1239.1 1652.2 2065.2 00 2767 5534 830.1 1106.8 1383.5
Time (ms) Time (ms) Time (ms)
(g) 470.Ibm (h) 481.wrf (i) bt.B
9000 40 9000 40 9000 40
8000 35 8000 35 8000 35
— AN
7000 20 7000~ g 7000 20
6000 25 6000 2 6000 25

© 5000 2 5000) ¢ 5000)

o 20 ¥ o 20 § o 20 §

= 4000 = = 4000 = = 4000 " | =
3000 ® 3000 ® 3000 ®
2000 10 2000 10 2000 10
1000 5 1000 5 1000 5

0 0 0 0 0 0
00 5910 1182.1 1773.1 2364.2 2955.2 00 3588 7175 1076.3 1435.1 1793.9 00 1826 3652 547.7 730.3 9129
Time (ms) Time (ms) Time (ms)
() f.B (k) is.C o) lu.B
9000 40 9000 40 9000 40
8000 35 8000 35 8000 [~ 35
—
7000 20 7000 femrm S 7000 20
6000 ff—’\/‘—'\/\—I\ - 6000 25 6000 2

¢ 5000 @ © 5000 2 ¢ 5000 2

$ o0 ©E 5 oo P2 e "¢
4000 [| 4 4

15 15 [T s

3000 3000 3000
2000 o~ __— 10 2000 10 2000 10
1000 5 1000 ~—— ~ s 1000 5
0 0 0 0 0 0
00 963 1926 2889 3852 48L6 00 213 425 638 851 1063 00 621 1242 1862 2483 3104

Time (ms) Time (ms) Time (ms)
(m) mg.B (n) Lulesh (o) Stream

Figure 5. Comparison of the performance and power consompti the main iteration of several

benchmarks when the processor runs at 2.6 GHz. The MIPSrpeifwe (in black) is referred to the left

Y-axis, whereas the power consumption (red for packagengi@ chip and blue for DRAM) are referred
to the right Y-axis.

power is the power needed to commute the transistors of the circuit and itaktequ
denamic = aCVQf (1)

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp€a000)
Prepared usingpeauth.cls DOI: 10.1002/cpe

10 H.S. ANDOTHERS

wherea is the proportion of activity in a clock cycle (which is related to the applicati@ceted),
C refers to the capacitance of the chip,is the voltage and is the frequency. Current operating
systems increase or reduce the frequency of the proceg$atepending on the load of the
system using a technique called Dynamic Voltage and Frequency ScalifgS)DVhere are two
possibilities to reduce the energy consumption, by reducing the prooasitage or by reducing
the processor frequency. While the former cannot be usually tackleébiebyser in a production
environment, the latter can still be applied. In order to reduce the enengyucption, the
operating system lowers the processor frequency when the systeimé®ddle and reestablishes
the processor frequency when the system gets loaded. Others34ikanid [35] have used such
technique to reduce the energy consumption on parallel applications dsainptoad unbalance by
decreasing the processor frequency on the processors with IdssHeoe we will detail the effects
of applying the DVFS to the previous serial benchmarks.

In Figure6 we show the impact of different execution frequencies on the poweparidrmance
metrics in a subset of benchmarks. In the plots shown, we first noticeeatihenthe power nor the
performance shape of the benchmarks change when modifying theeguefcy, but the amplitude
of the signal. For instance, the highest and lowest peak in the is.C bericiuh@h are depicted
in Figures6(m), 6(n) and6(0) range from 1100-5000, 900-4000 and 600-2400 MIPS, and, 16.4-
18.3, 10.6-11.9 and 4.9-5.8 Watts, respectively in terms of performantpamer usage. These
plots illustrate that the highest the core frequency, the highest amplituds iexi®th performance
and power metrics, and hence the more room for energy and perfoenrapcovements can be
reached in highest frequencies, as it would be expected by Equatidnd as we noted earlier,
although the power consumption may be directly related to the processormparice, as it occurs
in 437.leslie3d, 481.wrf and is.C, sometimes the power consumption runs imygerom the
performance achieved, as it can be seen in ft.B and lu.B.

The plots also show that the reduction factor observed in the power isdmgher than the
reduction factor of the clock rate. For instance, while lu.B at 2.6 GHz goeswabout 18 Watts,
when decreasing the clock rate to 1.2 GHz we would expect accordihg toonsumption about
9 Watts. However, we observe that the power consumption does nbtéaafatts. This means that
at constant capacitanc€ and activity rate &), the processor also lowers its voltagé) (when
lowering its frequency ().

To summarize all the results of the executions, we tabulate them in Vahiel TableV| at the
end of the document. Tablé shows the average duration, the core consumption and the whole-
socket consumption of the main iteration of benchmark when run at one sttbeted processor
frequencies (2.6, 2.0, 1.6 and 1.2 GHz). In this Table, we observe thatnérgy needed by the
cores to execute the time-stepper function decreases as the freqeenessibs but at lesser scale.
Although reducing the processor frequency from 2.6 to 1.2 GHz makespibiecation run more
than two times slower, the energy drained by the cores does not redumeliagly. We can also
note that the total energy consumed by the whole package increasefraguleacy of the processor
decreases. This may occur because reducing the operative fogguereases the time needed to
finish the task and thus the energy dissipated. These results agrees witisuhie of a group of
experiments done by Le Sueur and Heise3i§] [

In Table VI we provide the average number of instructions, and the average nuinb&bg
L2 and Last Level Cache (LLC) cache misses of the main iteration of thehbeark. Also in
this Table, we show additional performance and power metrics derieed e aforementioned
data. We present the average MIPS and the average MIPJ perMdiB) and per package
(MIPJp) (analogously to MIPS, MIPJ stands for Millions of Instructions per Joa@hieved by
each benchmark. The results in the latter Table show that if we con&idétJ- as the power
efficiency metric, the lowest frequency provides the best results in tefrstoauctions per Joule
achieved. However, if we considdi I P.Jp as the power efficiency metric, then the most fruitful
frequency ranges between 2.6 and 2.0 GHz. In this case, using thethigdguencies allows the
application to finish, and thus stop consuming energy, earlier. Four oflehees benchmarks
(434.zeusmp, 470.Ibm, is.C and Stream) achieve the\lBéstjp (114.51, 92.45, 61.26 and 108.69)
running at 2.0 GHz, while the rest of the benchmarks show b&fteP.J» when running at 2.6 GHz.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp€a000)
Prepared usingpeauth.cls DOI: 10.1002/cpe

11

MIPS
Watts
MIPS
Watts
MIPS
Watts

9000 9000 9000
8000 18 8000 18 8000 18
7000 16 7000 16 7000 16
6000 1a 6000 1 6000 1a
5000 5000 5000
12 12 12
4000 4000 4000
3000 10 3000 0 3000 10
2000 8 2000 8 2000 8
1000 6 1000 6 1000 6
0 0 0

00 351 702 1052 1403 1754 00 452 905 1357 180.9 226.2 00 742 1484 2227 2969 3711
Time (ms) Time (ms) Time (ms)
(a) 437.leslie3d at 2.6 GHz (b) 437.leslie3d at 2.0 GHz (c) 437.leslie3d at 1.2 GHz
9000 9000 9000
8000 18 8000 18 8000 18
7000 [~ ~ 16 7000 16 7000 16
6000 " 6000 1 6000 1
¢ 5000 2 © 5000 a ¢ 5000 2
a 12 8 o 12 8 a 12 8
= 4000 = S 4000 - 2 = 4000 =
3000 10 3000 10 3000 10
2000 8 2000 8 2000 8
1000 6 1000 6 1000 6

Y~

0 0 0
00 4130 8261 1239.1 1652.2 2065.2 00 5345 1068.9 16034 2137.8 2672.3 00 8880 17759 2663.9 3551.8 4439.8
Time (ms) Time (ms) Time (ms)
(d) 481.wrf at 2.6 GHz (e) 481.wrf at 2.0 GHz (f) 481.wrf at 1.2 GHz
9000 ————— — 9000 9000
8000 18 8000 18 8000 18
7000 16 7000 16 7000 16
6000 " 6000 " 6000 1
© 5000 2 » 5000 2 ¢ 5000 2
e 12 8 e 12 ¥ e 12 8
S 4000 = S 4000 = S 4000 H
3000 10 3000 0 3000 0
2000 8 2000 8 2000 8
1000 6 1000 6 1000 6
0 0 0
00 5910 1182.1 17731 2364.2 2955.2 00 7601 1520.3 2280.4 3040.6 3800.8 00 12604 2538.8 3808.2 5077.6 6347.0
Time (ms) Time (ms) Time (ms)
(g) ft.B at 2.6 GHz (h) ft.B at 2.0 GHz (i) ftBat1.2 GHz
9000 9000 9000
8000 kf*f—g‘/\f_ 18 8000 18 8000 18
7000 16 7000 16 7000 16
6000 r \ " 6000 " 6000 "
© 5000 2 © 5000 2 © 5000 2
< 12 8 a — 12 8 o 12 8
S 4000 = S 4000 = S 4000 H
3000 10 3000 0 3000 F" 0
2000 8 2000 8 2000 8
1003 6 1002 6 mog L 4
00 1826 3652 547.7 7303 9129 00 2349 469.8 7046 9395 1174.4 00 3804 7788 11683 1557.7 1947.1
Time (ms) Time (ms) Time (ms)
() lu.B at 2.6 GHz (k) lu.B at 2.0 GHz () lu.B at1.2 GHz
9000 9000 9000
8000 18 8000 18 8000 18
~ /7
7000 — 16 7000 16 7000 16
6000 " 6000 " 6000 "
© 5000 L & @ 5000 b & © 5000 o &
e] a g o g
S 4000 H S 4000 /N H S 4000 H
3000 10 3000 10 3000 10
2000 8 2000 8 2000 8
1000 6 1000 6 1000 6
0 0 oL T
00 3588 717.5 10763 1435.1 17939 00 4378 8756 13134 17512 2188.9 00 660.1 1338.3 2007.4 26765 3345.7
Time (ms) Time (ms) Time (ms)
(m) is.C at 2.6 GHz (n) is.C at 2.0 GHz (o) is.Cat 1.2 GHz

Figure 6.Performance and power progression of five bendtenahen run at three different core
frequencies (2.6, 2.0 and 1.2 GHz). The black line is refetoethe instantaneous MIPS on the left Y-axis
and the green line is referred to the instantaneous powedreoright Y-axis.

These four benchmarks show high L1D, L2 and LLC miss rates, whicHdniodicate that the
applications are memory bound. According to these results, a naiveaabpto select the most

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp€a000)
Prepared usingpeauth.cls DOI: 10.1002/cpe

12 H.S. ANDOTHERS

effective frequency in terms @ff I P.Jp would depend on the ratio between the executed instructions
and the LLC misses.

5.3. Analysis of parallel applications

We have used three MPI applications to analyze the performance and powsumption in
a parallel environment. The first application is HydroC, which is a a proxycbmark of the
RAMSES [37] application. This application solves a large scale structure and galamafion
problem using a rectangular 2D space domain split in blocks. The sepgpiidaion is Mr. Genesis
[38], which employs a finite volume approach in order to evolve the RelativisticrEgjeations
combined with a Constrained Transport scheme to account for the ehaxgree evolution of
the dynamically included magnetic field. The last application is SIESSE) vhich implements a
self consistent density functional method using standard norm-congepseudopotentials and a
flexible, numerical linear combination of atomic orbitals basis set.

We have executed Mr. Genesis and HydroC using 8 MPI processealtmta/their performance

and power consumption when using different socket occupancy. faveghese experiments we
have used combinations of MPI processes per socket (MPIpps)uimatis 8 MPI processes.€.
1, 2, 4 and 8 MPlpps using 8, 4, 2 and 1 sockets, respectively). Weeatduate these executions
changing the processor frequencies at four different speedsl(6,2.0 and 2.6 GHz). Regarding
SIESTA, we have studied its scalability by executing it from 16 to 256 MPtgsses, thus using
multiple nodes using all the 16 cores available on the node.

We show different performance and energy metrics for these exesutidore precisely, to
evaluate the performance, we show the time required to execute the appliGatiewaluate the
energy and power usage we provide results of the folding procesbrigthae instantaneous power
consumption, the overall energy consumed, and also the Energy Deldyd?{EDP). The EDP is
a metric that represents a compromise between the application performanical)yymeasured by
the application execution time, and its dissipated energy. From the foldingsresialso derive
the energy footprint of the application. Such footprint shows the p&xgerof time in a particular
power consumption rate and the duration of the most power consuming setgfionde.

5.3.1. HydroCWe show in Tabldl the timing, the energy consumption and the EDP results for
the HydroC application. Note that time of the full execution of the applicatioronbt increases
when decreasing the processor frequency, but also when inggehsinccupancy of the processor
because of the sharing of the resources. Also, the more processesieg in a socket, the lesser
energy consumed at a given frequency. From the results shown inkileewia can extract some
guidance depending on the metric to minimize. To reduce the overall executiomfikhgroC,
we should use a single processor per socket at maximum frequenegvelo to reduce the overall
energy drained by HydroC,we should use all the processors availa@ledoket at 1.6 GHz. The
best trade-off between the performance and energy consumption) (B2 hieved by using half
of the processors of the socket at full speed.

Figure 7 shows the temporal evolution of the power consumption of the DRAM at $deke!
and the LLC cache misses per core within the time-stepper routine when usnigi@lpps and
eight processes per socket running at 2.6 GHz. We observe a tightatmn between the rate of
LLC misses and the power consumed by the DRAM. This occurs becauké@hmisses involve
accessing into the memory, thus increasing its energy consumption. Thiseisteapas high miss
rates involve big amounts of data movement, which is one of the important comtpamfesystem
power. This effect is most noticeable when using all the eight coresibedhe power consumption
counter reflects the accumulated energy consumption by the whole sadkisteasignal presents a
wider amplitude.

By using the source code referencing capabilities, we have delimited in tteethbo routines
that were executed across time and we have labelled the regions by adelingutine names.
Comparing the two subfigure§ (@) and 7(b)), we first note the increase on the DRAM power
consumption which is below 10 Watts in routinesace andql ef t ri ght when using one MPI
process per socket, and increases to more than 20 Watts when usingreicgdses per socket.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp€a000)
Prepared usingpeauth.cls DOI: 10.1002/cpe

13

2.6 GHz 20GHz 1.6 GHz 1.2GHz
Time Energy EDRTime Energy EDRTime Energy EDP|Time Energy EDP
1MPIpps| 49 144 7101| 61 147 8984| 75 158 11855 103 186 19184
2MPlpps, 50 98 4923| 62 89 5557| 76 96 7359 | 100 104 10484
4MPIpps‘ 52 64 3369| 65 59 3868 78 59 4676| 101 65 6622
8MPIpps, 72 65 4720, 83 53 4457, 96 49 4795|122 50 6137

Table II. Duration (in seconds), energy consumption (in idds) and the Energy Delay Product for the
HydroC application when using combinations of MPI procesper socket and processor frequencies.
Optimal values for each metric is highlighted in bold font.

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
T T T T T T T 60 25 T T T T T T T 60

slope | trace riemann slope| trace riemann
4 50 2 WA/ /\ 50
1{ 40 \j ' 1{ 40
15 |
1 30
10 |
/\— 20 120
51 ﬁ {10 5T /u {10
0 L LN 0 0 PSS 0

0 45.16 90.32 135.49 180.65 225.81 0 62.67 125.35 188.02 250.7 313.37

25

20

15
1 30

Watts

10

/ qgleftright
Millions of misses per second
Watts

Millions of misses per second

Time (in ms) Time (in ms)
DRAM power consumption — LLC Misses — DRAM power consumption — LLC Misses —
(a) 1 MPIpps (b) 8 MPIpps

Figure 7. Temporal evolution of the time-stepper routinelpdiroC by using a different numbers of MPIpps.

These results mean that even multiplying by eight the number of cores imccessnemory, the
power consumption by the DRAM gets only multiplied by a factor between 2 afile®.i enann
routine shows better power scalability when moving from one proces®pketsto eight processes
per socket. In this routine, while the DRAM consumes about 5 Watts in 1 MPIipjrns only into
8 Watts when running in 8 MPIpps.

In terms of performance, when the socket is fully utilized the execution lakggr to compute
(313.37 ms) in comparison to when the processor socket is under utilizedB2ms). We can
observe that the rate of LLC misses decrease when using all the eightafdhe socket, although
the shape for the LLC miss rate is rather similar in both cases. We obseribehatoportion of
theql ef t ri ght increases in the case when using eight cores per socket and its rdlattion
increases from 8% to 12%, which represents an increase of from 18.5on3lliseconds. The
ri emann routine also increases its duration, from 95 to 113 milliseconds, although ithtwe
decreases, from 42% to 36%. According to the performance data gdthee total number of
LLC misses per core increases with respect to the execution with a singlepsiBbcket by 2%,
6.2% and 12.5% when using two, four and eight processes per soegpéctively. This effect is
reasonable because the LLC is a shared resource among cores withickbBeand cannot sustain
its performance per core with the increased number of LLC misses expedi®y the application.

We also illustrate the socket energy consumption by using the aforementondanation of
processes per socket and executing frequencies in Fijuvde observe in the Figure that the
shape for the different plots are likely the same but in the amplitude, whigbsvaccording to the
processor frequency. When the system is fully occupied and its cleeloperates at 2.6 GHz, the
power dissipated because the execution of HydroC presents two mode&, \8/atts, which means
that the processor consumes about 70% of its maximum TDP (115 Watts)k sathe Figure
we observe that the power consumption does not increase linearly withctesf the number of
executing cores. This is explained because the remaining cores in thdiereavith 1, 2 and 4
MPIpps are still consuming energy because they are not completely Haitadle.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp€a000)
Prepared usingpeauth.cls DOI: 10.1002/cpe

14 H.S. ANDOTHERS

90 T T T T T T T T T 90
80 80
))
£ 70 = 70
= =
o 60 o 60
j=2) j=2]
£ £
< 50 < 50
s s
2 40 2 40
I I
@ Q
o o
S 30 S 30
a a
20 20
10 10
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Normalized time Normalized time
1MPIlpps — 2 MPlpps — 4 MPlpps — 8 MPlpps — 1MPIlpps — 2 MPlpps — 4 MPIlpps — 8 MPlpps —
(@) 2.6 GHz (b) 2.0 GHz
90 T T T T T T T T T 90
80 80

70

70

60

60
50

40m

30

50

40

Processor wattage (Watts)
Processor wattage (Watts)

30

W

e ———

20 20
10 10
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Normalized time Normalized time
1MPIlpps — 2 MPlpps — 4 MPlpps — 8 MPIpps — 1MPIlpps — 2 MPlpps — 4 MPlpps — 8 MPlpps —
(c) 1.6 GHz (d) 1.2 GHz

Figure 8. Progress of the main time-stepper routine poweswmption of HydroC by using different
combinations of MPIpps and processor frequencies on aesguglket.

100% 350
90%
300
80%
70% 250
o
£) z
H 60% E 200
S 5% <
o s
g 4% z 180
g g
g 3% g 100
s
T 20% -
50
10%
0% 0
O R Y LW LWL NLLELLLDYOONYS0nEL YD
NS RNGgNRNRFANN gARNE G RgNDS g NBESANRNNEgAINNE gdRNEGgADR 8D g
s gRd gRy wlyY &Rg J8g <8 s gRd dRy Wly gRg I8y <8
8 8"F RFRE SNk BT8 £°8 8 87 N"F gFk g8 8°8 3
Watts Watts

(a) Percentage of time above a power limit (b) Longest duration of the application above a power limit

Figure 9. Energy footprint for the execution of HydroC whesing 8 MPIpps running at 2.6 GHz.

Finally, we present in Figur® the energy footprint of the application for the whole socket. The
Figure9(a) shows the amount of time that the application has been consuming a certaintarhoun
power. For instance, we observe that the application used up to 80 Waiiishethf of the execution
and that only 10% of the whole execution needed more than 84 Watts. We tkustrdhe Figure
9(b) the longest execution time with a given sustained consumption. From this kiguobserve
that those regions of the application consuming more than 84 Watts take lebthatiseconds
to execute.

5.3.2. Mr. GenesidNMe show in Tablél the timing and energy consumption results for Mr. Genesis
when it is executed with 8 tasks and using a combination of 1, 2, 4 and 8 Mieegses per

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp€a000)
Prepared usingpeauth.cls DOI: 10.1002/cpe

15

2.6 GHz 20GHz 1.6 GHz 12GHz
Time Energy EDP|Time Energy EDP|Time Energy EDP |Time Energy EDP
1MPIpps| 190 608 115562 249 636 158484 309 691 213634 412 813 335049
2MPlpps| 192 374 71901| 249 373 92969| 310 395 122603 418 456 190919
4MPlpps| 193 256 49548| 249 261 65016| 314 246 77368| 416 330 137542
8MPlpps| 197 204 40299 | 255 186 47552| 317 179 56899| 422 183 77571

Table 1lI. Duration (in seconds), energy consumption (ino#lés) and Energy Delay Product of the
Mr. Genesis application when using combinations of MPI peses per socket and processor frequencies.
Optimal values for each metric is highlighted in bold font.

socket and at four different processor frequencies (1.2, 1.6ar2d02.6 GHz). In contrast with
the previous observations on HydroC, the performance of Mr. Gemd®s using all the cores
shows an overhead less than 4% in the worst case. Again, to obtain thetfesmance and reduce
the time needed to execute the application, we should execute the applicatimg ghaery MPI
process into a different socket. In therms of energy consumption, weredy as in Hydro, that
the best combination involves using all the cores of the socket and ruahihg§ GHz. Finally, to
minimize the EDP metric we would use all the resources available in the sockditspided.

In Figure 10 we show the performance evolution of two metrics (MIPS and LLC miss rate) fo
the main time-step section of code in the best case in energy téen8 MPIpps at 2.6 GHz).
Regarding the performance, the application has two important routines indétimsng, sweepx
andsweepy. On the one hand, the routissweepx has a uniform performance in terms of MIPS
(4000) and LLC miss rate (less than 1 million per second), but at the enshibzs a slight increase
of performance. On the other hargleepy presents different phases in terms of performance
which are related to three parts of the code enumerated with A, B, and Ctiiave@ 500, 4500 and
1800 MIPS, respectively. Focusing on the sections that achieve lpe@dstmance, we observe that
phase A refers to the loop in lines 419-435 of file sweagep. f . This loop performs performs
multiple operations similar to matrix transpositions in the loop body except that thésdaad from
two 3D matrices and stored into multiple 2D matrices. Each cell of these 3D matdes fo five-
field structures which translates into a sequential access to each fieldstruibieire thus exploiting
spatial locality. This phase reaches up to 20 millions of LLC misses per sgesmore, and at such
moment the DRAM consumption per socket reaches the 12 Watts. Phas®e#the execution
of the loop in lines 556-564 of the fileweep. f which partially undoes the work done in Phase
A by applying another matrix transposition. In this phase, the LLC miss ratedses again to 20
millions of LLC misses per second, but at this phase the power consumed$esrto 17 Watts.
Finally, at the very end of the time-step we also found that the performaads at a low MIPS
rate (1500) and increases to 4500, and also the LLC miss rate and the P&t consumption
decreases. We have identified two loops for such region: a fourehtmip inst ep. f ranging
from lines 151 to 163 that does multiple mathematical operations including floaingdivisions,
and a call to the routinget pr f 3.

We show in Figurel 1 the energy footprint of the application. The reader can see that the 60% o
the total execution time of Mr. Genesis, the socket is draining up to 80 Wats. thie consumption
rapidly goes down, and less than 10% of time the processor drained mar@lt&aWatts. It is
interesting also to note that the longest duration sustained in 81.5 Watts by the salcket lasts
less than 40 milliseconds. Such values could be useful for the accelemaicdmnism that speeds
up the processor frequency in two directions. First, the processtit icmuease the frequency in the
regions with lesser power consumption in a safe manner without surpalsii@®P. These results
also means that limiting the power consumption to 81.5 Watts would only affect lasslto
of the application. Finally, if such power limit is enabled but the processopats acceleration
mechanisms that allow it to drain more than 81.5 Watts, the required time for soelem ation
would be less than 40 milliseconds.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp€a000)
Prepared usingpeauth.cls DOI: 10.1002/cpe

16

MIPS

5000

4000

3000

2000

1000

0 0.2 0.4
T T

0.6
T

0.8
T

H.S. ANDOTHERS

sweepx

—

——

sweepy

25

20

4 15

4 10

Millions of misses per second

0 130.36 260.73
Time (ms)

391.09

521.46

MIPS — LLC misses —

0
651.82

0 0.2
T

0.4
T

0.8
T

[N

20

15

Watts

10

0 -

sweepx

sweepy

25

20

£budiaf » dais

5 15

4 10

Millions of misses per second

0 130.36

260.73
Time (ms)

DRAM power consumption —

391.09

521.46

0
651.82

LLC misses —

(a) Performance evolution of MIPS and LLC miss ratéb) Evolution of the LLC miss rate and the DRAM power
consumption

Figure 10. Performance and energy footprint for Mr. Genesien running with 8 MPIpps at 2.6 GHz.

entage of time

Perc

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

700

600

500

400

300

200

Longest run (ms)

100

0% 0

© WL d LW LOLWLUNLLOLWYL QWL OWLWLDBG PO WILOITOOIDNIDILOODIWN LN Q

B> T S S S T B S N

(a) Percentage of time above a power limit (b) Longest duration of the application above a power limit

Figure 11. Performance and energy footprint for SIESTA wheming with 128 MPI processes at 2.6 GHz.

number of tasks

Energy Duration

Speedup Parallel EfficiencfeDP
1 -

16 8205 51824 425220
32 8296 27375 1.89 0.96 227123
64 9885 16252 3.19 0.80 160660
128 13373 10883 4.76 0.60 145546
256 25610 11001 4.71 0.29 281766

Table IV. Scalability of SIESTA. Energy is shown in KJoul&yration is shown in seconds and EDP is
shown inM Joules * seconds

5.3.3. SIESTAWe have studied the scalability of SIESTA in terms of performance and gnerg
efficiency, through the time, the energy consumed and the EDP metrics withtiexes ranging
from 16 to 256 processes at 2.6 GHz and using the two sockets of edehTablelV shows the
behavior of the application when using different number of MPI praeesé/e observe that the
application does not even scale linearly, but the application takes longesd¢ate when using 256
processes showing a speedup of 4.71 compared to the execution okd,Gréssilting in a parallel
efficiency about 0.29. In terms of performance, the execution thati&®gdrocesses shows the best
performance, although its parallel efficiency could be considered I&@)OFor these experiment,
we conclude that lowering the number of processes results in betterceadilization and also
in less energy consumption. However, the execution that uses 128spesceesults in the best
execution in terms of EDP.

Regarding to the energy footprint, if we consider the best case of SlEBErms of EDP, we
obtain the plots shown in Figure. As it occurred in the previous studies within this section, the

Copyright © 0000 John Wiley & Sons, Ltd.
Prepared usingpeauth.cls

Concurrency Computat.: Pract. Exp€a000)
DOI: 10.1002/cpe

17

100% 500000
90% 450000
80% 400000
70% 350000

300000

250000

200000

150000

100000

10% 50000

Longest run (ms)

ercentage of time
IS
]
=

P
N
3
R

(a) Percentage of time above a power limit (b) Longest duration of the application above a power limit

Figure 12. Performance and energy footprint for Mr. Genesisn running with 8 MPIpps at 2.6 GHz.

processor does not typically consume more than 80 Watts (about 70%TdDEyenvhen running the
application. For this particular case, we also observe that those rediondeothat drain more than
80 Watts do not last more than 25 seconds. This shows, again, that desgoo typically drains
an amount of power, and only for some small periods of time it requiresucging more power.

More precisely, if we consider the same 81.5 Watts limit as in the previous exawmlebserve

that SIESTA would require surpassing this limit for 7 seconds approximately

6. CONCLUSIONS AND FUTURE WORK

In this paper we have shown the usefulness of using the novel InteL RARstructure to obtain
power and energy metrics combined with performance counters and tge o$ahe folding
mechanism. By combining them, we have been able to study, with high level afsdéke
evolution of both the performance and the power in a wide variety of bentisnaad also in
parallel applications executed in many different scenarios of a produstienario. We believe
that having tools that easily correlate performance and power measusgr@ed source code are
useful to understand the behavior of any application and also allows thi@wous development of
supercomputing systems and improve their usage. In fact, we have seenhigthlevel of details
that both performance and energy consumption are related and alsmaefiliby similar factors
(like the application executed, the processor frequency, the ocoupétie socket). Depending on
the metric to optimize, the suggestions to the analyst can be completely different.

In respect to the power and performance analysis, although we hawa shany results with
small variance in power consumption, there is space for improvement oroter gonsumption.
This is particularly true for the DRAM power consumption because it is heaelgted to the
memory accesses and a better memory access patterns would result inlessq@usumption. In
this sense, the overall effort to reduce the execution time of an applicationdvoving the source
code will also result in a reduction of the energy consumption. As a resaiisige of performance
tools to improve the system utilization will result in benefits on the performarfiéeetcy of the
application, but also on its energy efficiency.

Not only we are confident that having the Intel RAPL infrastructure veilily accommodate the
power measurement into the existing performance tools, but we think thabwe measurements
could also help the RAPL and the Intel® TurboBoost acceleration mechaaiadjust itself to the
load and power conditions. In particular, we have seen that most of Hwitans does not reach
the maximum TDP of the processor. The energy footprints we have shawbe used either to
enable the acceleration in phases of low-consumption and also limit the aticeldor a certain
duration of the execution. We think that applying the RAPL infrastructure to timeitpower usage
and comparing it to the DVFS techniques would be also interesting to be studied.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp€a000)
Prepared usingpeauth.cls DOI: 10.1002/cpe

18

H.S. ANDOTHERS

ACKNOWLEDGEMENTS

This work is partially funded by Intel under the Intel-BSC Exascale CeAgneement. We
would like to thank Charles H. Finan and Philippe Thierry for their insightiuhments on the
Intel® SandyBridge processor. The authors also thankfully ackngeléide computer resources,
technical expertise and assistance provided by the RedfBkpale Supercomputari, and
specially to Luis Cabellos for his valuable comments and management tasks iltetinéra cluster.

REFERENCES

1. June 2012 Highlights of the TOP500 list 2012.
http://top500.org/lists/ 2012/ 06/ hi ghlights - Lastaccessed July, 2012.

2. Mudge T. Power: A First-Class Architectural Design Constr&omputerApr 2001;34(4):52-58, doi:10.1109/2.
917539. URLht t p: // dx. doi . org/ 10. 1109/ 2. 917539.

3. Duranton M, Black-Shaffer D, Yehia S, Bosschere KD. The HiERision 2011/2012 2012.
http://ww. hi peac. net/system fil es/hi peac-roadmap2011. pdf - Last accessed July, 2012,

4. Dongarra J, Beckman P, Moore T, Aerts P, Aloisio G, Andre JC,k@aD, Berthou JY, Boku T,
Braunschweig B,et al. The International Exascale Software Project roadmbgernational Journal
of High Performance Computing Application8011; 25(1):3—60, do0i:10.1177/1094342010391989. URL
http://hpc. sagepub. com content/ 25/ 1/ 3. abstract.

5. Kappiah N, Freeh VW, Lowenthal DK. Just In Time Dynamic Voltggealing: Exploiting Inter-Node Slack
to Save Energy in MPI Programd2roceedings of the 2005 ACM/IEEE conference on Supercamgput
SC '05, IEEE Computer Society: Washington, DC, USA, 2005; 38ej:10.1109/SC.2005.39. URL
http://dx.doi.org/10. 1109/ SC. 2005. 39.

6. Sharma S, Hsu CH, Feng Wc. Making a case for a green50@t@teedings of the 20th international conference
on Parallel and distributed processing’DPS’'06, IEEE Computer Society: Washington, DC, USA, 2@98-299.
URLhttp://dl.acmorg/citation.cfn?i d=1898699. 1898827.

7. Wolf F, Wylie BJN,Abraham E, Becker D, Frings W, Flinger K, Geimer M, Hermanns MA, Mohr B, Moore S,
et al. Usage of the SCALASCA for scalable performance analysis oklamale parallel application$ools for
High Performance Computingpringer Berlin Heidelberg, 2008; 157-167.

8. Nagel WE, Arnold A, Weber M, Hoppe HC, Solchenbach K. VARRPYisualization and analysis of MPI resources.
Supercomputet996;12(1):69-80.

9. Tallent N, Mellor-Crummey J, Adhianto L, Fagan M, Krentel MPEToolkit: performance tools for scientific
computingJournal of Physics: Conference Ser2308;125(1):012 088.

10. Shende SS, Malony AD. The TAU parallel performance systeim.J. High Perform. Comput. AppR006;
20(2):287-311, doi:http://dx.doi.org/10.1177/1094342064482.

11. PilletV, Labarta J, Cogs T, Girona S. Paraver: A tool to visualize and analyze ma@ide Transputer and occam
Developmentépril 1995; :17-32
http://ww. bsc. es/ paraver - Last accessed July, 2012.

12. Bedard D, Lim MY, Fowler R, Porterfield A. PowerMon: Figeained and Integrated Power Monitoring for
Commodity Computer SystemBroceedings of the IEEE SoutheastCon 2041 2; 479-484.

13. Ge R, Feng X, Song S, Chang HC, Li D, Cameron KW. PowerPaderdy Profiling and Analysis of
High-Performance Systems and ApplicatiohSEE Transactions on Parallel and Distributed Syste2809;
99(RapidPosts):658-671, doi:http://doi.ieeecomputersacigf{l 0.1109/TPDS.2009.76.

14. Watts up? .net.
https://ww. wat t supnet ers. coni secur e/ product s. php?pn=0 - Last accessed July, 2012.

15. Alonso P, Bath RM, Labarta J, Barreda M, Dolz MF, Mayo R, Quintanat@S8, Reyes R. Power-Energy
Modelling and Analysis of Parallel Scientific ApplicationiCPP’12: Proceedings of the 2012 International
Conference on Parallel Processing012. To appear.

16. Wang S, Chen H, Shi W. Span: A software power analyzer forticood computer systemsSustain-
able Computing: Informatics and Systen2911; 1(1):23 — 34, doi:10.1016/j.suscom.2010.10.002. URL
http://ww. sci encedi rect. conf sciencel/article/pii/S221053791000003X.

17. Chen H, Li Y, Shi W. Fine-grained power management using ga®tevel profiling. Sustainable
Computing: Informatics and System2012; 2(1):33 - 42, doi:10.1016/j.suscom.2012.01.002. URL
http://ww. sci encedi rect.com science/articlel/pii/S2210537912000030.

18. Brooks D, Tiwari V, Martonosi M. Wattch: a framework for hiectural-level power analysis
and optimizations. Proceedings of the 27th annual international symposium on @denp
architecture ISCA ’'00, ACM: New York, NY, USA, 2000; 83-94, doi:10.114839647.339657. URL
http://doi.acm org/10. 1145/ 339647. 339657.

19. Ye W, Vijaykrishnan N, Kandemir M, Irwin MJ. The design and us8implePower: a cycle-accurate energy esti-
mation tool.Proceedings of the 37th Annual Design Automation Conferdd&€ '00, ACM: New York, NY, USA,
2000; 340—-345, d0i:10.1145/337292.337436. URIt p: / / doi . acm or g/ 10. 1145/ 337292. 337436.

20. Bertran R, Gor&lez M, Martorell X, Navarro N, Ayguas E. Decomposable and responsive power models for
multicore processors using performance count&S, 2010; 147-158.

21. Singh K, Bhadauria M, McKee SA. Real time power estimatiod #iiread scheduling via performance
counters. SIGARCH Comput. Archit. Newsul 2009; 37(2):46-55, do0i:10.1145/1577129.1577137. URL
http://doi.acm org/10. 1145/ 1577129. 1577137.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp€a000)

Prepared usingpeauth.cls DOI: 10.1002/cpe

http://top500.org/lists/2012/06/highlights
http://dx.doi.org/10.1109/2.917539
http://www.hipeac.net/system/files/hipeac-roadmap2011.pdf
http://hpc.sagepub.com/content/25/1/3.abstract
http://dx.doi.org/10.1109/SC.2005.39
http://dl.acm.org/citation.cfm?id=1898699.1898827
http://www.bsc.es/paraver
https://www.wattsupmeters.com/secure/products.php?pn=0
http://www.sciencedirect.com/science/article/pii/S221053791000003X
http://www.sciencedirect.com/science/article/pii/S2210537912000030
http://doi.acm.org/10.1145/339647.339657
http://doi.acm.org/10.1145/337292.337436
http://doi.acm.org/10.1145/1577129.1577137

22.

23.

24.

25.

26.

27.
28.

29.
30.
31.
32.
33.

34.

35.

36.

37.
38.

39.

19

Merkel A, Bellosa F. Balancing power consumption in multg@ssor systems.Proceedings
of the 1st ACM SIGOPS/EuroSys European Conference on CompBystems 2006 EuroSys
‘06, ACM: New York, NY, USA, 2006; 403-414, doi:10.1145/7885.1217974. URL
http://doi.acmorg/10. 1145/ 1217935. 1217974.

David H, Gorbatov E, Hanebutte UR, Khanna R, Le C. RAPL: nmgmpower estimation and
capping. Proceedings of the 16th ACMI/IEEE international symposium onv Lmower electronics and
design ISLPED '10, ACM: New York, NY, USA, 2010; 189-194, doi:1045/1840845.1840883. URL
http://doi.acmorg/10. 1145/ 1840845. 1840883.

Rotem E, Naveh A, Ananthakrishnan A, Rajwan D, Weissmann &eRblanagement Architecture of the Intel
Microarchitecture Code-Named Sandy Brid¢EE Micro 2012; 32:20-27, doi:http://doi.ieeecomputersociety.
0rg/10.1109/MM.2012.12.

Browne S, Dongarra J, Garner N, Ho G, Mucci P. A portablg@imming interface for performance evaluation
on modern processorit. J. High Perform. Comput. App2000; 14(3):189-204, doi:http://dx.doi.org/10.1177/
109434200001400303.

http://icl.cs.utk.edu/ papi -Lastaccessed July, 2011.

Servat H, Llort G, Giranez J, Labarta J. Detailed performance analysis using coarsesgrapling.Euro-Par
Workshops (Workshop on Productivity and Performance, PROPERY; 185-198.

Servat H, Llort G, Girinez J, Huck K, Labarta J. Unveiling internal evolution of flatapplication computation
phasesICPP’11: International Conference on Parallel Processi2§11.

Bailey DH, Barszcz E, Barton JT, Browning DS, Carter RL, oBht RA, Frederickson PO,
Lasinski TA, Simon HD, Venkatakrishnan Vet al. The NAS parallel benchmarks 1991; URL
http://citeseerx.ist.psu.edu/vi ewdoc/ sunmary?doi =10. 1. 1. 104. 3829.

Henning JL. SPEC CPU2006 benchmark descriptiSlARCH Comput. Archit. NewBep 2006;34(4):1-17,
d0i:10.1145/1186736.1186737. URILt p: / / doi . acm or g/ 10. 1145/ 1186736. 1186737.

McCalpin JD. Memory bandwidth and machine balance in ctihigi performance computedEEE Computer
Society Technical Committee on Computer Architecture EQCwsletteiDec 1995; :19-25.

Hydrodynamics challenge problemechnical ReportLawerence Livermore National Laboratory 2011.
https://conmputation.llnl.gov/casc/ ShockHydro/ LULESH fil es/ spec. pdf.

Extrae instrumentation package.

http://ww. bsc. es/ paraver - Lastaccessed July, 2012.

Graham SL, Kessler PB, Mckusick MK. Gprof: A call graph exeguprofiler. SIGPLAN '82: Proceedings of
the 1982 SIGPLAN symposium on Compiler construct®@M: New York, NY, USA, 1982; 120-126, doi:
\\\url{http://doi.acm.org/10.1145/800230.806987

Etinski M, Corbalan J, Labarta J, Valero M, Veidenbaum A. &esware load balancing of large scale MPI
applications. Proceedings of the 2009 |IEEE International Symposium on RdgdDistributed Processing
IPDPS '09, IEEE Computer Society: Washington, DC, USA, 200%, Hoi:10.1109/IPDPS.2009.5160973. URL
http://dx.doi.org/10. 1109/ | PDPS. 2009. 5160973.

Rountree B, Lownenthal DK, de Supinski BR, Schulz M, FreéW, Bletsch T. Adagio: making
DVS practical for complex HPC applicationProceedings of the 23rd international conference on
SupercomputinglCS '09, ACM: New York, NY, USA, 2009; 460—469, doi:10.114542275.1542340. URL
http://doi.acmorg/10. 1145/ 1542275. 1542340.

Le Sueur E, Heiser G. Dynamic voltage and frequency scatfiegtaws of diminishing return$®roceedings of
the 2010 international conference on Power aware computimd) gystemsHotPower'10, USENIX Association:
Berkeley, CA, USA, 2010; 1-8. URht t p: //dl . acm org/ ci tati on. cf n?i d=1924920. 1924921.
RAMSESht t p: // web. me. conl ronai n. t eyssi er/ Si t e/ RAMSES. ht i - Last accessed May, 2012.
Mimica, P, Giannios, D, Aloy, M A. Deceleration of arbiitpr magnetized grb ejecta:
the complete evolution. A&A 2009; 494(3):879-890, do0i:10.1051/0004-6361:200810756. URL
http://dx. doi.org/10. 1051/ 0004- 6361: 200810756.

Soler JM, Artacho E, Gale JD, GacA, Junquera J, Ordep P, @anchez-Portal D. The SIESTA method
for ab initio order- N materials simulatiordournal of Physics: Condensed Mattg002; 14(11):2745. URL
http://stacks.iop.org/0953-8984/14/i =11/ a=302.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp€a000)
Prepared usingpeauth.cls DOI: 10.1002/cpe

http://doi.acm.org/10.1145/1217935.1217974
http://doi.acm.org/10.1145/1840845.1840883
http://icl.cs.utk.edu/papi
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.104.3829
http://doi.acm.org/10.1145/1186736.1186737
https://computation.llnl.gov/casc/ShockHydro/LULESH-files/spec.pdf
http://www.bsc.es/paraver
http://dx.doi.org/10.1109/IPDPS.2009.5160973
http://doi.acm.org/10.1145/1542275.1542340
http://dl.acm.org/citation.cfm?id=1924920.1924921
http://web.me.com/romain.teyssier/Site/RAMSES.html
http://dx.doi.org/10.1051/0004-6361:200810756
http://stacks.iop.org/0953-8984/14/i=11/a=302

s|o yineadBuisn pasredaid

"pI7 ‘suos % As|im uyor 0000 @ ybuAdoD

(000wddx3 10eId '1eIndwo) Aouaiunduo)d

2d2/Z007°0T :10d

2.6 GHz 2.0GHz 1.6 GHz 1.2GHz

Benchmark Timef Core Package| Time Core Package| Time Core Package| Time Core Pack
434.zeusmp 3647 63405 113983| 4571 52371 113458| 5570 46535 121589 | 7253 37537 135152
435.gromacs 85 1455 2626 111 1221 2714 139 1133 2989 186 932 3417
436.cactusADM 766 13857 24426 | 977 11482 24670 | 1177 10221 26008 | 1586 8542 29810
437 leslie3d 175 3168 5671 226 2646 5782 279 2402 6235 370 1985 7043
444 .namd 13528 232393 417330| 17600 194785 430706 | 22043 180532 474418 | 29414 148442 541220
465.tonto 70151 1182319 2130323 90937 1033436 2252233 114428 964800 2489647| 152462 793420 2828812
470.lbm 140 2484 4468 171 2070 4457 205 1838 4669 263 1609 5218
481.wrf 2039 34147 62090 | 2638 29518 65262 | 3285 27192 71354 | 4383 24845 83751
bt.B 1383 25322 44361 | 1789 21440 45560 | 2215 19566 49366 | 2953 16458 56119
ft.B 2954 55938 97097 | 3798 46666 98251 | 4777 43094 107667| 6338 35884 121350
is.C 1817 30417 55683 | 2215 23935 53971 | 2646 21433 57157 | 3379 17270 62810
lu.B 912 16443 29073 | 1174 13600 29451 | 1457 12577 32176 | 1946 10453 36606
mg.B 481 8866 15742 | 618 7328 15891 | 766 6803 17325 | 1015 5597 19455
Stream 310 6226 11136 | 382 5224 11056 | 461 4675 11560 | 596 3861 12563
Lulesh 106 1853 3315 137 1657 3526 169 1403 3686 225 1350 4371

Table V. Time and energy consumption for the selected beadksrexecuting at different frequencies.

: 2.6 GHz 2.0GHz 1.6 GHz 1.2GHz
Benchmark Instructionst L1D L2 LLC |,/ /pg ITPJe MIPI | MIPS MIPIo MIPJe| MIPS MIPJG MIPIg| MIPS MIPJc MIPT

434.zeusmp 12988177 2.2% 0.4% 0.2% |3561.09 204.8. 2842.25 252.9 114.51 | 2333.02 279.3 1792.89 346.4 .
435.gromacs 278947 1.2% <0.1% <0.01%| 3250.90 191.63 106.19 | 2507.00 228.52 102.80 | 2005.34 246.31 93.41 | 1502.00 299.57 81.77
436.cactusADM 2603516 0.9% 0.4% 0.1% |3398.03 187.87 106.58 | 2665.62 226.83 105.57 |2213.30 254.90 100.18 | 1643.96 305.25 87.47

437 .leslie3d 716501 3.0% 0.8% <0.01%)|4087.98 226.16 126.33 |[3171.41 270.82 123.95|2567.19 298.44 114.98 |1934.65 361.39 101.86
444 namd 60102000 1.1% <0.1% <0.01%)| 4442.78 258.62 144.02 | 3415.88 306.65 139.59 |2728.36 333.14 126.77 |2045.81 126.77 111.19
465.tonto 52627913 1.3% 0.4% <0.01%) 4501.21 267.07 148.23 | 3473.47 305.65 140.25|2761.39 327.51 126.92 |2073.73 398.48 111.77
470.lbm 411983 52% 0.9% 0.2% |2926.22 165.82 92.19 |2401.60 199.05 92.45 |2003.26 224.28 88.29 |1564.68 256.34 79.05
481 .wrf 9132508 1.0% 0.2% <0.01%|4478.79 267.44 147.08 | 3462.06 309.48 139.98 |2781.50 336.08 128.07 | 2085.93 368.04 109.18
bt.B 8099479 1.9% 0.2% <0.01%)|5853.10 319.86 182.58 |4528.40 377.84 177.81 |3656.86 414.14 164.14 |2745.20 492.54 144.46
ft.B 18206181 3.6% 0.9% <0.01%|6161.94 325.47 187.50 |4794.32 390.22 185.34 |3812.30 422.67 169.18 | 2875.04 507.80 150.16
is.C 3304812 3.3% 0.5% 0.4% |1818.81 108.46 59.35 |1492.38 138.04 61.26 |1250.23 154.36 57.88 | 980.00 191.76 52.73
lu.B 4329609 2.1% 0.4% 0.1% |4742.97 263.30 148.92 |3687.77 318.43 147.05|2971.76 344.45 134.64 |2226.43 414.62 118.41
mg.B 3106833 1.7% 0.4% 0.1% |6454.72 350.39 197.36 |5022.88 424.01 195.55 |4052.77 456.82 179.40 |3061.46 555.45 159.82
Stream 1201408 5.2% 4.2% 0.9% |3871.06 192.94 107.88 |3141.75 230.00 108.69 |2601.96 257.10 103.98 | 2016.33 311.49 95.73
Lulesh 472003 1.4% 0.3% 0.2% |4443.30 254.67 142.34 |[3426.91 284.07 133.50 |2790.35 336.61 128.12 |[2095.19 349.98 108.10

Table VI. Performance and energy metrics for the selectadibaarks using different processor frequencies.

TTime refers to the average duration of the time-stepper fumationilliseconds. Core and Chip refers to the energy used in Joyla#i the cores and the whole socket, respectively.
fInstructions is shown in millions. L1D, L2 and LLC refer to theioadf L1, L2 and LLC with respect to the instructions executdfll PS, MIP.Js and MIPJp stand for, Millions of
Instructions per Second, Millions of Instructions per Joukr(g the core or the package energy counter, respectively).

0c¢

SY3IHIOANV 'S 'H

	1 Introduction
	2 Related Work
	3 Tracking power consumption
	4 Folding
	4.1 Folding improvements to accommodate power measurements

	5 Experiments
	5.1 Analysis of serial benchmarks
	5.2 Application of the DVFS techniques to the serial benchmarks
	5.3 Analysis of parallel applications
	5.3.1 HydroC
	5.3.2 Mr. Genesis
	5.3.3 SIESTA

	6 Conclusions and future work

