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SUMMARY

The latest trends in high-performance computing systems show an increasing demand on the use of
a large scale multicore systems in a efficient way, so that high compute-intensive applications can be
executed reasonably well. However, the exploitation of thedegree of parallelism available at each multicore
component can be limited by the poor utilization of the memory hierarchy available. Actually, the multicore
architecture introduces some distinct features that are already observed in shared memory and distributed
environments. One example is that subsets of cores can sharedifferent subsets of memory. In order to
achieve high performance it is imperative that a careful allocation scheme of an application is carried out
on the available cores, based on a scheduling model that considers the main performance bottlenecks, as
for example, memory contention. In this paper, theMulticore Cluster Model(MCM) is proposed, which
captures the most relevant performance characteristics inmulticores systems such as the influence of
memory hierarchy and contention. Better performance was achieved when a load balance strategy for a
Branch-and-Bound application applied to the PartitioningSets Problem is based on MCM, showing its
efficiency and applicability to modern systems. Copyrightc© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Multicore architectures have become dominant today due to the considerable enhancement on
computing systems performance. Multicores can be found in avariety of domains. Currently,
high performance platforms like clusters are composed of multicore nodes or multicore clusters
connected by network channels. These modern platforms suggest a hierarchical memory: cores that
belong to the same processor can share caches, cores belonging to different processors share main
memory (like RAM or DRAM) and cores that belong to different nodes do not share any memory
resource [1, 2].

Parallel applications could benefit from such memory hierarchy to improve performance. The use
of cache as shared memory can reduce the communication time between the tasks of an application,
and, therefore, tasks that communicate more frequently should be placed in cores that share cache,
avoiding communications in main memory or message passing over the network [2, 3, 4]. However,
depending on the amount of memory required for communicating and computing tasks, allocating
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tasks in many cores that are sharing the cache may exceed its capacity, making necessary too many
accesses to main memory. These accesses can cause a bottleneck in the channels and worsen the
application performance [1, 4, 5, 6].

Using the environment characteristics in order to improve application performance is not new. For
doing so, it is necessary to define models that represent the most relevant features of the environment
where the application will run. Nonetheless, this is not an easy task and scheduling algorithm or load
balance strategies should be based on such a model and providem better application’s runtime.

This paper proposes theMulticore Cluster Model(MCM), which was based on an extensive set of
experiments of a synthetic application that identifies the potential bottlenecks promoted by sharing
memory resources and their impact when executing computation and communication tasks. The
model considers three levels of communication: i) the communication made through shared memory
by intra-chip cache, ii) through inter-chip shared memory and iii) communication between cluster
nodes via messages. Scheduling and load balance strategiesshould be adjusted considering the
architecture model and the characteristics of the application, so that it takes the maximum advantage
of the execution environment. A long these lines, a load balance strategy for a class of branch-and-
bound application based on MCM is also proposed.

In order to evaluate and validate our proposals, a parallel branch-and-bound algorithm applied
to the set partitioning problem (PBBSPP ) was developed based on a load balance mechanism
also introduced here. The experiments confirm that the modelrepresents relevant features of the
architecture which affect the application performance. The results showed that when memory access
bottlenecks are avoided, the execution time ofPBBSPP can be improved by up to 70%.

Summarizing, the main contributions of this work are the following:

1. A new model that considers not only the relevant architectural characteristics of processing
and communication via different levels of memory and network in a multicore cluster, but
also how those characteristics are impacted by the amount ofmemory required by the
application tasks. Thereby, the impact that the quantity ofmemory required by processing
and communicating tasks on the execution and communicationcosts where measured and
modeled. The objective here is to provide a model that includes into the typical processing and
communication costs, the one associated with contention inthe different levels of memory.

2. Based on the model, a novel load balance strategy is proposed in which the memory
hierarchy is accounted when communication is held and the quantity of data allocated to each
task is evaluated so that the work load is balanced, avoidingtherefore memory contention
bottlenecks.

3. Finally, a real application based on the branch-and-bound algorithm was used to validate
the proposed work. In the related literature, there is a large number of papers about
parallel branch-and-bound, but, to the best of our knowledge, few of them were designed
to take advantage of a computing system with both shared and distributed memory. The
implementation of the parallel branch-and-bound used herewas based the proposed load
balance strategy.

The remaining of this paper is organized as follows. Section2 presents the related literature about
high performance architecture models. A set of tests used toidentify the relevant characteristics of
multicore clusters and a new load balance mechanism based onthe obtained results are introduced in
Section 3. Section 4 presents the use of the proposed load balance strategy in a parallel branch-and-
bound to solve the Set Partitioning Problem. Experimental results and analysis, aiming to evaluate
the efficiency of the resulting application, are shown in Section 5. Section 6 concludes the paper.

2. HIGH PERFORMANCE PLATFORMS MODELS

Due to the variety of parallel and distributed architecture, it is difficult to define a precise and yet
general model of parallel computation. On the attempt to identify the actual trend, this section
outlines models of parallel computation with the aim to identify the relevant characteristics that
must be considered when executing parallel applications.



It is already well stablished the distinction between distributed memory, where each processor has
its own local memory, and shared memory, where all processors have access to a common memory.
For many years, high performance computing was developed based on distributed systems mainly
due to their potential to solve much larger problems and their scalability. However, at the same time,
in order to improve the performance of processors even further, architectural designers put together
more and more processor cores on the same chip, promoting themulticore advent. In this case, good
performance relies on the software ability to exploit the shared memory hierarchy. For doing so, it
is important to define a computation model that incorporatesthe parameters of parallel architectures
that are essential to characterize the parallel systems.

2.1. Model for shared memory architecture

The Parallel Random Access Machine (PRAM) model [7] consists of a number of processors, each
of which computes one instruction in one time unit, on different data, synchronously, and then
communicates via shared memory, also within one step [8]. The great acceptance of the PRAM
model by the theoretical community has been due to its simplicity and universality and a large
number of parallel algorithms based in it have been designed. While the PRAM model is an idealistic
one, unfortunately it is not a realistic. Nevertheless, much research effort has been expended on
the attempt to incorporating critical parameters of parallel systems, mainly the ones related to
communication overhead [9, 10, 11, 12, 13, 14].

In early 90’s, due to the continuous technological advanceson memory bandwidth and latency,
the use of shared memory was a reality. Since the program designer wish to take full advantage of
the memory system, it is necessary to consider the time to access not only the local main memory but
also the other several levels of memory. Aggarwalet al in [15] proposed the Hierarchical Memory
Model (HMM) designed to capture the effect of memory hierarchy. HMM considers a random
access memory machine where access to memory locationx requires⌈logx⌉ time instead of the
typical constant access. An extension of HMM, the HMBT, was proposed in [16] in which a block of
consecutive locations can be copied in constant time after the initial latency access is paid. However,
both models do not consider parallel machines. Thus, [17] introduced extensions of the HMBT to
model memory systems in which data transfers between memorylevels may proceed concurrently.

Already in [18], the Parallel Memory Hierarchy (PMH) modelsa computer as a tree of memory
modules with processors in the leaves. The main characteristic is the representation of the transfer
cost of a block of data between the tree nodes. In [19], the Uniform Memory Hierarchy (UMH) is
proposed, the cost of data movement between different levels of the memory hierarchy. Although
the works above mentioned are two decades old, it is interesting to note the evidence of current
architectures characteristics such as multicore clusters, especially the relative impact of the memory
hierarchy in the performance of applications. These set of works however, lack mainly on modeling
both distributed and shared memories.

Gibbonset al in [11] introduced the Queuing Shared Memory (QSM) model, which accounts
for limited communication bandwidth while still providinga simple shared-memory abstraction.
The QSM model consists of processors with individual private memory as well as a global shared
memory. However this model ignores the memory hierarchy in aprocessor.

2.2. Model for distributed memory architecture

With the objective of designing a scalable system, distributed memory networks have become
the main stream for the specification of an efficient solutionfor very large dimension problems.
However, the performance of these proposed solutions can beaffected by the limitation on
bandwidth and latency on communications. Many researchershave evaluated the behavior of
distributed memory architectures, with the aim of designing a general purpose parallel model. The
Distributed Memory Model consists of a set of processors (with local memory) connected by links
under some topology, and communication is carried out trough message passing.

In attempting to address the issues related to the communication cost in distributed memory
systems, a couple of models merit discussion: thedelay model, in which the delay on the
communication between any two processors, no matters theirdistance in the network [20] is



captured. This model has been widely used to represent distributed memory systems, incorporating
issues like the heterogeneity of processors [21].

The absence of a standard model of parallel computation influenced many researchers to work
on the attempt to establish a bridge between parallel applications and parallel machines. Valiant
[22] defined the Bulk-Synchronous Parallel (BSP) model, which represents a set of processing
elements, their speed, the time between two synchronization events, which characterizes a superstep.
It is during each superstep that computation of tasks and message delivery between processors are
supposed to be carried out. In a continuous search for more accurate models and with the advent of
computer clusters, studies led to the specification of HBSP [23] to model the heterogeneity of the
processors, concerning their speeds and capacities.

Due to the emergence of network of workstations as high performance environment, the LogP
model [24] was proposed to be a computational model in which global characteristics of parallel
architectures are represented, such as number of processing elements, latency on the transmissions,
gap between subsequent messages and overhead on the sendingand receiving of messages. The
key issues stated in the model were related to communicationand non-synchronous computations.
Following this work, other extended LogP models were proposed, as for example, in the LogGP
Model [25], the gap associated with the sending of long messages was represented more accurately,
while in the LogGPS [26], the cost associated with the necessary synchronization when sending
a long message under the MPI library is also captured. LoPC [27] addresses contention problem
that arises when sending messages in multiprocessors, i.e considers the sharing of global memory
between processors. Regarding the point-to-point communication (i.e. send messages), which
requires moving data from the source process local memory tothe target process local memory,
the modelsLognP andLog3P are proposed in [28]. The model includes middleware costs into the
representation of distributed communication.

Note that, on the comparison between the BSP and LogP models researchers have classified BSP
as a suitable abstraction for parallel application development, while LogP offers a better resource
management [29, 30].

Following the advent of computer cluster, [31, 32, 28] captured more precisely the sending and
receiving overheads and latency. In their work, these costsdepend on the size of the transmitted
message, such that the costs being not the same for any transmission.

Yet, the architectural evolution has shown the benefits of a hybrid memory parallel system, where
distributed memory computer are composed of machines with shared memory. Due to the actual
technological advances, increasing execution performance of parallel applications on multicore
systems become a reality. Still, further improvements are possible by properly characterizing such
environments.

2.3. Multicore architectures - Models for distributed and shared memory architecture

The actual trends for a cluster of multiprocessors are the multicore machines, which are connected
by a network of some specific topology (as in a distributed memory multicomputer) thus defining
a hybrid memory architecture that supports a hierarchical memory system. At the first level of
the hierarchy, fine-grained applications could be performed reasonably well, while the second
level supports efficiently coarse-grained applications. This ideal hierarchical parallelism modeling
may be very powerful for the exploitation of the natural parallelism found in a great variety of
applications.

Subsets of cores in a multicore machine may share different layers of memory levels. For example,
usually, a small subset of cores shares L2 caches, while another subset of higher cardinality may
share L3 caches, being the global memory shared by all the cores of the machine [33, 34, 35, 36].
The modeling of such memory hierarchy sharing is still a challenge [1].

Multicores cannot be treated merely as shared memory processors like conventional symmetric
multiprocessors (SMPs), mainly due to the design of multi-level cache hierarchies, which lead to
a reduction on the memory bottleneck. Therefore, application performance will potentially benefit
with a proper modeling of this architecture, mainly parallel ones (either that share or exchange data
via message passing).



Typically, in shared memory models, the sharing happens forall processors at the main memory
level. However, multicore processors have a varying degreeof caches sharing at different levels.
TheUnifield Multicore Model(UMM) proposed in [35] assumes that sets of cores share first-level
caches, which in turn share second-level caches and that thecache capacity is the same for all
caches at a given level. Also, in this work, lower bounds are derived for numerical application, but
distributed memory is not account.

Memory hierarchy should be captured among three levels of communication in a multi-core
cluster: intra-processor, when communication is held between two cores on the same processor;
inter- processor, when communication is carried out acrossprocessors but within the same machine;
and inter-machine, between two cores on different machines. For the same message size, [37, 38]
captured distinct communication costs when communicationis held between different levels. More
specifically, [38] defines an analytical model that considers different memory levels, and specifies an
affinity degree between threads, depending on the data amount exchanged between them. Threads
with higher affinity should be allocated to cores that shareslower memory level (i.e. cache), in order
to avoid higher communication costs when these threads are in distinct processors. In this case,
recall that main memory is being shared. Nonetheless, this model does not consider memory size,
and at the end, too many threads can be allocated to share the same cache, and as a consequence
the amount of cache miss might be increase [34, 39]. The importance of accurately representing
the communication costs depending on the memory hierarchy regarding the evaluation carried
out by [34] on various applications, suggested that intra and inter-processor communication is
as important as inter-machine communication, and data locality techniques that avoid memory
contention must be designed to improve application performance.

2.4. The application model

The application modeldefines the relevant characteristics related to the application performance,
which is usually represented by directed acyclic graphs (DAGs), denoted byG = (V,E, ε, ω),
where: the set ofn verticesV representstasks; E, the precedence relation among them;ε(v) is
the amount of work or computational weight associated with taskv ∈ V ; andω(u, v) is the amount
of transmitted data or communication weight associated with the edge(u, v) ∈ E, representing the
amount of data units transmitted from tasku to v. Also, since in the target system being considered
in this work, memory sharing is closely related to the application performance, the amount of data
required by taskv must be depicted and is represented byµ(v).

3. ON MODELING MULTICORE CLUSTERS

In order to identify the influence of the relevant architectural characteristics on the application
performance on multicore systems, a simple application, based on [40, 41] was applied.
This application consists of two tasks that execute two welldefined phases: computation and
communication. The computation phase corresponds to a two nested loops that scans a vector of
integers in steps of 1K bytes, so that hardware prefetching is avoided, since the step size is bigger
than any cache line and also the cache size is a multiple of this step size [41]. The manner in which
the vector is accessed also avoids further optimizations carried out by the compiler, as discussed in
[40].

The communication phase consists of the sending of a messagefrom one task to another, such that
one task executed a sending command, while the other a receiving. The way that this communication
is actually carried out depends on whether the communicating tasks are allocated: if they are on the
same machine, communication is held via shared memory, where semaphores are used to prevent
race condition. Otherwise, a message is effectively transmitted.

All the experiments described in this section were executedin at least two machines of the
multicore cluster RIO with Gigabit interconnection network. Each machine is a quad-core Intel
Xeon E5410 - Harpertown, each core with a private L1 cache of 64KB, and every two cores share a
L2 12MB cache in each one of the two processors of a machine. All the four cores have a uniform



access to a 16MB main memory module. Cent OS 5.3 is the operating system with kernel version
2.6.18. The application is implemented with Intel MPI version 4.0.0.028 and Posix was used to
create threads. The PAPI tool [42] was used to collect and evaluate the execution performance of
the application.

In order to evaluate the influence of memory sharing during the execution of the application tasks
on the machine cores, the following allocation was set:

i. two tasks were allocated to thesame core, and consequently, accessing the same cache (SC);
ii. two tasks allocated todifferent cores, but sharing the same cache (SCM);

iii. two tasks allocated to cores that do not share the same cache, but share the main memory
(SMM);

iv. two tasks allocated to cores of distinct machines (DM), where the global memory of each
machine is not shared;

Letµ(v) be the vector size allocated by a taskv during the computation phase, as described above.
In order to enforce a given allocation of a task to a specific core, the system callset affinity() [3, 43]
was used and also, application tasks and system processes were not executed on the same core.

3.1. Computation Phase Tasks

In this experiment, two independent tasksv1 andv2, which do not communicate, were allocated
under the SC, SCM and SMM allocation only. Note that in this experiment, each task only performs
the two nested loops that scans the vector and no sending and receiving was specified.

It was observed that, even though the amount of data of both tasks is less than the cache capacity,
the allocation SC was the one that produced the worst execution times, as shown in Figure 1. This
is due to the fact that, in the case of SC, both tasks were competing for the same computational
resource. In the case that the amount of data allocated by each task is between 3MB and 6MB, the
allocation SMM provided the best performance, since even when the whole amount of date for
both tasksµ(v1) andµ(v2) was more than the cache capacity, the number of cache misses degraded
the execution performance in the case of SCM. Therefore, it is better to use SMM, but on the same
machine, since L2 cache is not shared. In the SMM allocation,the time can be reduced in14.88%,
when comparing with the SCM allocation (distinct cores, butsame cache). As a consequence for
µ(vi) > 6MB both tasks need more than the cache capacity and obviously, the number of global
memory accesses highly increases.

It is important to note that, although the execution time fortwo tasks executed on the same core
(SC) is worse than the other two allocations (SCM and SMM), the relative number of cache misses
are smaller than those for SCM and SMM, as seen in Figure 1 (a).This is in fact due to the sharing
of computational resource rather than the cache memory.

Experiments with four and eight threads, also on two cores ofthe same machine, were also
performed, whose results can be seen in Figure 1 (b) and (c). Evaluating the curves, one can see
that although the overall execution time increased since more threads were allocated to the same
core, the same behavior as the previous experiment was detected, where SMM leaded to the best
performance, mainly forµ(v) ≥ 3MB, while, SC was always worse. Note that, the number of cache
misses followed the same pattern as the one observed in Figure 1 (a).

The results of another experiment can be seen in Figure 2, where the number of threads
n = 2, 4, 8, 16, 32, 64 was executed on one machine, being divided between its cores. In the case
of n < 8, no more than one thread was executed per core, avoiding therefore, the SC allocation. For
n = 2, 4, no cache sharing was held.

Some interesting conclusions can be withdrawn from this experiment. For more than 3MB per
thread, the higher is the number of threads, the higher is theapplication execution time, suggesting
that it is not worth executing more than one thread per processor. The bottom line is to allocate a
number of threads per machine that does not fill the cache capacity.



Figure 1. Analysis on the execution of (a) 2, (b) 4 and (c) 8 threads in two cores on one machine.

Figure 2. Analysis on the execution from 2 to 64 threads in eight cores on one machine.

3.2. Communication phase

In this experiment, the application consists of one computation and one communication phases,
as seen in Figure 3. It consists of two tasks or threads,v andu, allocated under the SC, SCM,
SMM and DM (to evaluate the communication influence also between distinct machines) allocation,



respectively. It is important to note that whatever the allocation considered, the threads are
practically not being executed in parallel due to the application topology. As shown in Table I,
the communication phase time with threads allocated to the same machine is practically negligible.

Figure 3. Computation phase - using more than two cores

The experiment was repeated by executing ten threads in two core under the SC, SCM, SMM and
DM allocations. The application starts with one thread executing on one core its computation phase,
and then sends a message to the another thread allocated to another core. This thread, after receiving
the message and executing its computation phase, sends a message to another thread also allocated
to the first core. This patterns follows for remaining threads, which upon receiving a message,
execute the computation phase and then send a message to a different thread. Remark that a thread
terminates as soon as it sends a message.

The results of this last experiment are shown in Table II and in Figure 4, and they represent the
total execution times, with a varying message sizeω(u, v) = 1MB, 4MB and8MB, respectively,
where thex-axis of each graph corresponds to the vector sizeµ(v) of taskv. From these results, one
can note that when the vector sizeµ(v) is less then 6MB, the worst results are those produced by
the DM allocation, since the communication cost associatedwith the message transmission inside a
same machine is the smallest one. However, forµ(v) ≥ 6MB, the contention memory problem may
arise, depending on the size of the message being sent. The overall execution time is slightly better
for DM when the messages are smaller than 8MB, that isω(u, v) < 8MB. Remark that a 8MB
message cannot be considered a very long one considering thenowadays network performance.

Table I. Sending Time

❳
❳
❳
❳
❳
❳

Alloc
µ(v) 1MB 2MB 3MB 4MB 5MB 6MB 7MB 8MB 9MB 10MB

ω(u, v) = 1MB message
SC 0.000002 0.000001 0.000002 0.000002 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001

SCM 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001
SMM 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001
DM 0.074050 0.074154 0.074178 0.074095 0.074185 0.074185 0.074200 0.074115 0.074162 0.074194

ω(u, v) = 4MB message
SC 0.000001 0.000002 0.000001 0.000002 0.000001 0.000001 0.000001 0.000001 0.000002 0.000001

SCM 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001
SMM 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000002 0.000001 0.000001
DM 0.345687 0.345788 0.345731 0.345706 0.345729 0.345763 0.345771 0.345788 0.345780 0.345723

ω(u, v) = 8MB message
SC 0.000001 0.000001 0.000001 0.000002 0.000001 0.000002 0.000001 0.000002 0.000001 0.000001

SMC 0.0000008 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000002
SMM 0.0000014 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000002
DM 0.7022743 0.702273 0.702338 0.702368 0.702299 0.702308 0.702349 0.702374 0.702367 0.702362

3.3. Multicore Clusters Model - MCM

In the light of the above analysis, this section describes the proposed Multicore Cluster Model
(MCM), where a multicore clusterCM = {M0,M1,M2, . . . ,Mm} is set ofm machines, where



Table II. Total Time - ten threads in one machine

❳
❳
❳
❳

❳
❳

Alloc
µ(v) 1MB 2MB 3MB 4MB 5MB 6MB 7MB 8MB 9MB 10MB

ω(u, v) = 1MB message
SC 1.3374 2.7777 4.0447 5.7713 12.2419 35.2310 69.7924 100.1719 121.5122 140.4271

SCM 1.3414 2.7778 4.0471 5.7029 13.3135 36.4155 69.2166 99.9814 122.7039 140.8029
SMM 1.3538 2.8219 4.1223 6.4391 13.5027 36.7180 69.2976 98.9662 122.3274 140.6743
DM 2.1571 3.5942 4.9074 6.6670 14.7997 36.8324 67.1933 95.5452 118.8403 137.5865

ω(u, v) = 4MB message
SC 1.4811 2.9270 4.1948 5.9055 13.6012 34.0697 69.1819 99.6317 122.0155 140.5231

SCM 1.4850 2.9283 4.1952 6.2532 12.5493 37.0250 68.2627 100.3262 122.6561 140.5614
SMM 1.5016 2.9637 4.2477 5.9298 13.5898 37.7790 69.5724 99.4298 122.9522 140.6809
DM 4.7281 6.1448 7.4163 9.3374 16.7040 38.0295 71.5360 98.9790 121.9815 140.0319

ω(u, v) = 8MB message
SC 1.6758 3.1227 4.3917 6.0852 10.1448 29.0173 71.8652 101.9864 123.6068 140.8053

SCM 1.6788 3.1228 4.3935 6.2708 10.7288 31.3465 72.1163 102.8356 124.0472 140.7693
SMM 1.6958 3.1611 4.4446 6.1554 11.0589 33.9579 72.8210 102.1969 123.6122 141.1606
DM 8.1402 9.5474 10.8190 12.7849 18.1668 36.0094 75.6678 103.3968 125.3568 143.6539

each machineMi, 1 ≤ i ≤ m consists of a set ofp processorsPi = {P(i,0), P(i,1), P(i,2), . . . , P(i,p)}.
In turn, each processorP(i,j) consists of a set ofc cores, being each one denoted byC(i,j,k).

Cores in the machineMi share the global main memory,gmi, with capacitygmci and cores in
the processorP(i,j) share a cache memory in a given level. Each processorP(i,j) in each machine
Mi has a set ofl cache memoriesCMi = {cm(i,j,0), cm(i,j,1), . . . , cm(i,j,l)}. The capacities of each
cachecm(i,j,k) is denoted bycmc(i,j,k), such thatcmc(i,j,k) < gmci, i.e., the capacity of the cores
are smaller than the global memory one.

Every two coresC(i,j,k1) andC(i,j,k2), which share the cache memorycm(i,j) are called neighbor
cores. Also, all the cores in a machine share the global memory gmi.

All the cores in the machineMi have the samecomputational slowdown indexcsii, which is an
estimation of the computational power of each core inMi, as defined in [21]. Therefore, MCM
models homogeneous cores inside a machine, but the machinesare not necessarily homogeneous.
Thereby, the sole execution time associated with taskv in a core, say,C(i,j,k), is thenet(v, C(i,j,k)) =
csii × ǫijk .

Concerning the cache influence on the application performance, this work defines the worst case
execution time of a taskv on a given coreC(i, j, k) due to the number of cache misses that might
occur, which depends on the amount of memory already allocated. Hence, the execution time of
taskv is established not only by the computational slowdown index, but also, the amount of data
already allocated tocm(i,j,k) and the main memorygmi.

An edge (u, v) represents the dependency between tasksu and v and also, the exchange
of information between them, whose amount is given byω(u, v). The communication time to
transmit this data between two machines, say,Mi andMj is thenct((u, v),Mi,Mj) = ω(u, v)×
lat(Mi,Mj), wherelat(Mi,Mj) is the communication latency associated with the link betweenMi

andMj .
Considering the previous tests related to the communication phase, it is considered, in MCM, that

the communication cost inside a machine is negligible.

3.4. A Load Balance Model

Regardless of the computational time associated with the sole execution of an application task in a
core, this time is actually influenced by the amount of tasks that are being executed on neighbor
cores. Letǫ(v) be the computational weight of a taskv, µv memory amount allocated when
executingv, andω(u, v) the communication weight from each one of the immediate predecessors
u ∈ pred(v). Suppose thatu is allocated to coreC(i0,j0,k0). The taskv is allocated toC(i1,j1,k1),
which is related toC(i0,j0,k0) depending on the following conditions:

1. if (µu + µv) < cmc(i1,j1,k1), the execution time ofv is the smallest one if eitheri0 = i1, that
is, if the amount of data required by bothu andv is smaller than the cache memory capacity,
the computational time will be the smallest if both tasks areallocated on the same machine
but distinct cores, no matters if cache memory is shared or not. In the case(u, v) ∈ E, for



Figure 4. Total execution time (s) of ten threads under the SC, SCM, SMM and DM allocation

ω(u, v) < LBmsg, the total execution time ofv will be smaller if both tasks are executed in
the same machine.

2. if (µu + µv) ≥ cmc(i1,j1,k1), the computation time ofv is smaller if i0 = i1, j0 6= j1 and
k0 6= k1 , that is, if the amount of data required by bothu andv is more the cache capacity, the
computation time ofv will be smaller if both tasks are executed on distinct cores of the same
machine, but cache is not shared (non-neighbor cores). In the case(u, v) ∈ E, the amount of
data to be transmitted should be considered:



(a) if it is bigger than the cache size, the computation time of v is smaller ifi0 = i1, that is,
both tasks are executed in the same machine.

(b) otherwise, the communication message is smaller than the whole cache,v should be
allocated to a different machine, that is,i0 6= i1.

Although conflicting, condition 2.a and 2.b relies on the fact that it is cheaper to send small
messages via network than to keep locally. On the other hand,for long messages (in this
work, no more than 8MB), memory contention for such messagesis not as expansive as the
communication time via network.

4. LOAD BALANCE OF A PARALLEL BRANCH-AND-BOUND BASED ON MCM

In order to analyze and validate MCM, a load balance procedure based on the MCM model was
developed in the context of a parallel branch-and-bound (PB&B) algorithm applied to the Set
Partitioning Problem.

Branch-and-bound is a widely used technique for solving NP-hard optimization problems. Such
algorithms search the space of solutions following a tree enumeration. As the computations along
the subtrees can be accomplished almost independently, they are considered to be well suited for
parallelism.

There exists a variety of papers in the literature that propose parallel branch-and-bound algorithms
or frameworks to ease its development for distributed [44, 45, 46, 47] and shared memory
[48, 45, 49, 50, 51, 52, 6] architectures. However, to the best of our knowledge, few of them
explores both shared and distributed memory. Moreover, they do not consider the memory hierarchy
of multicore processors in their solutions [53].

For a better understanding of this method, an introduction of the sequentialB&B applied to the
Set Partition Problem follows.

4.1. SequentialB&B applied to the Set Partitioning Problem

Givenn variablesx1, . . . , xn with corresponding costsc1, . . . , cn and 0-1 coefficientsa1j , . . . , anj,
for j = 1, . . . ,m, the Set Partitioning Problem (SPP) is the problem of assigning 0-1 values to these
variables such that

∑n

i=1 aijxi = 1, for j = 1, . . . ,m, minimizing
∑n

i=1 cixi. Besides the many
applications of this problem, the SPP is a problem of great interest because it is a natural special
case of integer programming.

4.1.1. Lower BoundA straightforward lower bound on the optimal solution for this problem can
be calculated by solving of its continuous relaxation

Minimize
n∑

i=1

cixi (1)

subject to
n∑

i=1

aijxi = 1 j = 1, . . . ,m (2)

xi ≥ 0, i = 1, . . . , n (3)

or its dual

Maximize
m∑

j=1

πj (4)

subject to
m∑

j=1

aijπj ≤ ci i = 1, . . . , n. (5)



where theπj variables may assume either positive or negative values.
The advantage of using (4-5) to instead of (1-3) is that optimality is not necessary. In our

branch-and-bound procedure, we use the following heuristic to calculate a feasible dual solution
that approaches its optimal solution in a reduced computational time.

Our dual heuristic repeats two main steps by a fixed number of iterations. The first step, that we
call theforward step, consists of increasing theπj values as much as possible. Then, in thebackward
step, it reduces someπj values while increasing others aiming to be able to improve the lower bound
in the next forward step. Hence, the backward step is not executed in the last iteration.

The forward step is also divided into a number of iterations.In each iteration, the same value∆1

is added to eachπj that does not belong to a saturated constraint, i.e.,∆1 is added toπj if and only if∑m

j=1 aijπj < ci for all i such thataij = 1. Since∆1 is chosen as the maximum value that will keep
all constraints (5) satisfied, at least one new constraint becomes saturated upon every iteration. The
forward step stops when no moreπj variables can be increased. This step is part of a well-known
approximation algorithm for the SPP [54].

In the backward step, the value ofπj is decreased by∆2(αj − 1), for some∆2, whereαj is the
number saturated constraints whereπj has a non-zero coefficient. Ifαj = 0, thenπj is increased by
∆2. The value of∆2 chosen so that the current lower bound is multiplied by a given factorθ. We
useθ = 0.5 in the first iteration of the root node andθ = 0.3 in the first iteration of the remaining
nodes. After each iteration,θ is multiplied by0.7. We perform 10 iterations in the root node and 5
in the remaining nodes.

4.1.2. BranchingWe do branching on the constraints (2). For a selected rowj, we create one branch
for eachi with aij = 1 where the variablexi is fixed to one.

One important characteristic of the SPP is that each child node can be substantially smaller than its
parent. Whenever a variablexi is fixed to one, every variablexk such that bothaij = 1 andakj = 1
for somej can be fixed to zero. Then, every constraint (2) wherexi has a non-zero coefficient can
be removed. In our method, the remaining constraints inherit the values ofπj from the parent node.

Next, we describe the criterion used to select a constraintj for branching. Letδi be the number of
constraintsℓ such thataiℓ = 0. We select the constraintj with the smallest value of

∑
i∈{1,...,n}

aij=1
δi,

which represents the total number of constraints in all child nodes that would be created.
In order to find feasible solutions earlier, we process the child nodes in a non-decreasing order of

(ci −
∑n

j=1 aijπj)/δi. The branch-and-bound tree is traversed in a depth-first search fashion.
A more sophisticated and effective dual heuristic for the set partitioning problem has been

proposed recently in [55]. However, we decided to use our ownheuristic because it is simpler and
achieves comparable lower bounds for the instances used in our experiments.

4.2. Parallel Branch-and-Bound applied to the Set Partitioning Problem -PBBSPP

The parallel algorithm was grounded on the perviously described Branch-and-Bound algorithm
for the Set Partitioning Problem. ThePBBSPP incorporates interesting characteristics in relation
to memory management. At first, it does not generate a binary tree, and actually, the number of
subtrees generated by each node can vary a lot. Also, nodes execution times are usually very small,
on average between 0.001 to 0.006 seconds, depending on the instance. However, many of these
nodes can need a larger amount of memory (this necessary amount is referred as node size).

Table III presents information about node sizes in bytes andtheir corresponding times in seconds.
For four instances, it is shown the five smallest (five first lines of each instance) and the five largest
node sizes (the five remaining lines of each instance) for four different instances. The table also
presents the associated levels (distance from the root) of those nodes in theB&B tree. The instances
used in the tests were randomly generated. The two first numbers of the instance name refer to the
quantity of items and sets, respectively. The remaining information refers to the probability that
items appear in the set, followed by the seed of randomness.

It can be observed that all executions times of the nodes are very small. It is important also to
note that the lowest level nodes demand much more memory thanthe highest level ones. Since the
quantity of saturated constraints are smaller in lowest level nodes than in the highest level ones.



Table III. Example reporting the level, size and execution time of nodes for four instances of SPP

Level Node Size (Bytes) Node Execution Time Level Node Size (Bytes) Node Execution Time
I90-400-0.03 I100-500-0.03

17 448 0.001 25 420 0.001
17 452 0.001 22 424 0.105
18 456 0.085 22 448 0.001
18 480 0.001 26 472 0.001
16 516 0.001 27 480 0.005
2 9092 0.005 1 9836 0.096
3 9208 0.005 2 10068 0.006
1 9216 0.076 1 10452 0.001
2 9344 0.005 2 10888 0.006
1 9436 0.062 1 11780 0.083

I110-750-0.03 I200-650-0.02-100
24 508 0.001 25 2608 0.001
24 516 0.012 19 2640 0.001
29 528 0.001 23 2724 0.000
29 532 0.034 22 2728 0.001
24 532 0.026 23 2828 0.002
2 17072 0.009 1 16960 0.003
1 17476 0.006 1 17080 0.009
1 17628 0.011 2 17400 0.011
1 18492 0.003 1 18616 0.003
1 18608 0.019 1 19004 0.008

Figure 5 presents the execution time versus node size for theinstance I90-400-0.03. Most of
the nodes spend very small computation time, however their sizes vary a lot, from 50 Bytes to 9.6
KBytes. All other instances analyzed in this work presentedsimilar characteristics.

Figure 5. Execution time and nodes size for the I90-400-003 instance for the Set Partitioning Problem

4.2.1. The load Balance FrameworkThe PBBSPP algorithm assumes a static assignment of
processes to machines such that exactly one process is assigned to each physical machineMi of
the cluster. A process is composed of as many threads as the number of cores of machineMi,
including a manager thread,MTi, which is responsible for generation of the remaining threads in
Mi, called workers, and for communication with other machinesof the cluster. At each coreC(i,j,k),
a worker thread denoted asT(i,j,k) executes theB&B tree nodes until it becomes idle, when then it
initiates a procedure to obtain new subtrees from other overloaded worker threads. A unique leader



thread (one leader per application), created on the machineM0 and denoted asLT , is responsible
for starting and terminating the application.

When a worker threadT(i,j,k) receives a node, it executes a branch-and-bound procedure which
generates other nodes that are kept in a local list of nodesTL(i,j,k). In accordance with aB&B
parameter, each subtree can be traversed either in breadth or depth way, which in turn can affect
the size of the listTL(i,j,k). In both traverse schemes, the proposed load balance strategy respects
the associated cache size in accordance with the Condition 1. of theLoad Balance Modelstated in
Section 3.4.

The manager threadMTi is responsible for requesting load from another machine in the system.
Let Mj be a machine with overloaded threads.MTj removes parts of nodes from the lists of all
threads, and sends them toMTi, that requested load. IfMTi is not able to obtain more load and
all the respective threads are idle, it reaches its local termination condition, and informes this to
the leader of the applicationLT . ThePBBSPP terminates whenLT receives the local termination
condition from all manager threads in the system.

Figure 6 shows an example of two machinesM0 andM1, each one with a processor,P(0,0) and
P(1,0), respectively. Each processor has two coresC(i,j,0) andC(i,j,1) that share a common cache.
The procedures executed by threads are represent by rectangles. Additionally, the figure shows the
global lists,ML0 andML1, used in the inter machine load balancing, and the local lists,TL(0,0,0),
TL(0,0,1), TL(1,0,0) andTL(1,0,1) used in the load balancing among worker threads of the same
machine.

Figure 6. The Load Balance Framework on the target architecture

4.3. Load Balance Algorithms

The initial load distribution is performed byLT , which executes the root node of the parallelB&B
tree. As shown in Algorithm 1, the generated nodes are placedin the listGL (line 1). Considering
that the functionnumberNodes(GL) returns the quantity of nodes in this list,LT evenly shares the
nodes among the worker threads (line 2), by sendingLoad message (lines 2-10).

In case of a threadT(i,j,k) does not receive any initial load (i.e. whennumberNodes(GL) <
m ∗ p ∗ c) or finishes executing its current load, it starts a load request procedure by executing
Algorithm 2, which is actually performed wheneverT(i,j,k) becomes idle.

Upon finishing the execution of nodes ofTL(i,j,k), the threadT(i,j,k) starts the load balance
procedure in order to obtain nodes from other overloaded threads, whether exists, in the following
order: a neighbor core at first (Algorithm 2); secondly from other threads of the same machine
since the neighbor threads are underloaded or even idle, i.e. their respective node lists are empty



Algorithm 1 Initial Distribution managed byLT

1: GL = Solve(RootNode);
2: numNodes← numberNodes(GL)

(m∗p∗c) ;
3: for all i← 0 to m do
4: for all j ← 0 to p do
5: for all k ← 0 to c do
6: Load← nodes(GL, numNodes);
7: Send Load to T(i,j,k);
8: end for
9: end for

10: end for

(Algorithm 3, lines 6-9); and finally, from another machine,if the threadT(i,j,k) is not able to obtain
load from other threads in its own machineMi (Algorithm 3, line 11).

Upon receiving a load request message,T(i,j,k) sends a number of nodes from its local list as
presented in line 2 of Algorithm 4 or send a message informingthat its list is also empty as shown
in line 6 of the same algorithm.

Concerning the manager thread, when it receives a numberNT of local load requests, it sends a
request to another machineMx in a sequence of machines to be request, as presented in Algorithm
5. When the other machine,Mx answers the request by sending load, it shares the received load
among the requesting load threads, as depicted in Algorithm6. If, at last, it is not able of obtaining
load from any other machine, it initiates the termination detection algorithm (in Algorithm 7).

Finally, when a manager thread receives a load request from another machine, as portrayed
depicted in Algorithm 8, it tries to obtain load from all worker threads of its own machine. Upon
receiving an answer from all worker threads, it forwards thetotal obtained load to the requesting
machine by executing Algorithm 9.

4.4. Implementation issues of the Load Balance Framework

The proposed model MCM influenced the implementation of thePPBBSP in many aspects, as
described next.

In order to avoid a memory cache contention, as verified in theprevious study, the list of nodes
TL(i,j,k) managed by each threadT(i,j,k) during thePBBSPP execution should not occupy more
than its share, which is the total size of L2 cache memory divided by the number of threads that share
it. Once this limit is reached, arecursive procedurethat performs depth-first-traversal on theB&B
tree is initiated. The benefits of the depth-first-traversalcan highly improve theB&B performance.

In order to have useful data at the last level cache when needed, the local list of nodesTL(i,j,k)

for each thread was implemented, increasing the chances of processing them without accessing the
main memory. However, the so called false sharing might occur when threads on different cores
write to a shared cache line, but not at the same location. In this case, since the written locations are
different, there is no real coherency problem, but the cache-coherency protocol sets the cache line
to dirty, and when there exists an access request to the otherlocation, the hardware logic will force
a reload of a cache-line update from memory (even if not really necessary in logic terms). Frequent
updates of the data in the shared-cache line could cause severe performance degradation. In order to
prevent this degradation each list of nodes was allocated ina different cache line.

Concerning the load balance procedure executed byMTi, a global listMLi of nodes is also
created at each machineMi. The Manager ThreadMTi disposes nodes transferred from other
machines, inMLi and distributes this total load among the threads inMi that requested for load. The
updating the global list, in both cases of storing and removing nodes inMLi were implemented with
the same rules of the classical producer consumer problem, guaranteeing that data were consistent
and no deadlock occurred.



Considering that the load transferring inside a machine, involves only two threads, a temporary
list of nodes is created with half of the nodes from the threadthat contains load, those nodes are
removed by the load requesting thread.

Remark that although the global listMLi can be larger than the available cache space, it
will be used only when the internal load balance fails. As thenext section shows, it happens
very occasionally when compared with the internal load transfers. Note also that the time of
communication among machines is much higher than a node processing time and transmitting
very small loads can increase the frequency of communication in the network. In this case, the
performance could be negatively affected.

Algorithm 2 Load Request byT(i,j,k) when it becomes idle

1: if TL(i,j,k) = ∅ then
2: Send LoadRequest to T(i,j,l);
3: end if

Algorithm 3 WhenT(i,j,k) receivesNoLoad from T(i,x,y)

1: if (x = j) then
2: if (y + 1 < c− 1) then
3: y ++;
4: Send LoadRequest to T(i,j,y); {Send request to another core

in the same processor}
5: else
6: if (j + 1 < p− 1) then
7: j ++;
8: y ←0;
9: Send LoadRequest to T(i,j,y); {Send request to another

processor on the same machine}
10: else
11: Send LoadRequest to MTi; {otherwise, forward request to

manager thread}
12: end if
13: end if
14: end if

Algorithm 4 WhenT(i,j,k) receivesLoadRequest from T(i,j,l)

1: if (TL(i,j,k) 6= ∅) then

2: numNodes← MIN( numbersNodes(TL(i,j,k))

2 , number of nodes of
TL(i,j,k) that fit in cm(i,j,l));

3: Load← nodes(TL(i,j,k), numNodes);
4: Send Load to T(i,j,l);
5: else
6: Send NoLoad to T(i,j,l);
7: end if

Figure 7. Algorithms executed by works threads.



Algorithm 5 WhenMTi receivesLoadRequest from T(i,j,k)

1: if (totalIdle =NT ) and (x + 1 < m) then
2: x++;
3: Send LoadRequest to MTx;
4: end if
5: totalIdle++;

Algorithm 6 WhenMTi receivesGlobalLoadRequest fromMTx

1: MLi ← GlobalLoadRequest;
2: numNodes← numberNodes(GlobalLoadRequest)

totalIdle
;

3: for all (j ← 0 to j < p) do
4: for all (k ← 0 tok < c) do
5: Load← nodes(MLi, numNodes);
6: Send Load to T(i,j,k);
7: end for
8: end for

Algorithm 7 WhenMTi receivesNoLoad fromMTx

1: if (x + 1 < m− 1) then
2: x++;
3: Send LoadRequest to MTx;
4: else
5: terminationDetection();
6: end if

Algorithm 8 WhenMTi receivesLoadRequest fromMTx

1: numLoad← 0;
2: for all (j ← 0 to j < p) do
3: for all (k ← 0 tok < c) do
4: Send LoadRequest to T(i,j,k);
5: end for
6: end for

Algorithm 9 WhenMTi receivesLoad from T(i,j,k)

1: numLoad++;
2: GlobalLoadRequest← GlobalLoadRequest+ Load;
3: if (numLoad← p ∗ c) then
4: if (GlobalLoadRequest 6= ∅) then
5: Send GlobalLoadRequest to MTx;
6: else
7: Send NoLoad to MTx;
8: end if
9: end if

Figure 8. Algorithms executed by manager thread.



5. EXPERIMENTAL RESULTS

The experiments presented in this section were executed in two clusters: Cluster Rio, that was
described in Section 3, and Cluster Oscar, described next. Each machine of Oscar has twoquad-
core processors (Intel Xeon 5355 Clovertown). Eachcore has one private L1 cache (64 KB) and
share one L2 cache (8MB) with another core on the same processor. All cores of a same machine
have a uniform access to a 16GB main memory module. Cent OS 5.3is the operating system with
kernel 2.6.18.

5.1. Analyzing Memory Allocation inPBBSPP

As seen in the previous section, each node of theB&B tree can produce other ones, and as a matter
of evaluation, both depth and breadth tree traversals were tested in this work.
When breadth traversal was used, the generated nodes, kept in the listTL(i,j,k), occupied more
memory than the available space in L2 cache memory. Althoughmany generated nodes inTL(i,j,k)

guarantee that there will be load to be shared with eventually idle cores, it can cause cache access
contention. In order to certificate that the proposed model MCM can be successfully applied in a real
application, we executed the parallelB&B several times varying the maximum size ofTL(i,j,k).
Remark that, by following the model, each thread should not use more than the total cache size
divided by the number of cores that share it. In our environment, it means that each one of the two
threads allocated in neighbor cores should use up to 3 MB of L2cache. ThePBBSPP was executed
with the followingTL(i,j,k) maxima sizes: 1, 3, 6 and 8MB. Tests were performed in one machine
of Cluster Rio. Note that although a breadth traversal procedures is being used, when the size limit
of TL(i,j,k) is reached, the algorithm starts the execution of a recursive depth traversal procedure.
Results are presented in the Table IV, where columns|TL(i,j,k)|, #Nodes, Wall Clock Time, %CM,
are the maximum size ofTL(i,j,k), the number of nodes solved in the correspondingB&B tree,
the wall clock time in seconds of thePBBSPP and the average number of cache misses for each
thread and . Note that these results are averages of ten executions, and in all of the cases the standard
deviation was negligible.
The presented wall-clock times show that as theTL(i,j,k) size increases, even executing similar
number of nodes, the execution times also increase. Particularly, an abrupt time growing occurs
when the totalTL(i,j,k) size exceeds the L2 cache size, confirming the ability of the proposed
model MCM to represent memory contention. Moreover, it can also be observed that cache miss
percentage increases with theTL(i,j,k) sizes.

5.2. Evaluating the Load Balance Framework

In order to evaluate the efficiency of the proposed Load Balance Framework,PBBSPP was
executed both in accordance with the proposed framework andalso without any load balance
procedure. Tests were executed on two machines of the Oscar cluster running eight threads, one
at each core. In the version that no load balance procedure was applied, only the Initial Distribution
procedure in Algorithm is executed, and when a thread finishes its nodes, it stays idle until all threads
also finish their executions and the application terminates. In order to evaluate the quality of the load
distribution proposed inPBBSPP the following unbalance factor was calculated in accordance with
the generated results:Un Factor = 1− TMed

TMax
, [56] whereTMed is the average of execution times

of all the threads andTMax is the longest execution time among all of them.
Table V presents, for both versions with load balance framework and without load balance, for
each instance, the average of ten executions in seconds (Total Time), the average of the number of
processed nodes in the correspondingB&B tree (# Nodes), the unbalance factor (Un Factor), the
coefficient of variation concerning execution times (CV), and the obtained speedup and efficiencies
(E).
As can be seen in Table V executingPBBSPP under the proposed load balance framework doubled
the efficiency, even processing similar number of nodes in most cases. It can also be noted that the
unbalance factor was almost zero for all instances, indicating the the proposedPBBSPP can really
improve the application performance.



Table IV. Analysis in the number ofB&B tree nodes, the wall clock time end number of caches miss when
breath transversal is carried out

Instances |TL(i,j,k)| # Nodes Wall clock Time (s) %CM
I90-400-0.03 1MB 17067 10.55 28.1777

3MB 17067 11.49 29.2282
6MB 17067 11.58 29.3848
9MB 17067 12.09 29.4519

I90-400-0.04 1MB 107205 41.09 28.9852
3MB 107205 44.24 30.3375
6MB 107205 44.29 31.0947
9MB 107205 46.67 31.3874

I90-400-0.05 1MB 279272 89.55 29.1691
3MB 279272 94.67 30.3543
6MB 279272 101.12 31.2821
9MB 279272 104.65 31.3414

I100-500-0.03 1MB 28641 20.50 26.3336
3MB 28641 22.36 27.0692
6MB 28641 22.45 27.2445
9MB 28641 24.04 27.3580

I100-500-0.04 1MB 409252 201.60 27.7242
3MB 409252 213.65 28.4698
6MB 409252 222.93 28.5550
9MB 409252 225.28 29.3350

I100-500-0.05 1MB 1999934 638.46 29.5558
3MB 1999934 645.62 29.8931
6MB 1999934 648.46 29.9513
9MB 1999934 679.46 29.9788

I110-750-0.03 1MB 20439643 15704.29 30.7038
3MB 20439643 15918.14 30.8955
6MB 20439643 16789.79 31.4379
9MB 20439643 30764.23 32.3299

I200-650-0.02-100 1MB 12919402 18197.06 32.4007
3MB 12919402 34126.15 32.5090
6MB 12919402 35248.22 35.0640
9MB 12919402 63456.87 35.1265

I200-650-0.02-152 1MB 24294476 29855.11 33.1098
3MB 24294476 34644.88 33.6970
6MB 24294476 113764.58 33.1544
9MB 24294476 270142.70 33.8493

No results were provided to the instances I110-750-0.04, I110-750-0.05 and I200-600-0.04 since
they were executed for more than three days and their execution were halted due to lack of available
memory. This is happened because of the initial poor load division.
To measure the overhead of the proposedPBBSPP , distinct phases of the load balance framework
was evaluated. The number of load requests sent inside a machine and transmitted to a different
machine are shown in Table VI. As presented in columns,Local Reg andGlobal Req, the number
of messages exchanged inside a machine is much higher than the one among different machines.
Nonetheless, the time of transmitting such messages contribute much less to the total execution time
than the messages sent via network.

5.3. Scalability Experiments

The last experiment aims to verify the scalability of thePBBSPP , by increasing the number of
machines available to execute the respective instance. Initially, only two machines were considered
in order to measure the messages size exchanged between them. This was carried out to evaluate
their impact on the application performance, since as seen in Section 3.2, MCM indicated that
long messages sent via network might reduce performance. Asshown in Table VII, the messages
were never longer than 4 Mbytes whereLargest, indicates the size of the largest message when
running the respective application instance,Smallest, the size of the smallest message andAverage,
the average amongst all messages size. Secondly, it was alsoconsidered four and eight machines,
and consequently, more threads were work in parallel. As shown in Tables VIII and IX, even



Table V. Comparison between thePBBSPP load balance mechanism and a parallelB&B without load
balancing for the same problem

Instances Total Time (s) # Nodes Un Factor CV Speedup E
Without Load Balance

I90-400-0.03 13.66 31481.44 0.6370 0.36 0.68 0.04
I90-400-0.04 28.31 117999.67 0.5533 0.12 0.74 0.05
I90-400-0.05 43.36 232304.80 0.7525 0.10 0.46 0.03
I100-500-0.03 29.66 112652.00 0.3200 0.24 0.67 0.04
I100-500-0.04 168.34 803151.34 0.5564 0.22 0.34 0.02
I100-500-0.05 723.17 1861401.20 0.7618 0.00 0.97 0.06
I110-750-0.03 6279.81 37533812.60 0.6317 0.29 0.37 0.02
I110-750-0.04 - - - - - -
I110-750-0.05 - - - - - -
I200-650-0.02-100 15278.05 13032890.60 0.8010 0.25 0.86 0.05
I200-650-0.02-152 36100.79 24354320.17 0.8570 0.03 1.15 0.07
I200-600-0.04 - - - - - -

With Load Balance PBBSPP

I90-400-0.03 5.89 26028.11 0.0161 0.20 3.43 0.21
I90-400-0.04 17.39 115415.60 0.0074 0.11 2.21 0.14
I90-400-0.05 37.78 280954.67 0.0043 0.02 2.48 0.15
I100-500-0.03 23.68 102316.00 0.0075 0.18 1.88 0.12
I100-500-0.04 119.14 804957.80 0.0019 0.18 4.11 0.26
I100-500-0.05 267.14 2075008.78 0.0007 0.04 2.78 0.17
I110-750-0.03 5893.70 29515686.90 0.0000 0.22 2.90 0.18
I110-750-0.04 39343.88 143389240.00 0.0000 0.05 1.18 0.07
I110-750-0.05 20018.02 106427367.00 0.0074 0.03 1.92 0.12
I200-650-0.02-100 5690.85 13006009.90 0.0001 0.13 3.10 0.19
I200-650-0.02-152 9786.27 24337676.10 0.0001 0.18 3.22 0.20
I200-600-0.04 30200.41 132296456.50 0.0000 0.01 1.92 0.12

Table VI. Information on the communication

Local Global
Instances % Time #Local Req % Time # Global Req

I90-400-0.03 3.155 50.854 12.456 5.500
I90-400-0.04 1.594 125.113 8.226 10.450
I90-400-0.05 0.276 78.597 0.845 5.056
I100-500-0.03 2.185 108.000 7.149 9.600
I100-500-0.04 0.670 231.631 2.288 13.700
I100-500-0.05 0.154 249.896 0.630 10.684
I110-750-0.03 0.161 1381.688 0.448 36.450
I110-750-0.04 0.066 1149.050 0.131 33.200
I110-750-0.05 0.053 657.464 0.139 7.699
I200-650-0.02-100 0.048 647.656 0.114 19.931
I200-650-0.02-152 0.046 906.531 0.108 26.450
I200-600-0.04 0.050 753.875 0.095 22.000

with the growing number of messages transmitted via network, performance was still improved
byPBBSPP .
Note that, the messages sizes were never longer than 4MB, therefore priority was given to condition
2.a from the Load Balance Model in section 3.4 other than 2.b.However, due the amount ofB&B
free nodes created, more machines were allocated byPBBSPP , upon the saturation of caches of
current machines.

6. CONCLUSIONS AND FUTURE WORK

This paper proposes the MCM model that represents the most relevant characteristics of a multicore
cluster, based on the results of exhaustive experiments of asynthetic application. In order to validate
the model, it was used in the design and development of a Parallel Branch-and-Bound for the Set
Partitioning Problem .Under the MCM, a load balance framework for solving this problem prevents
that memory contention directly affects the performance, scheduling the nodes of theB&B tree



Table VII. Size Messages (KB)

Instances Largest Smallest Average
I90-400-0.03 591.73 8.50 336.28
I90-400-0.04 480.80 29.10 310.38
I90-400-0.05 174.81 3.32 75.38
I100-500-0.03 770.92 16.48 403.37
I100-500-0.04 982.40 8.28 524.22
I100-500-0.05 810.58 4.43 351.16
I110-750-0.03 3468.72 11.08 1903.83
I110-750-0.04 3076.16 20.02 736.14
I110-750-0.05 215.04 14,76 839.86
I200-650-0.02-100 1730.42 86.31 894.08
I200-650-0.02-152 1279.84 30.08 748.10
I200-600-0.04 1395.79 4.92 736.14

Table VIII. PBBSPP execution on four machines

Instances Time # Nodes % TimeLocal # Local Req % TimeGlobal # Global Req Un Factor Speedup
I90-400-0.03 4.49 25383 5.2656 50.1250 35.4018 11.2500 0.0339 4.505
I90-400-0.04 10.44 115431 1.9193 115.3438 15.3741 18.0000 0.0084 3.687
I90-400-0.05 19.66 282458 1.0993 162.5000 7.8492 19.0000 0.0073 4.765
I100-500-0.03 11.83 90535 3.1212 90.7188 18.2631 15.5000 0.0131 3.757
I100-500-0.04 94.38 1166225 0.8258 291.9375 5.6362 26.5000 0.0022 5.184
I100-500-0.05 148.38 2247700 0.9256 401.2188 2.4457 24.5000 0.0041 49.990
I110-750-0.03 2345.01 20947396 0.3405 1492.2813 1.2305 66.0000 0.0000 7.291
I110-750-0.04 11338.25 127309716 0.1154 1368.5000 0.3227 47.0000 0.0000 4.106
I110-750-0.05 7349.01 111828773 0.0985 932.8438 0.4027 29.2500 0.0001 5.217
I200-650-0.02-100 2583.50 12962936 0.0792 675.1875 0.2889 29.7742 0.0001 6.839
I200-650-0.02-152 4692.99 24327659 0.0623 931.4688 0.2137 37.2500 0.0000 6.706
I200-600-0.04 9834.11 130502067 0.1349 1420.6875 0.3329 44.5000 0.0001 5.907

Table IX.PBBSPP execution on eight machines

Instances Time # Nodes % TimeLocal # Local Req % TimeGlobal # Global Req Un Factor Speedup
I90-400-0.03 3.70 39845 0.204 56.609 1.726 15.938 0.035 5.463
I90-400-0.04 7.34 119475 0.249 109.953 2.613 18.000 0.018 5.242
I90-400-0.05 13.46 289197 0.242 120.570 2.977 16.375 0.016 6.962
I100-500-0.03 6.30 71820 0.298 72.016 2.030 16.125 0.023 7.052
I100-500-0.04 38.20 858877 0.589 203.945 3.208 24.813 0.004 12.807
I100-500-0.05 76.49 2186299 0.491 292.836 4.059 24.438 0.002 9.698
I110-750-0.03 5133.82 95623639 7.539 1325.859 23.942 69.375 0.000 3.331
I110-750-0.04 10256.64 248729987 11.959 1244.086 34.212 50.250 0.000 4.539
I110-750-0.05 3239.82 112034575 3.544 861.578 13.866 38.250 0.000 11.835
I200-650-0.02-100 1476.05 12948620 1.930 692.391 9.250 39.250 0.000 11.969
I200-650-0.02-152 2240.29 24332087 2.642 819.422 13.442 44.625 0.000 14.048
I200-600-0.04 4255.59 131120162 5.959 1273.219 21.805 50.625 0.000 13.651

accordingly to the available amount of the cache memory. It was shown that the bottlenecks are
avoided since the execution times improved considerably. Further analyzes will be conducted for
the model on other classes of application. The actual application used is considered to be dynamic,
and therefore, other applications with different characteristics will be considered in future work in
order to show the efficiency of the model.
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