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Summary

A variety of extremely challenging biological sequence analyses were conducted on the XSEDE

large shared memory resource Blacklight, using current bioinformatics tools and encompassing a

wide range of scientific applications. These include genomic sequence assembly, very large

metagenomic sequence assembly, transcriptome assembly, and sequencing error correction. The

data sets used in these analyses included uncategorized fungal species, reference microbial data,

very large soil and human gut microbiome sequence data, and primate transcriptomes, composed

of both short-read and long-read sequence data. A new parallel command execution program was

developed on the Blacklight resource to handle some of these analyses. These results, initially

reported previously at XSEDE13 and expanded here, represent significant advances for their

respective scientific communities. The breadth and depth of the results achieved demonstrate the

ease of use, versatility, and unique capabilities of the Blacklight XSEDE resource for scientific

analysis of genomic and transcriptomic sequence data, and the power of these resources, together

with XSEDE support, in meeting the most challenging scientific problems.
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1. Introduction

High-throughput, next-generation sequencing (NGS) of genomes [1, 2], transcriptomes [3],

and epigenomes is currently in a phase of burgeoning growth with each passing

development cycle yielding a greater than exponential return in the amount of quality

sequence data generated per unit of cost (www.genome.gov/sequencingcosts). This rapid

progress in data generation can currently create data sets within weeks, which are

computationally intractable [4] for complete scientific analysis because of the large RAM

footprint required or the volume of data to be analyzed. This limits their potential use in

areas of scientific interest [5] and in translational medicine [6, 7].

The computational requirements of these data sets often exceed the capacity of personal

computing systems, server-level infrastructure, distributed high performance computing, and

large shared memory high performance computing systems. Hence, many important

scientific questions for which the data are or could be available either go unanswered or can

only be addressed by a few research groups with a large bioinformatics infrastructure. Here

we present science outcomes that highlight the ability of the cache coherent non-uniform

memory access architecture of the XSEDE resource Blacklight, housed at the Pittsburgh

Supercomputing Center (PSC), to allow efficient genomic analysis of data sets outside the

scope of other high performance computing systems, as well as user-friendly high-

throughput analysis of standard-sized to large-sized genomic data [8]. With these

complementary capabilities, the XSEDE resource Blacklight extends the current technical

limits of genomic and transcriptomic assembly for analyses requiring the largest shared

memory systems, as well as the scope of genomic research by enabling high-throughput

large shared memory analysis.

2. Blacklight

The Blacklight system at the PSC is an SGI Altix UV 1000 (SGI (Silicon Graphics, Inc.),

Milpitas, CA 95035, USA) with two partitions, each containing 16 TB of cache coherent

shared memory and 2048 cores. This means that a single application running on Blacklight

can access up to 16 TB of shared memory using up to ∼2000 cores. The obvious application

of this system is for algorithms and problems that benefit from holding large amounts of

data in RAM. However, the fast interconnect that facilitates cache coherent non-uniform

memory access across the system also enables rapid communication within distributed

memory applications. This dual nature of the system allows researchers to run problems

across a continuum, from a single, massive shared memory application to many large shared

memory applications running in parallel to fully distributed or embarrassingly parallel

applications. Because the realm of genomic analysis encompasses all of these modes of

computing, this flexibility makes Blacklight convenient and powerful for researchers dealing
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with diverse genomic analysis pipelines. In addition, because Blacklight is essentially one

big system, running a single operating system, it is ideal for rapid prototyping of new serial

and parallel algorithms for large data analysis.

3. Genome Assembly

A variety of large animal genomes have been assembled on Blacklight using various de

novo assembly codes. These include a 1.7-Gbp rattlesnake genome using the Velvet

assembler, the 3.4-Gbp Little Skate genome using ABySS, and two species of ∼200-Mbp

Drosophila and the ∼3-Gbp Florida Scrub Jay using ALLPATHS-LG. All of these

assemblers create large de Bruijn graphs in memory to piece the short DNA reads produced

by NGS machines into the large fragments required to assemble a compete genome. Because

the assemblers must trace random paths through memory to assemble these fragments, the

algorithm is not amenable to distributed programming. Therefore, a large shared memory

machine is essential to completing many of these assemblies. Many plant and animal

genomes are much larger than these and would require many terabytes of memory to

assemble. Researchers have deemed these very large genomes out of reach, but Blacklight's

16 TB of shared memory creates the possibility of doing complete assemblies of these

important large genomes, such as Chinese Spring Wheat, with 17 Gbp of DNA.

In addition to doing very large genomes, researchers have used new long-read sequencing

technology to obtain assemblies of genomes with complex structures that are difficult to sort

out with short reads. Using Blacklight for sequence error correction of long-read Pacific

Biosciences single molecule sequence data, researchers were able to employ the CELERA

assembler to assemble the genomes of an important group of anaerobic fungal organisms

that reside in the rumen of herbivores. These organisms had been previously untenable for

genomic analysis because of a highly repetitive and AT-biased genome [9]. This analysis

yielded valuable insight into their role in rumen ecology as well as potentially novel

enzymes to assist in bioethanol production. These results, which have just been published

[10], will greatly contribute to scientists' understanding of these organisms.

4. Metagenomics

Metagenomics, the assembly of multiple genomes using sequence data gathered from a

given environment, presents unique challenges due to both the complexity and the amount

of data needed to achieve sufficient coverage for assembly. Assembling metagenomes often

requires more shared memory than what is needed for genomes of individual organisms or

even what is available on high performance computing clusters and typical large memory

nodes. Extending the scope of metagenomic analysis and allowing the assembly of very

large metagenomes could provide valuable insight into microbial ecology as well as enable

the discovery of novel enzymatic pathways with potential to address the emerging

biotechnology challenges of the 21st century, including antibiotic resistance,

environmentally friendly bio-energy, bioremediation, and sustainable agriculture.

To identify enzymes with potential use in biofuel production, a novel method for

metagenomic microbial enzymatic discovery was recently employed that uses a synthetic

ecosystem amenable to experimenter control (bioreactor) seeded with a microbial founder
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community of high diversity allowing for complex higher-order microbial interactions and

total de novo metagenomic assembly. In this method, artificial evolutionary pressure is

applied to the seeded bioreactor to select for members of the community that contain an

experimentally desired feature or metabolic hallmark.

In the experiment reported here, a Brazilian soil sample was selected as the microbial

founder community because of soil's extreme species level diversity, the majority of which

are resistant to laboratory monoculture. This community was cultured for 8 weeks in an

aerobic bioreactor using minimal media and a complex lignocellulotic plant material,

sugarcane bagasse, as the sole carbon source with a 90% liquid phase replacement schema

conducted every seventh day. Using this method, 300 Gbp of sequence data (Table I) was

generated and then assembled on Blacklight using the Velvet code [2]. This assembly

required nearly 4 TB of shared RAM on Blacklight (Table II), the only computing platform

for open scientific research in the US that is currently configured to provide sufficient

shared memory for assemblies of this scale.

The use of the standard malloc library with Velvet resulted in extreme memory

fragmentation as memory usage passed 3 TB. The frequent use of the memory management

routines malloc and free on such a large memory space eventually resulted in there not being

500 KB of contiguous memory in 6 TB. To overcome this memory fragmentation problem,

which prevented the assembly from completing, the Hoard memory allocation package was

used as a drop-in replacement for the standard malloc library [11]. Use of the more uniform

Hoard allocation structures significantly reduced memory fragmentation. This increased

overall runtime and RAM usage slightly but allowed the assemblies to complete without

error.

After assembly, further analysis was performed to assess the quality of the assembly and

identify potential enzymes of interest. These downstream analyses only required minimal

computing resources and hence were performed on the researchers' local hardware or on

specialized public resources. Taxonomic analysis of the resulting assembly was performed

with on the public MG-RAST server [12] and yielded the expected distribution of species

found in soil environments dominated by the taxon Proteobacteria, the predominant

phylotype found in soil (Table III, Figure 1). In addition, this analysis revealed the presence

of 70 phyla in the metagenome. This extensive diversity shows that this methodology can be

used to analyze diverse communities, which are often needed to examine functions that

would be absent in smaller more homogeneous samples.

Further analysis of the assembled data resulted in the identification of a large number of

enzymes related to the breakdown of plant cell walls, a highly desired group of enzymes that

have the potential to accelerate bio-ethanol production [13], demonstrating the effectiveness

of these methods for the identification of novel enzymes of bio-industrial importance from

prokaryota. To accomplish this analysis, MetaGeneMark [14] was used to predict protein

gene models (Table IV). These protein gene models were used as input to hmmscan [15],

which uses Markov domain profiling to scan these gene models against protein databases to

identify enzymes of interest. In this case, hmmscan was used to identify protein domains

that are responsible for lignocellulosic degradation in putative carbohydrate active enzymes
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(CAZy) [16] using the CAZy database (dbCAN) [17]. This method, which uses

mathematical modeling of domain structure for protein function prediction in place of

traditional homology-based searches, allows for detection of remote homologs and has been

used successfully for the prediction of CAZy members in other metagenomes [18]. The

hmmscan search, employing a conservative sequence identification statistical significance e-

value of e-4, revealed a large number of CAZy enzymes (56,626) that could aid in the

production of lignocellulosic biofuel (Table V).

To explore which of the identified CAZy enzymes were active in the metagenomic

community, mass spectrometry proteomic analysis Orbitrap LC/MS Thermo Scientific

(Thermo Fisher Scientific Inc, Waltham, MA, USA) was conducted on the metagenome

reactor using the CAZy peptide database. Interpolated CAZy-identified peptides were then

aligned to the metagenomic assembly protein model database using the BLAST algorithm,

and only exact ungapped matches of nine or more peptides were considered valid. This

validation yielded 469 proteomically confirmed enzymes (Figure 2) in the metagenome

assemblies. These targets will be prioritized for future studies of cloning and expression to

assess their specific role in lignocellulose degradation.

This experiment demonstrates the utility of Blacklight's large shared memory architecture

for studying metagenomic communities at previously impractical resolutions. By using this

methodology with a different bioreactor schema and varied evolutionary pressure, alternate

microbial ecosystems can be evolved containing other metabolic hallmarks of experimental

interest. These methods, together with other ‘omics’ data and the right computational

resources, form an effective high throughput, high resolution platform for gene discovery.

5. The Non-Human Primate Reference Transcriptome Resource

5.1. Data generation with massive RNA-seq

In 2010, a committee of researchers set out to create a non-human primate reference

transcriptome resource (NHPRTR) to help establish the genetic basis for phenotypic

differences observed between primates, including differences between humans and non-

human primates (NHPs). Such a resource can provide valuable information regarding

evolutionary processes, as well as insight into human health and disease from the

pharmacogenomics work performed on the animal models for infectious disease and novel

treatments. To provide a comprehensive resource, a committee of experts chose 13 primate

species. Tissues samples were then taken from 21 tissues and next-generation sequencing of

RNA (RNA-seq) was performed using three different approaches. The result was 40.5

billion 100 nucleotide reads that needed to be assembled into transcriptomes for each species

and RNA-seq method used (13 species×3 methods= 39 assemblies). Because most of these

species do not have any reference genome, the transcriptomes must be assembled de novo.

The details behind the motivation for this resource and the generation of the RNA-seq data

are described in detail in the NHPRTR paper [19].

5.2. Enabling large-scale de novo transcriptome asembly with trinity on Blacklight

As described in the NHPRTR paper, investigators found that assembling the nearly 2 billion

reads required as input for these de novo transcriptome assemblies was beyond the
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capabilities of their local systems and even beyond the capacity of the programs' initial

estimates of large data inputs. At this point, they applied for an XSEDE allocation on

Blacklight at the PSC, along with Extended Collaborative Support Services (ECSS) from

XSEDE to help them perform these transcriptome assemblies of unprecedented size and

scale using Trinity [3]. Through XSEDE's ECSS, PSC worked closely with the Trinity

developers to harden Trinity on Blacklight and find the best way to run these massive

assemblies.

To begin, PSC installed the latest, optimized version of Trinity contributed by the National

Center for Genome Analysis Support (NCGAS) at IU, without which these assemblies

would have taken several times longer to complete [20]. Even with this optimized version,

challenges appeared immediately. While Blacklight had plenty of shared memory to handle

the assemblies, at one point in the assembly, the Chrysalis phase [3], Trinity was creating

and working on hundreds of thousands of files. Even very large assemblies of say, 600

million reads, while still producing tens of thousands of files, had no problem executing on

the default Lustre filesystem, but the 2 billion read assemblies being attempted here

produced too many files to be handled efficiently by this filesystem. To work around this,

PSC established a local filesystem attached directly to Blacklight. This alleviated the

problem for a single massive Trinity assembly, but I/O-related slowdowns occurred with

many massive assemblies running at once.

Finally, an ideal workflow was devised (Figure 3), utilizing Blacklight's RAM disk at the

right points in the workflow to speed up the calculations, run many assemblies at once, and

avoid problematic I/O issues but also avoid wastefully using RAM disk for large files where

it was less beneficial. First, preprocessing of the data, a primarily serial task, was performed

on the research group's local resources. The preprocessed data were then moved to

Blacklight's Lustre filesystem, and the initial Inchworm stage of the assembly was

performed entirely on the Lustre filesystem using 64 cores. For the Chrysalis stage, we

introduced a modification to the Trinity code that allowed the Chrysalis directory to be

given a different path from the rest of the Trinity working directory. This allowed the

Chrysalis files to be created on RAM disk, while large files that did not need RAM disk

remained on the Lustre filesystem. This phase generally required 128 cores (1 TB RAM) to

provide extra memory resources to store files on the RAM disk associated with the job.

After the Chrysalis phase was complete, the job script would back up the Chrysalis directory

to the Lustre filesystem but then continue to operate on those files in RAM disk for the final

QuantifyGraph and Butterfly stages of Trinity. We found that using 64 threads on 64 cores

for the QuantifyGraph and Butterfly stages and running from RAM disk provided optimal

performance, reducing runtime of those steps from a total of 250 h (when running from

Lustre using 32 threads) to 50 h. Even after these optimizations, a significant amount of

resources were needed, with a typical de novo assembly for one primate species with ∼1.8

billion RNA-seq reads taking around 550 compute hours using 64–128 cores (35,200–

70,400 service units).

This de novo assembly method has proven successful, generating transcriptomes with a

mean average size >2 KB for most RNA-seq methods used. Out of the 39 total assemblies
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required, 20 of the largest assemblies were performed on Blacklight over a period of a few

weeks (Table VI).

5.3. Characterizing the de novo assembled transcriptomes

In order to evaluate the accuracy of the de novo transcriptome assemblies, we determined

the percentage that our assembly reconstituted the publicly available genome annotations

(Table VII). Currently, only five NHP species from our data set have reference genomes:

chimpanzee (panTro4), gorilla (gorGor3), rhesus macaque (rheMac3), marmoset (calJac3),

and mouse lemur (micMur1). For species without reference genomes, we mapped to the

nearest genome. For the gene models, we used annotations that were generated from native

mRNA (RefSeq) and annotations that were computationally predicted (ENSEMBL). In most

cases, the genes were either assembled >80% of their gene model or not assembled at all. In

every NHP species with a reference genome, there was an improvement in assembling

RefSeq genes compared with assembling ENSEMBL gene predictions. Most notably, we

were able to recover >90% of RefSeq genes in rhesus macaque. The lack of coverage of

genes in mouse lemur may represent the incompleteness of the draft genome, which lies

entirely in scaffolds.

The ability of Trinity to recover most of the known gene models shows that the de novo

assemblies built for NHP species without a reference genome are good representations of the

actual annotations. Because many studies are designed to be dependent on certain reference

genomes, we provide transcriptome assemblies for many additional NHP species without

reference genomes and also show that it is possible to accurately rebuild any species'

transcriptome with high-coverage RNA-seq data.

In addition to the known genes that were built by Trinity, we were interested in the

assembled transcripts that were not currently annotated. We looked for evidence of novel

putative noncoding RNAs by filtering the assemblies for sequences that were in the current

annotation and/or contained open reading frames that were 90 bp or longer. Noncoding

RNA genes are RNA molecules that are transcribed but are not translated into proteins.

Noncoding RNA genes have been implicated in many biological roles ranging from

necessary components of protein translation (transfer RNAs) to major effectors of X

inactivation (Xist) [21]. The abundance of long noncoding RNAs in NHP genomes remains

unclear. In chimpanzee, we identified 4489 possible novel noncoding RNAs. Figure 4 shows

a putative novel noncoding RNA in chimpanzee that contains an exon from a human long

intergenic non-protein coding RNA (LINC RNA), LINC00457. LINC00457 is primarily

expressed in the human brain [22].

5.4. Hosting a community resource

Now that the initial set of the massive de novo assemblies have been completed, the finished

transcriptomes are being hosted on storage resources at the PSC so that the community of

researchers interested in these data can apply for an XSEDE allocation and use Blacklight or

other XSEDE resources to further work with and analyze the data. The researchers working

with NHPRTR are planning additional assemblies and cross-transcriptome alignments, for

which the ready availability of these data on XSEDE will be most useful [19]. Lastly,
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because they have been encouraged by these results, the NHPRTR group of researchers has

started a larger set of brain and region-specific deep RNA-sequencing of the 21 tissues

across all the primates, which will create an additional 11 billion reads and an expanded

resource for research in the NHPs, including evolutionary models, improved genome

annotation across all primates (humans included), and improved models for infectious

disease like HIV (using SIV) and AIDS.

6. Rapid Algorithm Development

One of the potential advantages of Blacklight's massive shared memory architecture is to

enable scientists and developers to quickly prototype new parallel solutions to their research

problems. As a simple example, when working with very large genomic data sets or other

very large volume data, researchers often encounter circumstances where a heterogeneous

group of large memory commands need to be executed expeditiously. While working with

Trinity on Blacklight, a researcher and Trinity developer was able to quickly design a

program to efficiently execute parallel commands that require large amounts of shared

memory during the QuantifyGraph and Butterfly stages of Trinity. This program, Parafly,

uses C++ and OpenMP to launch a large set of jobs with varying memory requirements,

filling the need for a versatile parallel execution program within Trinity. Parafly accepts a

flat file with the group of commands that a user wishes to execute for input, placing minimal

requirements on the end user for operation. The program operates by loading all commands

to be executed into an array data structure, assigning thread conditions to each command to

be executed, then executes each command in parallel while logging the exit status of each

command. Parafly was incorporated into the main Trinity code, and since then has been

spun off as a separate project and extended to efficiently execute any group of tasks that

require a large amount of shared memory per system thread. The Parafly resource can be

found for download at http://parafly.sourceforge.net/.

7. Conclusion

Results have been presented comprising large single organism genome assembly, massive

300 Gbp metagenomic assembly of thousands of microorganisms, requiring 3.5 TB of

RAM, and high-throughput, high-memory assemblies of 20 primate transcriptomes. These

advances are breaking new ground in their respective fields, and some, like the metagenome

assembly and development of the NHPRTR would have been extremely difficult or

impossible to do on any other system. While these diverse accomplishments highlight the

power and flexibility of Blacklight's architecture for the assembly of NGS data, the research

community is still becoming aware of these capabilities. As a result, Blacklight's potential to

assemble the largest single organism genomes, or even larger metagenomic samples, has not

yet been fully tested. As more groups engage with researchers who have benefitted from this

resource, and engage with XSEDE through its ECSS and novel and innovative project

programs, we expect demand to continue to grow, along with our ability to harness the full

potential of available NGS data to solve the most challenging problems in computational

biology.
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Figure 1.
Species-level phylogenetic distribution of metagenomic contigs.
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Figure 2.
Orbitrap LC/MS metagenomic peptide confirmation results.

Couger et al. Page 12

Concurr Comput. Author manuscript; available in PMC 2014 December 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3.
Walltime and core counts for various stages of the Trinity pipeline to assemble a single

primate transcriptome. See Reference [3] for descriptions of the phases of Trinity.
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Figure 4.
Putative novel noncoding RNA gene in chimpanzee on chromosome 13. This putative gene

overlaps an exon from human long intergenic noncoding RNA gene 457.
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Table I

Next-generation sequencing data and technology type used for assembly of a soil metagenome.

Sequence library condition Read count Technology type Total sequence

Initial soil sample 481.9 Million×2 Illumina HiSeq (paired×100 bp) 96 Gbp

Initial soil sample 1.1 Million×2 Roche titanium 454 500 Mbp

Shaker bioreactor (6 weeks) 487.1 Million×2 Illumina HiSeq (paired×100 bp) 97 Gbp

Fermentation bioreactor (8 weeks) 542.6 Million×2 Illumina HiSeq (paired×100 bp) 108 Gbp

Sequence total (all data) ∼3 billion Illumina/roche 300 Gbp
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Couger et al. Page 16

Table II

Walltime and peak RAM usage for soil metagenome assembly.

Assembly characteristic Value

Velveth peak RAM usage 3.6 TB (3600 GB)

Velveth walltime hours 60

Velvetg peak RAM usage 1.2 TB (1200 GB)

Velvetg walltime hours 83
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Couger et al. Page 17

Table III

Domain-level phylogenetic distribution of metagenomic contigs.

Domain Percent of total assembled contigs (%)

Bacteria 92.30

Eukaryota 6.48

Archaea 0.95

Viruses 0.15

Other 0.12
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Couger et al. Page 18

Table IV

MetaGeneMark gene prediction numbers for metagenomes.

Conditions MeteGeneMark protein gene models

Semi-aerobic enrichment 1,307,802

Aerobic bioreactor 1,286,826

Total assembly (all reads, 300 Gbp) 2,250,504
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Table V

Carbohydrate active enzyme (CAZy) members predicted in the metagenomes.

Conditions Glycoside hydrolases (GH) Accessory enzymes (AA) Pectin lyase (PL) Carbohydrate esterase (CE)

Semi-aerobic enrichment 18,450 4014 1801 8775

Aerobic bioreactor 17,394 3084 1303 6743

Total assembly (all reads,
300 Gbp)

32,143 6662 3414 14,407
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Table VII

Percentage of known (RefSeq) and predicted genes (ENSEMBL) covered by de novo assembled

transcriptomes.

Species (genome)
RefSeq genes Percentage

of all covered >80% RefSeq genes (%)

ENSEMBL gene
predictions covered

>80%

Percentage of all
ENSEMBL gene
predictions (%)

Chimpanzee (panTro4) 1888 77% 18,928 68

Gorilla (gorGor3) N/A N/A 17,142 59

Rhesus Macaque (rheMac3) 5519 91% 14,290 57

Marmoset (calJac3) 124 73% 18,247 56

Mouse Lemur (micMur1) N/A N/A 3693 15

Each species was aligned to its nearest genome indicated in parentheses. If greater than 80% of the full gene model was reconstituted by the de
novo assembly, the gene model was counted. Annotations were downloaded from UCSC Genome Browser Tracks. ‘N/A’ refers to unavailable
annotation files.
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