arXiv:1302.5679v1 [cs.DC] 22 Feb 2013

CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exp@000;00{1H23
Published online in Wiley InterScience (www.intersciemgkey.com). DOI: 10.1002/cpe

Memory Aware Load Balance Strategy on a Parallel
Branch-and-Bound Application

Juliana M. N. Silva

Cristina Boeres
Lucia M. A. Drummond
Artur A. Pessoa
Univesity Federal Fluminense - UFF
Rua Passo da Ptria 156 - Bloco E. So Domingos Niter6i - RJ

jsilva@ic.uff.br
boeres@ic.uff.br
lucia@ic.uff.br

SUMMARY

The latest trends in high-performance computing systenesvsin increasing demand on the use of
a large scale multicore systems in a efficient way, so that kigmpute-intensive applications can be
executed reasonably well. However, the exploitation oftibgree of parallelism available at each multicore
component can be limited by the poor utilization of the mentoerarchy available. Actually, the multicore
architecture introduces some distinct features that aeady observed in shared memory and distributed
environments. One example is that subsets of cores can diment subsets of memory. In order to
achieve high performance it is imperative that a carefdcaltion scheme of an application is carried out
on the available cores, based on a scheduling model thaidessghe main performance bottlenecks, as
for example, memory contention. In this paper, Malticore Cluster Mode(MCM) is proposed, which
captures the most relevant performance characteristicaulticores systems such as the influence of
memory hierarchy and contention. Better performance wagaed when a load balance strategy for a
Branch-and-Bound application applied to the Partition8efs Problem is based on MCM, showing its
efficiency and applicability to modern systems. Copyri@h0000 John Wiley & Sons, Ltd.

Received ...

1. INTRODUCTION

Multicore architectures have become dominant today duéneéocbnsiderable enhancement on
computing systems performance. Multicores can be found wargety of domains. Currently,
high performance platforms like clusters are composed dficoue nodes or multicore clusters
connected by network channels. These modern platformsestigdiierarchical memory: cores that
belong to the same processor can share caches, cores begltmglifferent processors share main
memory (like RAM or DRAM) and cores that belong to differemtdes do not share any memory
resourcel[], 12].

Parallel applications could benefit from such memory h@raio improve performance. The use
of cache as shared memory can reduce the communication ¢itweén the tasks of an application,
and, therefore, tasks that communicate more frequentlyldtae placed in cores that share cache,
avoiding communications in main memory or message passiegtioe network[2,13,14]. However,
depending on the amount of memory required for communigatitd computing tasks, allocating

Copyright© 0000 John Wiley & Sons, Ltd.
Prepared usingpeauth.cls [Version: 2010/05/13 v3.00]

http://arxiv.org/abs/1302.5679v1

tasks in many cores that are sharing the cache may exceexgbésity, making necessary too many
accesses to main memory. These accesses can cause a bliihetiee channels and worsen the
application performancée][L] 4,5, 6].

Using the environment characteristics in order to imprgy@iaation performance is not new. For
doing so, itis necessary to define models that representdakereievant features of the environment
where the application will run. Nonetheless, this is notasydask and scheduling algorithm or load
balance strategies should be based on such a model andgrolitter application’s runtime.

This paper proposes tihéulticore Cluster Mode(MCM), which was based on an extensive set of
experiments of a synthetic application that identifies theptial bottlenecks promoted by sharing
memory resources and their impact when executing compuataild communication tasks. The
model considers three levels of communication: i) the comigation made through shared memory
by intra-chip cache, ii) through inter-chip shared memaonrg &) communication between cluster
nodes via messages. Scheduling and load balance strasbgiell be adjusted considering the
architecture model and the characteristics of the apphicago that it takes the maximum advantage
of the execution environment. A long these lines, a loadrizaatrategy for a class of branch-and-
bound application based on MCM is also proposed.

In order to evaluate and validate our proposals, a paral@idih-and-bound algorithm applied
to the set partitioning problemP(BBspp) was developed based on a load balance mechanism
also introduced here. The experiments confirm that the megeesents relevant features of the
architecture which affect the application performancee figsults showed that when memory access
bottlenecks are avoided, the execution timé&’@& Bspp can be improved by up to 70%.

Summarizing, the main contributions of this work are théofelng:

1. A new model that considers not only the relevant architettcharacteristics of processing
and communication via different levels of memory and nelwiara multicore cluster, but
also how those characteristics are impacted by the amountesfiory required by the
application tasks. Thereby, the impact that the quantitynemory required by processing
and communicating tasks on the execution and communicatists where measured and
modeled. The objective here is to provide a model that iredudto the typical processing and
communication costs, the one associated with contentitmeidifferent levels of memory.

2. Based on the model, a novel load balance strategy is pedpis which the memory
hierarchy is accounted when communication is held and thetijy of data allocated to each
task is evaluated so that the work load is balanced, avoitfiagefore memory contention
bottlenecks.

3. Finally, a real application based on the branch-and-8algorithm was used to validate
the proposed work. In the related literature, there is aelangmber of papers about
parallel branch-and-bound, but, to the best of our knowdedew of them were designed
to take advantage of a computing system with both shared etdbdted memory. The
implementation of the parallel branch-and-bound used hexg based the proposed load
balance strategy.

The remaining of this paper is organized as follows. Se@ipresents the related literature about
high performance architecture models. A set of tests uséatbtuify the relevant characteristics of
multicore clusters and a new load balance mechanism bagbé obtained results are introduced in
Section 3. Section 4 presents the use of the proposed loaddesdtrategy in a parallel branch-and-
bound to solve the Set Partitioning Problem. Experimemsilits and analysis, aiming to evaluate
the efficiency of the resulting application, are shown inti®ec5. Section 6 concludes the paper.

2. HIGH PERFORMANCE PLATFORMS MODELS

Due to the variety of parallel and distributed architectuirés difficult to define a precise and yet
general model of parallel computation. On the attempt tatifie the actual trend, this section
outlines models of parallel computation with the aim to iifgrthe relevant characteristics that
must be considered when executing parallel applications.

Itis already well stablished the distinction between disited memory, where each processor has
its own local memory, and shared memory, where all processare access to a common memory.
For many years, high performance computing was developsebban distributed systems mainly
due to their potential to solve much larger problems and tosilability. However, at the same time,
in order to improve the performance of processors evendurtrchitectural designers put together
more and more processor cores on the same chip, promotinguitieore advent. In this case, good
performance relies on the software ability to exploit tharskd memory hierarchy. For doing so, it
is important to define a computation model that incorportdite parameters of parallel architectures
that are essential to characterize the parallel systems.

2.1. Model for shared memory architecture

The Parallel Random Access Machine (PRAM) modEl [7] cosgift number of processors, each
of which computes one instruction in one time unit, on défardata, synchronously, and then
communicates via shared memory, also within one step [83 Jrieat acceptance of the PRAM
model by the theoretical community has been due to its saitypland universality and a large
number of parallel algorithms based in it have been desightdile the PRAM model is an idealistic
one, unfortunately it is not a realistic. Nevertheless, mresearch effort has been expended on
the attempt to incorporating critical parameters of patadlystems, mainly the ones related to
communication overhead 1[9, 110,111 12] 13, 14].

In early 90’s, due to the continuous technological advammcesmemory bandwidth and latency,
the use of shared memory was a reality. Since the progrargroersivish to take full advantage of
the memory system, it is necessary to consider the time &sacwt only the local main memory but
also the other several levels of memory. Aggaretadl in [15] proposed the Hierarchical Memory
Model (HMM) designed to capture the effect of memory hiehgrdHMM considers a random
access memory machine where access to memory locatiequires[logz] time instead of the
typical constant access. An extension of HMM, the HMBT, wamppsed in [[16] in which a block of
consecutive locations can be copied in constant time dféainitial latency access is paid. However,
both models do not consider parallel machines. Thus, [1iFdduced extensions of the HMBT to
model memory systems in which data transfers between meleels may proceed concurrently.

Already in [18], the Parallel Memory Hierarchy (PMH) modelsomputer as a tree of memory
modules with processors in the leaves. The main chardaitdsghe representation of the transfer
cost of a block of data between the tree nodes. In [19], théodmi Memory Hierarchy (UMH) is
proposed, the cost of data movement between differentd@fahe memory hierarchy. Although
the works above mentioned are two decades old, it is iniagesd note the evidence of current
architectures characteristics such as multicore clystspecially the relative impact of the memory
hierarchy in the performance of applications. These setowksvhowever, lack mainly on modeling
both distributed and shared memories.

Gibbonset al in [11] introduced the Queuing Shared Memory (QSM) modelicwraccounts
for limited communication bandwidth while still providing simple shared-memory abstraction.
The QSM model consists of processors with individual pevaemory as well as a global shared
memory. However this model ignores the memory hierarchyproaessor.

2.2. Model for distributed memory architecture

With the objective of designing a scalable system, distebunemory networks have become
the main stream for the specification of an efficient solufemvery large dimension problems.
However, the performance of these proposed solutions caaffeeted by the limitation on
bandwidth and latency on communications. Many researchave evaluated the behavior of
distributed memory architectures, with the aim of desigrargeneral purpose parallel model. The
Distributed Memory Model consists of a set of processorsh(Wical memory) connected by links
under some topology, and communication is carried out tiongssage passing.

In attempting to address the issues related to the commtignceost in distributed memory
systems, a couple of models merit discussion: deday model in which the delay on the
communication between any two processors, no matters th&tiance in the network [20] is

captured. This model has been widely used to represenibditstd memory systems, incorporating
issues like the heterogeneity of processars [21].

The absence of a standard model of parallel computatioreinéled many researchers to work
on the attempt to establish a bridge between parallel afwits and parallel machines. Valiant
[22] defined the Bulk-Synchronous Parallel (BSP) model,clvhiepresents a set of processing
elements, their speed, the time between two synchronizatients, which characterizes a superstep.
It is during each superstep that computation of tasks andagesdelivery between processors are
supposed to be carried out. In a continuous search for morgate models and with the advent of
computer clusters, studies led to the specification of HEEP o model the heterogeneity of the
processors, concerning their speeds and capacities.

Due to the emergence of network of workstations as high pedace environment, the LogP
model [24] was proposed to be a computational model in whioba) characteristics of parallel
architectures are represented, such as number of progedsiments, latency on the transmissions,
gap between subsequent messages and overhead on the semdliregeiving of messages. The
key issues stated in the model were related to communicatidmon-synchronous computations.
Following this work, other extended LogP models were preposs for example, in the LogGP
Model [25], the gap associated with the sending of long nigEsssavas represented more accurately,
while in the LogGPS[]26], the cost associated with the nergssynchronization when sending
a long message under the MPI library is also captured. LoFTd@dresses contention problem
that arises when sending messages in multiprocessorgrnisiders the sharing of global memory
between processors. Regarding the point-to-point comeatioh (i.e. send messages), which
requires moving data from the source process local memotlyetdarget process local memory,
the modelsLog,, P and Logs P are proposed ir [28]. The model includes middleware coststire
representation of distributed communication.

Note that, on the comparison between the BSP and LogP maelanchers have classified BSP
as a suitable abstraction for parallel application devalept, while LogP offers a better resource
management[29, 30].

Following the advent of computer cluster, [81] B2| 28] cagdumore precisely the sending and
receiving overheads and latency. In their work, these abspend on the size of the transmitted
message, such that the costs being not the same for any tsgitam

Yet, the architectural evolution has shown the benefits glaitd memory parallel system, where
distributed memory computer are composed of machines \uihesl memory. Due to the actual
technological advances, increasing execution performaricparallel applications on multicore
systems become a reality. Still, further improvements assible by properly characterizing such
environments.

2.3. Multicore architectures - Models for distributed arftheed memory architecture

The actual trends for a cluster of multiprocessors are thiéicote machines, which are connected
by a network of some specific topology (as in a distributed wrynmulticomputer) thus defining
a hybrid memory architecture that supports a hierarchicainory system. At the first level of
the hierarchy, fine-grained applications could be perfatrmeasonably well, while the second
level supports efficiently coarse-grained applicatiortésTdeal hierarchical parallelism modeling
may be very powerful for the exploitation of the natural pletesm found in a great variety of
applications.

Subsets of cores in a multicore machine may share diffeagat$ of memory levels. For example,
usually, a small subset of cores shares L2 caches, whildvanstibset of higher cardinality may
share L3 caches, being the global memory shared by all thes adrithe machiné [33, 34, 35,136].
The modeling of such memory hierarchy sharing is still alemaje [1].

Multicores cannot be treated merely as shared memory porebkke conventional symmetric
multiprocessors (SMPs), mainly due to the design of meitel cache hierarchies, which lead to
a reduction on the memory bottleneck. Therefore, appticgierformance will potentially benefit
with a proper modeling of this architecture, mainly pardadiees (either that share or exchange data
via message passing).

Typically, in shared memory models, the sharing happenalf@rocessors at the main memory
level. However, multicore processors have a varying degfemches sharing at different levels.
The Unifield Multicore Mode(UMM) proposed in[[35] assumes that sets of cores shareldivet-
caches, which in turn share second-level caches and thafatttee capacity is the same for all
caches at a given level. Also, in this work, lower bounds a&mivedd for numerical application, but
distributed memory is not account.

Memory hierarchy should be captured among three levels ofhwonication in a multi-core
cluster: intra-processor, when communication is held betwtwo cores on the same processor;
inter- processor, when communication is carried out aggossessors but within the same machine;
and inter-machine, between two cores on different machifasthe same message size, [37, 38]
captured distinct communication costs when communicasitveld between different levels. More
specifically, [38] defines an analytical model that considkfferent memory levels, and specifies an
affinity degree between threads, depending on the data drercdmanged between them. Threads
with higher affinity should be allocated to cores that shinegr memory level (i.e. cache), in order
to avoid higher communication costs when these threadsnadésiinct processors. In this case,
recall that main memory is being shared. Nonetheless, thidefrdoes not consider memory size,
and at the end, too many threads can be allocated to sharartteecche, and as a consequence
the amount of cache miss might be increase [34, 39]. The irapoe of accurately representing
the communication costs depending on the memory hierarepggrding the evaluation carried
out by [34] on various applications, suggested that intrd @mer-processor communication is
as important as inter-machine communication, and datditpdachniques that avoid memory
contention must be designed to improve application perémuce.

2.4. The application model

The application modelefines the relevant characteristics related to the apjglicperformance,
which is usually represented by directed acyclic graphsGBA denoted byG = (V, E, e, w),
where: the set of. verticesV representsasks F, the precedence relation among therty) is

the amount of work or computational weight associated veiikt € V; andw(u, v) is the amount

of transmitted data or communication weight associateH thi¢ edgg«, v) € E, representing the
amount of data units transmitted from tasko v. Also, since in the target system being considered
in this work, memory sharing is closely related to the aggian performance, the amount of data
required by task must be depicted and is represented.by).

3. ON MODELING MULTICORE CLUSTERS

In order to identify the influence of the relevant architeaticharacteristics on the application
performance on multicore systems, a simple applicatiorsetbaon [[40, 41] was applied.
This application consists of two tasks that execute two wlefined phases: computation and
communication. The computation phase corresponds to a ésted loops that scans a vector of
integers in steps of 1K bytes, so that hardware prefetclsimydided, since the step size is bigger
than any cache line and also the cache size is a multipleo$tap size[[41]. The manner in which
the vector is accessed also avoids further optimizationgedsout by the compiler, as discussed in
[4Q].

The communication phase consists of the sending of a megsagene task to another, such that
one task executed a sending command, while the other a iggehhe way that this communication
is actually carried out depends on whether the communig#aisks are allocated: if they are on the
same machine, communication is held via shared memory,end@maphores are used to prevent
race condition. Otherwise, a message is effectively trée

All the experiments described in this section were execitedt least two machines of the
multicore cluster RIO with Gigabit interconnection netWoEach machine is a quad-core Intel
Xeon E5410 - Harpertown, each core with a private L1 cachel&B; and every two cores share a
L2 12MB cache in each one of the two processors of a machin¢héfour cores have a uniform

access to a 16MB main memory module. Cent OS 5.3 is the opgrsistem with kernel version
2.6.18. The application is implemented with Intel MPI versi4.0.0.028 and Posix was used to
create threads. The PAPI to6l]42] was used to collect antliaieathe execution performance of
the application.

In order to evaluate the influence of memory sharing duriegttecution of the application tasks
on the machine cores, the following allocation was set:

i. two tasks were allocated to tisame corgand consequently, accessing the same cache (SC);
ii. two tasks allocated tdifferent coresbut sharing the same cache (SCM);
iii. two tasks allocated to cores that do not share the sardeecdut share the main memory
(SMM);
iv. two tasks allocated to cores of distinct machines (DMheve the global memory of each
machine is not shared,;

Let 1.(v) be the vector size allocated by a tas#furing the computation phase, as described above.
In order to enforce a given allocation of a task to a specifie cie system cadlet_affinity() [3],[43]
was used and also, application tasks and system processeaet@xecuted on the same core.

3.1. Computation Phase Tasks

In this experiment, two independent tasksand v,, which do not communicate, were allocated
under the SC, SCM and SMM allocation only. Note that in thisegkment, each task only performs
the two nested loops that scans the vector and no sendingegiging was specified.

It was observed that, even though the amount of data of bskis fa less than the cache capacity,
the allocation SC was the one that produced the worst exectithes, as shown in Figuré 1. This
is due to the fact that, in the case of SC, both tasks were ciimgpier the same computational
resource. In the case that the amount of data allocated thytask is between 3MB and 6MB, the
allocation SMM provided the best performance, since eveanathe whole amount of date for
both tasks:(v;) andu(ve) was more than the cache capacity, the number of cache misgeded
the execution performance in the case of SCM. Therefors hietter to use SMM, but on the same
machine, since L2 cache is not shared. In the SMM allocati@time can be reduced id.88%,
when comparing with the SCM allocation (distinct cores, $mmne cache). As a consequence for
u(v;) > 6M B both tasks need more than the cache capacity and obviokelypumber of global
memory accesses highly increases.

It is important to note that, although the execution timetfieo tasks executed on the same core
(SC) is worse than the other two allocations (SCM and SMM rélative number of cache misses
are smaller than those for SCM and SMM, as seen in Figure T&.is in fact due to the sharing
of computational resource rather than the cache memory.

Experiments with four and eight threads, also on two corethefsame machine, were also
performed, whose results can be seen in Figlire 1 (b) and ya)u&ting the curves, one can see
that although the overall execution time increased sinceertioeads were allocated to the same
core, the same behavior as the previous experiment wastel@techere SMM leaded to the best
performance, mainly fot(v) > 3M B, while, SC was always worse. Note that, the number of cache
misses followed the same pattern as the one observed ineElg@).

The results of another experiment can be seen in Fifilire 2rewtte number of threads
n=2,4,8,16,32,64 was executed on one machine, being divided between its.dordlse case
of n < 8, no more than one thread was executed per core, avoidingfthey the SC allocation. For
n = 2,4, no cache sharing was held.

Some interesting conclusions can be withdrawn from thiegrgent. For more than 3MB per
thread, the higher is the number of threads, the higher iappécation execution time, suggesting
that it is not worth executing more than one thread per psmre3he bottom line is to allocate a
number of threads per machine that does not fill the cachecitgpa

(8) Computation Phase - two threads on two cores on one machine

30 120 ‘
] 160
2 2 o %
— = ‘
) L)
T s £ o
2 i ‘
£
g 1 = 40 ‘
El 20 ‘
a 0
1MB 2MB aMB 4MB smB W]BMB ™B aMB SME 1B 1MB 2MB 3IMB AMB 5MB 1] TMB BME SMB 10MB
" i)
—— 50 —— GMC —d— EMM —»— S0 ——EMC —9—EMM

{bj Computation Phase - fourthreads on two cores on one machine

B0 120
60 100
‘0 g
40
3 a0]
5 il
= 20 £ 40
10 20
< L E
I E I A L = A R € R L S A SR S ME RSB iMBE ZMB 3MB 4MB 5MB EMB 7MB BMB SMB 1IMB
uivl

—+— G0 —+— M —3— MM —F— 80 ——gMC —F MM

(c) Computation Phase - eight threads on two cores on one machine

1 120

100 100
— @
a 8
= 8o £ 80
E o

&0]
& 580

40 E

20 20

0 [-

1ME 2MB 3MBE AMB SMB “aus TME BMB OME 10MB IMB IME 3IMB 4MB SME EME 7MB @MB SMB 1DMB

b uiv)

=50 —e—g MO —3=S M —— 50 ——35MC —a—SMM

Figure 1. Analysis on the execution of (a) 2, (b) 4 and (c) 8&dlds in two cores on one machine.

Computation Phase - 2, 4, 8, 16, 32 and 64 threads on eight cores on one machine

§00
450
400
350

250
200
150
100

50

0
1MBE 2MB 3MB 4ME SMB BMB 7MB 8MB 9ME 10MB
vl

—2—2 —4—4 BB & 16 —+—32 > 64

Tempo (s)

Figure 2. Analysis on the execution from 2 to 64 threads ihtigres on one machine.

3.2. Communication phase

In this experiment, the application consists of one compariaand one communication phases,
as seen in Figurgl 3. It consists of two tasks or threadsnd «, allocated under the SC, SCM,
SMM and DM (to evaluate the communication influence also betwdistinct machines) allocation,

respectively. It is important to note that whatever the @llion considered, the threads are
practically not being executed in parallel due to the appien topology. As shown in Tab[é |,
the communication phase time with threads allocated toaheesnachine is practically negligible.

i
BECIN
4
-

- y
Send BECIN
END -
Oare | ECENVE
&*

4

-
END
{Care 1

Figure 3. Computation phase - using more than two cores

The experiment was repeated by executing ten threads indrecunder the SC, SCM, SMM and
DM allocations. The application starts with one thread etieg on one core its computation phase,
and then sends a message to the another thread allocatexdtieracore. This thread, after receiving
the message and executing its computation phase, sendsageds another thread also allocated
to the first core. This patterns follows for remaining thigadhich upon receiving a message,
execute the computation phase and then send a messagefarendithread. Remark that a thread
terminates as soon as it sends a message.

The results of this last experiment are shown in Table Il anBigure4, and they represent the
total execution times, with a varying message size,v) = 1M B,4M B and8M B, respectively,
where ther-axis of each graph corresponds to the vector gizg of taskv. From these results, one
can note that when the vector sizé&) is less then 6MB, the worst results are those produced by
the DM allocation, since the communication cost associittdthe message transmission inside a
same machine is the smallest one. Howeveryfo) > 6M B, the contention memory problem may
arise, depending on the size of the message being sent. €nal@xecution time is slightly better
for DM when the messages are smaller than 8MB, thai(is v) < 8M B. Remark that a 8MB
message cannot be considered a very long one consideringweglays network performance.

Table I. Sending Time

Alloc) ‘ iMB ‘ 2MB ‘ 3MB ‘ amMB ‘ 5MB 6MB ‘ ™B ‘ 8MB ‘ 9MB ‘ omMB ‘

w(u, v) = IMB message

SC 0.000002 | 0.000001 [0.000002 [0.000002 | 0.000001 | 0.000001 [0.000001 [0.000001 [0.000001 [0.000001

SCM 0.000001 | 0.000001 [0.000001 | 0.000001 | 0.000001 | 0.000001 | 0.000001 | 0.000001 | 0.000001 | 0.000001

SMM 0.000001 | 0.000001 | 0.000001 | 0.000001 | 0.000001 | 0.000001 [0.000001 | 0.000001 | 0.000001 | 0.000001

DM 0.074050 | 0.074154 | 0.074178 | 0.074095 | 0.074185 | 0.074185 | 0.074200 | 0.074115 | 0.074162 | 0.074194
w(u, v) = 4MB message

SC 0.000001 | 0.000002 [0.000001 [0.000002 | 0.000001 | 0.000001 [0.000001 [0.000001 [0.000002 | 0.000001

SCM 0.000001 | 0.000001 [0.000001 | 0.000001 | 0.000001 [0.000001 | 0.000001 | 0.000001 | 0.000001 | 0.000001

SMM 0.000001 | 0.000001 [0.000001 | 0.000001 | 0.000001 [0.000001 | 0.000001 | 0.000002 | 0.000001 | 0.000001

DM 0.345687 | 0.345788 | 0.345731 | 0.345706 | 0.345729 | 0.345763 | 0.345771 | 0.345788 | 0.345780 | 0.345723
w(u, v) = BMB message

SC 0.000001 | 0.000001 [0.000001 [0.000002 | 0.000001 | 0.000002 [0.000001 [0.000002 | 0.000001 | 0.000001

SMC 0.0000008 | 0.000001 | 0.000001 | 0.000001 | 0.000001 | 0.000001 [0.000001 | 0.000001 | 0.000001 | 0.000002

SMM 0.0000014 | 0.000001 | 0.000001 | 0.000001 | 0.000001 | 0.000001 [0.000001 | 0.000001 | 0.000001 [0.000002

DM 0.7022743 | 0.702273 | 0.702338 | 0.702368 | 0.702299 | 0.702308 | 0.702349 | 0.702374 | 0.702367 | 0.702362

3.3. Multicore Clusters Model - MCM

In the light of the above analysis, this section describespgioposed Multicore Cluster Model

(MCM), where a multicore clustet' M = { My, M1, Mo, ..

., M,,} is set ofm machines, where

Table Il. Total Time - ten threads in one machine

Allog r@) | 1vB ‘ 2MB ‘ 3VB ‘ aMB ‘ 5MB ‘ 6MB ‘ 7™MB ‘ 8V B ‘ 9MB ‘ 10MB
w(u,v) =1MB message
SC 1.3374 | 2.7777 | 4.0447 | 57713 | 12.2419 | 352310 | 69.7924 | 100.1719 | 1215122 | 1404271
SCM 1.3414 | 27778 | 4.0471 | 57029 | 13.3135 | 36.4155 | 69.2166 | 99.9814 | 122.7039 | 140.8029
SMM 1.3538 | 2.8219 | 4.1223 | 6.4391 | 13.5027 | 36.7180 | 69.2976 | 98.9662 | 122.3274 | 140.6743
DM 21571 | 35942 | 4.9074 | 6.6670 | 14.7997 | 36.8324 | 67.1933 | 955452 | 118.8403 | 137.5865
w(u, v) =4MB message
SC 14811 | 29270 | 4.1948 | 5.0055 | 13.6012 | 34.0697 | 69.1819 | 99.6317 | 122.0155| 140.5231
SCM 1.4850 | 29283 | 4.1952 | 6.2532 | 12,5493 | 37.0250 | 68.2627 | 100.3262 | 122.6561 | 140.5614
SMM 1.5016 | 2.9637 | 4.2477 | 5.9298 | 13.5898 | 37.7790 | 69.5724 | 99.4298 | 122.9522 | 140.6809
DM 47281 | 6.1448 | 7.4163 | 9.3374 | 16.7040 | 38.0295 | 71.5360 | 98.9790 | 121.9815 | 140.0319
w(u, v) = 8MB message
SC 1.6758 | 3.1227 | 4.3917 | 60852 | 10.1448 | 29.0173 | 71.8652 | 101.0864 | 123.6068 | 140.8053
SCM 1.6788 | 3.1228 | 4.3935 | 6.2708 | 10.7288 | 31.3465 | 72.1163 | 102.8356 | 124.0472 | 140.7693
SMM 1.6958 | 3.1611 | 4.4446 | 6.1554 | 11.0589 | 33.9579 | 72.8210 | 102.1969 | 123.6122 | 141.1606
DM 8.1402 | 9.5474 | 10.8190 | 12.7849 | 18.1668 | 36.0094 | 75.6678 | 103.3968 | 125.3568 | 143.6539
each machin@/;, 1 < i < m consists of a set gf processor®’; = { P; 0y, Pi,1), Pi,2)s - Plp) }-

In turn, each processdt; ;) consists of a set af cores, being each one denoteddy ;).

Cores in the maching/; share the global main memomwyy;, with capacitygme; and cores in
the processoF,; ;, share a cache memory in a given level. Each proceBsgy in each machine
M; has a set of cache memorie§'M; = {cm; j0), cm ;1) - - -, cm) t- The capacities of each
cachecmy; ;) is denoted bymc; ;), such thatme; ; 1y < gme;, i.e., the capacity of the cores
are smaller than the global memory one.

Every two core€’(; ; x1) andCy; j r2), Which share the cache memany.; ;, are called neighbor
cores. Also, all the cores in a machine share the global memnoy.

All the cores in the maching/; have the sameomputational slowdown index:;, which is an
estimation of the computational power of each corelip as defined in[[21]. Therefore, MCM
models homogeneous cores inside a machine, but the macmest necessarily homogeneous.
Thereby, the sole execution time associated withtaska core, say.; ; r), is thenet (v, C(; ; 1)) =
CcStl; X €. .

Concékrning the cache influence on the application perfoemahis work defines the worst case
execution time of a task on a given core”(i, j, k) due to the number of cache misses that might
occur, which depends on the amount of memory already a#ldcaience, the execution time of
taskv is established not only by the computational slowdown index also, the amount of data
already allocated tem; ; 1, and the main memorym;.

An edge (u,v) represents the dependency between taskand v and also, the exchange
of information between them, whose amount is givenddy, v). The communication time to
transmit this data between two machines, sdy,and A/; is thenct((u,v), M;, M;) = w(u,v) x
lat(M;, M;), wherelat(M;, M;) is the communication latency associated with the link betwd;
and)M;.

Considering the previous tests related to the communicatiase, it is considered, in MCM, that
the communication cost inside a machine is negligible.

3.4. A Load Balance Model

Regardless of the computational time associated with tleees@cution of an application task in a
core, this time is actually influenced by the amount of taslet are being executed on neighbor
cores. Lete(v) be the computational weight of a task ., memory amount allocated when
executingyv, andw(u, v) the communication weight from each one of the immediate guesisors

u € pred(v). Suppose that is allocated to cor€’ ;o jo,x0). The taskv is allocated taC;; ;i k1),
which is related ta; jo,10) depending on the following conditions:

1. if (o + p0) < emegin ji,k1), the execution time of is the smallest one if eithed = i1, that
is, if the amount of data required by battandv is smaller than the cache memory capacity,
the computational time will be the smallest if both tasksalecated on the same machine
but distinct cores, no matters if cache memory is shared brimghe casgu,v) € E, for

Total Time - messages wih w, v) = TMB
160

140
120
100
80
60
40

Tempa (8]

20

1MB 2MB aMB 4MB SMB &MB 7MB iMB SMB 10MB
p(v

—»— 5C ——5MC —&—SMM ——DM

Total Time - messages with w{uv) = 4MB

Tempo (s]
-]
(=)

1MB 2MB ame 4MB 5MB EMB FMB 8MB aMB 10MB
#(v)
—— 5C —4—SMC —3&—3MM ——DM

Total Time - messages with w(t, v) = SMB
160

140
120
100
80
B0
a0
20

Tempo (8]

1MB 2MB IMB 4MB EMB SMB TMB S8MB B 10MB
v}

—#—5C ——S5MC —@—S5hM ——DM

Figure 4. Total execution time (s) of ten threads under theSEtM, SMM and DM allocation

w(u,v) < LBy,s4, the total execution time af will be smaller if both tasks are executed in
the same machine.

0 (e + po) > emegin 1,1y, the computation time ob is smaller ifi0 = i1, jO # j1 and
k0 # k1, thatis, if the amount of data required by bathndv is more the cache capacity, the
computation time of will be smaller if both tasks are executed on distinct cofab® same
machine, but cache is not shared (non-neighbor cores)elnabegu, v) € E, the amount of
data to be transmitted should be considered:

(a) ifitis bigger than the cache size, the computation tifheis smaller ifi0 = 1, that is,
both tasks are executed in the same machine.

(b) otherwise, the communication message is smaller thawtiole cachey should be
allocated to a different machine, thati8,# 1.

Although conflicting, conditioh 2la arid 2.b relies on thet flaat it is cheaper to send small
messages via network than to keep locally. On the other Handong messages (in this
work, no more than 8MB), memaory contention for such messagest as expansive as the
communication time via network.

4. LOAD BALANCE OF A PARALLEL BRANCH-AND-BOUND BASED ON MCM

In order to analyze and validate MCM, a load balance proe8ased on the MCM model was
developed in the context of a parallel branch-and-bour8& B) algorithm applied to the Set
Partitioning Problem.

Branch-and-bound is a widely used technique for solvinghdR} optimization problems. Such
algorithms search the space of solutions following a traeveration. As the computations along
the subtrees can be accomplished almost independentyyatkeconsidered to be well suited for
parallelism.

There exists a variety of papers in the literature that psegaarallel branch-and-bound algorithms
or frameworks to ease its development for distributed [48,[46,[47] and shared memory
[48, (45,4950 51, 52,16] architectures. However, to thea béour knowledge, few of them
explores both shared and distributed memory. Moreovey,dbenot consider the memory hierarchy
of multicore processors in their solutions [53].

For a better understanding of this method, an introductich@sequentiaB& B applied to the
Set Partition Problem follows.

4.1. SequentiaB& B applied to the Set Partitioning Problem

Givenn variablesry, . . ., z,, with corresponding costs, ..., ¢, and 0-1 coefficients, ;, ..., a,;,
forj =1,...,m, the Set Partitioning Problem (SPP) is the problem of agsigd-1 values to these
variables such tha} """ | a;;z; =1, for j =1,...,m, minimizing }_" | ¢;z;. Besides the many
applications of this problem, the SPP is a problem of grei@r@st because it is a natural special
case of integer programming.

4.1.1. Lower BoundA straightforward lower bound on the optimal solution foistproblem can
be calculated by solving of its continuous relaxation

Minimize " c;z; 1)
=1
subjectto > ajai=1 j=1,..,m 2)
=1
x; >0, i=1,...,n 3)
or its dual
m
Maximize > 4)
j=1
subject to Zaijwj <c¢ i=1,...,n. (5)

j=1

where ther; variables may assume either positive or negative values.

The advantage of usindl[4-5) to instead @ {1-3) is that oglity is not necessary. In our
branch-and-bound procedure, we use the following hearisticalculate a feasible dual solution
that approaches its optimal solution in a reduced computatitime.

Our dual heuristic repeats two main steps by a fixed numbeerations. The first step, that we
call theforward step consists of increasing theg values as much as possible. Then, intthekward
step it reduces some; values while increasing others aiming to be able to imprbeddwer bound
in the next forward step. Hence, the backward step is notugaddn the last iteration.

The forward step is also divided into a number of iteration®ach iteration, the same valdg
is added to each; that does not belong to a saturated constraint Agis added tor; if and only if
Z;”:l a;;mj < ¢; foralli suchthat,;; = 1. SinceA, is chosen as the maximum value that will keep
all'constraints[(b) satisfied, at least one new constraicbines saturated upon every iteration. The
forward step stops when no moxg variables can be increased. This step is part of a well-known
approximation algorithm for the SPP_[54].

In the backward step, the value of is decreased by, (a; — 1), for someA,, whereq; is the
number saturated constraints wherehas a non-zero coefficient.df; = 0, thenr; is increased by
As. The value ofA; chosen so that the current lower bound is multiplied by amgiaetors. We
used = 0.5 in the first iteration of the root node add= 0.3 in the first iteration of the remaining
nodes. After each iteratiodl,is multiplied by0.7. We perform 10 iterations in the root node and 5
in the remaining nodes.

4.1.2. BranchingWe do branching on the constrairiis (2). For a selected rove create one branch
for each: with a;; = 1 where the variable; is fixed to one.
One important characteristic of the SPP is that each chilié wan be substantially smaller than its
parent. Whenever a variabie is fixed to one, every variable, such that botla;; = 1 anday; =1
for some; can be fixed to zero. Then, every constrdiit (2) wherbas a non-zero coefficient can
be removed. In our method, the remaining constraints ihtrexivalues ofr; from the parent node.
Next, we describe the criterion used to select a constjdortbranching. Let; be the number of
constraint? such thau;, = 0. We select the constrairitwith the smallest value 0§ icq1....»1 45,

which represents the total number of constraints in alldchddes that would be created.
In order to find feasible solutions earlier, we process thig ctodes in a non-decreasing order of
(c; — Z;;l a;;7j)/0;. The branch-and-bound tree is traversed in a depth-firstiséashion.
A more sophisticated and effective dual heuristic for the patitioning problem has been
proposed recently i [55]. However, we decided to use our leuristic because it is simpler and
achieves comparable lower bounds for the instances used experiments.

4.2. Parallel Branch-and-Bound applied to the Set Partitig Problem -PBBspp

The parallel algorithm was grounded on the perviously dlesdrBranch-and-Bound algorithm
for the Set Partitioning Problem. THeBBspp incorporates interesting characteristics in relation
to memory management. At first, it does not generate a bimagy aind actually, the number of
subtrees generated by each node can vary a lot. Also, nodest®a times are usually very small,
on average between 0.001 to 0.006 seconds, depending onsthede. However, many of these
nodes can need a larger amount of memory (this necessarynaimoaferred as node size).

Tabldll presents information about node sizes in bytesthaid corresponding times in seconds.
For four instances, it is shown the five smallest (five firs¢diof each instance) and the five largest
node sizes (the five remaining lines of each instance) for diifferent instances. The table also
presents the associated levels (distance from the rodipsétnodes in thB& B tree. The instances
used in the tests were randomly generated. The two first nigbehe instance name refer to the
guantity of items and sets, respectively. The remainingrination refers to the probability that
items appear in the set, followed by the seed of randomness.

It can be observed that all executions times of the nodeseamesmall. It is important also to
note that the lowest level nodes demand much more memongttiedrighest level ones. Since the
guantity of saturated constraints are smaller in lowesllredes than in the highest level ones.

Table Ill. Example reporting the level, size and executioretof nodes for four instances of SPP

Level | NodeSize (Bytes) | Node Execution Time || Level [Node Size (Bytes) | Node Execution Time
190-400-0.03 1100-500-0.03
17 448 0.001 25 420 0.001
17 452 0.001 22 424 0.105
18 456 0.085 22 448 0.001
18 480 0.001 26 472 0.001
16 516 0.001 27 480 0.005
2 9092 0.005 1 9836 0.096
3 9208 0.005 2 10068 0.006
1 9216 0.076 1 10452 0.001
2 9344 0.005 2 10888 0.006
1 9436 0.062 1 11780 0.083
1110-750-0.03 1200-650-0.02-100

24 508 0.001 25 2608 0.001
24 516 0.012 19 2640 0.001
29 528 0.001 23 2724 0.000
29 532 0.034 22 2728 0.001
24 532 0.026 23 2828 0.002
2 17072 0.009 1 16960 0.003
1 17476 0.006 1 17080 0.009
1 17628 0.011 2 17400 0.011
1 18492 0.003 1 18616 0.003
1 18608 0.019 1 19004 0.008

Figure[® presents the execution time versus node size foingtance 190-400-0.03. Most of
the nodes spend very small computation time, however timis vary a lot, from 50 Bytes to 9.6
KBytes. All other instances analyzed in this work presesiadlar characteristics.

12000 T T T T T T T T

000 —

anon

E000 1

Mode Size (byles]

1 1 1 1 1 1
o om ooz 0.3 004 ons oog ooy 0 ooa

Time {==gundos|

Figure 5. Execution time and nodes size for the 190-400-088nce for the Set Partitioning Problem

4.2.1. The load Balance Framewoikhe PBBgspp algorithm assumes a static assignment of
processes to machines such that exactly one process isedsim each physical machinid; of
the cluster. A process is composed of as many threads as thbenwf cores of machingf/;,
including a manager thread/T;, which is responsible for generation of the remaining ttisgia
M;, called workers, and for communication with other machuwfdke cluster. At each cor€; ; i),
a worker thread denoted &, ;) executes thé&& B tree nodes until it becomes idle, when then it
initiates a procedure to obtain new subtrees from othelloaded worker threads. A unique leader

thread (one leader per application), created on the madiiinand denoted agT, is responsible
for starting and terminating the application.
When a worker thread(; ; ;) receives a node, it executes a branch-and-bound procedhica w
generates other nodes that are kept in a local list of n@dgs; ;). In accordance with && 5B
parameter, each subtree can be traversed either in bread#dpth way, which in turn can affect
the size of the list'L; ; 1. In both traverse schemes, the proposed load balancegstratgpects
the associated cache size in accordance with the Confitiofthe Load Balance Modedtated in

Sectior 3.4.

The manager threatl/ T; is responsible for requesting load from another machinbersystem.
Let M; be a machine with overloaded thread$T’; removes parts of nodes from the lists of all
threads, and sends them &6T;, that requested load. ¥/ T; is not able to obtain more load and
all the respective threads are idle, it reaches its locatiteation condition, and informes this to
the leader of the applicatiobil’. The PBBgpp terminates whe T receives the local termination
condition from all manager threads in the system.

Figure[6 shows an example of two machirés and M, each one with a processdf, o) and
P10y, respectively. Each processor has two cargs; o) andC/; ; ;) that share a common cache.
The procedures executed by threads are represent by reaxstaAdditionally, the figure shows the
global lists,M Ly and M L1, used in the inter machine load balancing, and the local ISt g .0,
TL,0,1), TL,,0) andT L o1y used in the load balancing among worker threads of the same

machine.

et P "~y
Co,00 H
Pa Receive/ | m:ta ;
_______________ Distribute H
" Coot Load
| | Receive Receive |
Load H Load Initial
| i | Inter Machine Distribution
: i Load Balance
i| B&B |iE | B&B | |
| ' | Termination
H i Detect
i |Local Load| it L ccal Load Temfiiem T
Balance H Balance
MTa
LT P N, e e emees e e e e memae e
Cache Memory
TLgoo ITTTT-T] mus [0
%{D.Dj] =1

M1 \
- - T

ot

o . ™,
PP
Receive/ Cios 1
Distribute |
Load C1o0
| Receive | i! [Receive
Load Load
Inter Machine
Load Balance H H
| | B&B | §| B&B |§
Detect | i l ;
Termination Local Load | ;: [Local Load| :
Balance Balance
MT1 i
T100 __,.-‘ L, Tioa .
Cache Memory
wiII=] oD
\'-«

TLian W

Figure 6. The Load Balance Framework on the target architect

4.3. Load Balance Algorithms

The initial load distribution is performed byT', which executes the root node of the parabdt B
tree. As shown in Algorithrfil1, the generated nodes are plactt listGL (line[d). Considering
that the functiomumber Nodes(GL) returns the quantity of nodes in this lit]" evenly shares the
nodes among the worker threads (lifie 2), by sending! message (lines 2-10).

In case of a thread; ;) does not receive any initial load (i.e. whemmber Nodes(GL) <
m * p*c) or finishes executing its current load, it starts a load estiprocedure by executing
Algorithm[2, which is actually performed whenevgs ; ;) becomes idle.

Upon finishing the execution of nodes @t ; ; 1), the threadl; ; ;) starts the load balance
procedure in order to obtain nodes from other overloadezhtts, whether exists, in the following
order: a neighbor core at first (Algorithii 2); secondly frothey threads of the same machine
since the neighbor threads are underloaded or even idléhée respective node lists are empty

Algorithm 1 Initial Distribution managed by.T’

1: GL = Solve(RootNode);
2 numNodes. 7umberNodes(GL).

(m*px*c) '

3: for all i <~ 0tom do

4. forallj«+ 0topdo

5: for all k < 0tocdo

6: Load + nodes(GL, numNodes);
7 Send Load to T(i,j,k);

8: end for

9: end for

10: end for

(Algorithm[3, lines 6-9); and finally, from another machiifehe threadr; ;) is not able to obtain
load from other threads in its own machimg (Algorithm[3, line 11).

Upon receiving a load request messagg,;) sends a number of nodes from its local list as
presented in line 2 of Algorithi 4 or send a message inforrtiagits list is also empty as shown
in line 6 of the same algorithm.

Concerning the manager thread, when it receives a nui¥ieof local load requests, it sends a
request to another machifé, in a sequence of machines to be request, as presented iritAigor
B. When the other machin@/, answers the request by sending load, it shares the receined |
among the requesting load threads, as depicted in Algof@hifn at last, it is not able of obtaining
load from any other machine, it initiates the terminatioted@on algorithm (in Algorithn17).

Finally, when a manager thread receives a load request frasther machine, as portrayed
depicted in AlgorithniB, it tries to obtain load from all wenkthreads of its own machine. Upon
receiving an answer from all worker threads, it forwardsttital obtained load to the requesting
machine by executing Algorithf 9.

4.4. Implementation issues of the Load Balance Framework

The proposed model MCM influenced the implementation of & 55, in Mmany aspects, as
described next.

In order to avoid a memory cache contention, as verified irptegious study, the list of nodes
TL; ;) managed by each thredd, ; », during thePBBspp execution should not occupy more
than its share, which is the total size of L2 cache memongéitiby the number of threads that share
it. Once this limit is reached, cursive proceduréhat performs depth-first-traversal on tB& B
tree is initiated. The benefits of the depth-first-travecsal highly improve thé& B performance.

In order to have useful data at the last level cache when deéuke local list of node$'L; ; 1)
for each thread was implemented, increasing the chancescdgsing them without accessing the
main memory. However, the so called false sharing might oaden threads on different cores
write to a shared cache line, but not at the same locatiohidrcaise, since the written locations are
different, there is no real coherency problem, but the cadierency protocol sets the cache line
to dirty, and when there exists an access request to thelotaion, the hardware logic will force
a reload of a cache-line update from memory (even if notyestessary in logic terms). Frequent
updates of the data in the shared-cache line could causeegmmrformance degradation. In order to
prevent this degradation each list of nodes was allocatadlifferent cache line.

Concerning the load balance procedure executed/ty, a global listAM L; of nodes is also
created at each maching,;. The Manager Thread/T; disposes nodes transferred from other
machines, inV/ L; and distributes this total load among the thread¥/jrthat requested for load. The
updating the global list, in both cases of storing and remgwiodes inV/ L; were implemented with
the same rules of the classical producer consumer probleanagteeing that data were consistent
and no deadlock occurred.

Considering that the load transferring inside a machinslues only two threads, a temporary
list of nodes is created with half of the nodes from the thréred contains load, those nodes are
removed by the load requesting thread.

Remark that although the global lig/ L; can be larger than the available cache space, it
will be used only when the internal load balance fails. As tigxt section shows, it happens
very occasionally when compared with the internal load dfews. Note also that the time of
communication among machines is much higher than a nodeegsimg time and transmitting
very small loads can increase the frequency of communicatiche network. In this case, the
performance could be negatively affected.

Algorithm 2 Load Request b¥{; ; », when it becomes idle

2: Send LoadRequest t0 T(; ;)

3 endif
Algorithm 3 WhenT}; ; 1y receivesNoLoad fromT(; .,)
1: if (x = 5) then
2. if(y+1<e—1)then
3: Y+ +,
4: Send LoadRequest to T(; ; ., {Send request to another core
in the same processior
5 ese
6: if (j +1<p—1)then
7: 7+ +;
8: y +0;
o: Send LoadRequest to T; ;.), {Send request to another
processor on the same machjine
10: else
11 Send LoadRequest to MT;; {otherwise, forward request to
manager thread
12: end if
13: endif
14: end if

Algorithm 4 WhenT|; ; ., receivesLoad Request fromT; ; ;)

2. numNodes— MIN(
TL(i,j,k) that fit in cm(i7j7l));

3: Load < nodes{’ L ;), numNodes);
4: Send Load to T(; 1y,
5. else
6: Send NoLoadtoT; j;
7. end if

numbersNodes(TL; ;. r))
5 , humber of nodes of

Figure 7. Algorithms executed by works threads.

Algorithm 5 When M T; receivesLoad Request fromT(; ; 1

1: if (totalldle =NT) and ¢ + 1 < m) then
2. T+ -+,

3: Send LoadRequest to MT,;

4: end if

5: totalldle++;

Algorithm 6 When M T; receivesGlobal Load Request from MT,

1. ML; < Global LoadRequest;

- numNodes— number Nodes(Global Load Request) .
’ totalldle !
. for all (j + 0toj < p)do

2

3

4. forall (k< O0tok <c)do

5: Load + nodes(/ L;, numNodes);
6

7

8

Send Load t0 T(; j i)
end for
: end for

Algorithm 7 When M T; receivesN oLoad from M T,

1 if (x + 1 < m— 1) then

2. T+,

3: Send LoadRequest to MT,;
4: else

5. terminationDetection();

6: end if

Algorithm 8 When M T; receiveslLoad Request from M T,

1: numLoad« O;
: for all (j + 0toj < p)do
for all (k< Otok < c)do
Send LoadRequest 10 T(; j 1)
end for
end for

o aRrwnN

Algorithm 9 When M T; receivesLoad fromT(; ; 1,

1: numLoad++;

2: Global Load Request < Global Load Request + Load,
3: if (numLoad+ p * ¢) then

4. if (Global LoadRequest # () then

5: Send Global LoadRequest to MT,;

6: €lse

7: Send NoLoad to MT,;

8 endif

9: end if

Figure 8. Algorithms executed by manager thread.

5. EXPERIMENTAL RESULTS

The experiments presented in this section were executeddrclusters: Cluster Rio, that was
described in Section 3, and Cluster Oscar, described naxh Ehachine of Oscar has twqouad-
core processors (Intel Xeon 5355 Clovertown). Eaxdre has one private L1 cache (64 KB) and
share one L2 cache (8MB) with another core on the same prcédscores of a same machine
have a uniform access to a 16GB main memory module. Cent OiS 88 operating system with
kernel 2.6.18.

5.1. Analyzing Memory Allocation iRBBspp

As seen in the previous section, each node ofB&3 tree can produce other ones, and as a matter
of evaluation, both depth and breadth tree traversals vested in this work.

When breadth traversal was used, the generated nodes,nkéye listT'L; ; .y, occupied more
memory than the available space in L2 cache memory. Althougy generated nodesii.; ; 1)
guarantee that there will be load to be shared with eventidl# cores, it can cause cache access
contention. In order to certificate that the proposed modeMvtan be successfully applied in a real
application, we executed the parallek: 3 several times varying the maximum size®L; ;).
Remark that, by following the model, each thread should et more than the total cache size
divided by the number of cores that share it. In our enviromiriemeans that each one of the two
threads allocated in neighbor cores should use up to 3 MB aficke. The®? BBspp Was executed
with the followingT'L(; ; »y maxima sizes: 1, 3, 6 and 8MB. Tests were performed in one imach
of Cluster Rio. Note that although a breadth traversal pfoces is being used, when the size limit
of T'L(; ;) is reached, the algorithm starts the execution of a recuid@pth traversal procedure.
Results are presented in the Tabl@ IV, where coluffis; ; 1|, #Nodes, Wall Clock Time%CM,

are the maximum size dfL; ;), the number of nodes solved in the corresponditigB tree,

the wall clock time in seconds of theBBgspp and the average number of cache misses for each
thread and . Note that these results are averages of tentexescand in all of the cases the standard
deviation was negligible.

The presented wall-clock times show that as Thg; ;) size increases, even executing similar
number of nodes, the execution times also increase. Parliguan abrupt time growing occurs
when the totall'L; ; ») size exceeds the L2 cache size, confirming the ability of tiopgsed
model MCM to represent memory contention. Moreover, it ciBo &de observed that cache miss
percentage increases with the,; ; . sizes.

5.2. Evaluating the Load Balance Framework

In order to evaluate the efficiency of the proposed Load BadaRramework,PBBspp Was
executed both in accordance with the proposed frameworkadsa without any load balance
procedure. Tests were executed on two machines of the Okrstercrunning eight threads, one
at each core. In the version that no load balance procedwap@ied, only the Initial Distribution
procedure in Algorithm is executed, and when a thread fisigh@odes, it stays idle until all threads
also finish their executions and the application terminditesrder to evaluate the quality of the load
distribution proposed i? BBgs pp the following unbalance factor was calculated in accordamith

the generated result8n_Factor = 1 — gﬁgf , [66] whereT'Med is the average of execution times
of all the threads an@ M ax is the longest execution time among all of them.

Table[M presents, for both versions with load balance fraomkvand without load balance, for
each instance, the average of ten executions in seconds {lote), the average of the number of
processed nodes in the corresponditigB tree (# Nodes), the unbalance factoin(Factor), the
coefficient of variation concerning execution times (C\jddhe obtained speedup and efficiencies
(E).

As can be seen in Tallg V executiRd3 Bspp under the proposed load balance framework doubled
the efficiency, even processing similar number of nodes istroases. It can also be noted that the
unbalance factor was almost zero for all instances, ingigahe the proposef® BBspp can really
improve the application performance.

Table IV. Analysis in the number dB& B tree nodes, the wall clock time end number of caches miss when
breath transversal is carried out

Instances [TL¢i)] | #Nodes | Wall clock Time(s) | %CM

190-400-0.03 1MB 17067 10.55 | 28.1777
3MB 17067 11.49 | 29.2282

6MB 17067 11.58 | 29.3848

9MB 17067 12.09 | 29.4519

190-400-0.04 1MB 107205 41.09 | 28.9852
3MB 107205 44.24 | 30.3375

6MB 107205 44.29 | 31.0947

oMB 107205 46.67 | 31.3874

190-400-0.05 1MB 279272 89.55 | 29.1691
3MB 279272 94.67 | 30.3543

6MB 279272 101.12| 31.2821

9MB 279272 104.65| 31.3414

1100-500-0.03 1MB 28641 20.50 | 26.3336
3MB 28641 22.36 | 27.0692

6MB 28641 22.45 | 27.2445

9MB 28641 24.04 | 27.3580

1100-500-0.04 1MB 409252 201.60 | 27.7242
3MB 409252 213.65| 28.4698

6MB 409252 222.93| 28.5550

9MB 409252 225.28 | 29.3350

1100-500-0.05 1MB 1999934 638.46 | 29.5558
3MB 1999934 645.62 | 29.8931

6MB 1999934 648.46 | 29.9513

9MB 1999934 679.46 | 29.9788

1110-750-0.03 1MB 20439643 15704.29| 30.7038
3MB 20439643 15918.14| 30.8955

6MB 20439643 16789.79| 31.4379

9MB 20439643 30764.23| 32.3299

[200-650-0.02-100 1MB 12919402 18197.06| 32.4007
3MB 12919402 34126.15| 32.5090

6MB 12919402 35248.22| 35.0640

9MB 12919402 63456.87 | 35.1265

[200-650-0.02-152 1MB 24294476 29855.11 33.1098
3MB 24294476 34644.88| 33.6970

6MB 24294476 113764.58| 33.1544

9MB 24294476 270142.70| 33.8493

No results were provided to the instances 1110-750-0.040-[250-0.05 and 1200-600-0.04 since
they were executed for more than three days and their exaowtre halted due to lack of available
memory. This is happened because of the initial poor loaigidiv.

To measure the overhead of the proposgeiBs pp, distinct phases of the load balance framework
was evaluated. The number of load requests sent inside aimeaghd transmitted to a different
machine are shown in TaldlelVI. As presented in coluningal_Reg andGlobal_Req, the number

of messages exchanged inside a machine is much higher thaméamong different machines.
Nonetheless, the time of transmitting such messages batennuch less to the total execution time
than the messages sent via network.

5.3. Scalability Experiments

The last experiment aims to verify the scalability of tR&Bspp, by increasing the number of
machines available to execute the respective instandmllyionly two machines were considered
in order to measure the messages size exchanged betweenTthiemvas carried out to evaluate
their impact on the application performance, since as see®ettion 3.2, MCM indicated that
long messages sent via network might reduce performancehésn in Tablé VI, the messages
were never longer than 4 Mbytes wherargest indicates the size of the largest message when
running the respective application instan8eallestthe size of the smallest message Awdrage

the average amongst all messages size. Secondly, it wasalsaered four and eight machines,
and consequently, more threads were work in parallel. Asvehia Tables VIl andTX, even

Table V. Comparison between thieBBgspp load balance mechanism and a paralt B without load
balancing for the same problem

Instances | Total Time(s) | #Nodes | UnFactor | CV | Speedup | E
Without L oad Balance
190-400-0.03 13.66 31481.44 0.6370] 0.36 0.68 [0.04
190-400-0.04 28.31 117999.67 0.5533] 0.12 0.741 0.05
190-400-0.05 43.36 232304.80 0.7525] 0.10 0.46 [0.03
1100-500-0.03 29.66 112652.00 0.3200] 0.24 0.67] 0.04
1100-500-0.04 168.34 803151.34 0.5564 | 0.22 0.34] 0.02
1100-500-0.05 723.17 1861401.20 0.7618 | 0.00 0.97] 0.06
1110-750-0.03 6279.81| 37533812.60 0.6317] 0.29 0.37] 0.02
1110-750-0.04 - - - - - -
1110-750-0.05 - - - - - -
1200-650-0.02-100 15278.05] 13032890.60 0.8010] 0.25 0.86 | 0.05
1200-650-0.02-152 36100.79] 24354320.17 0.8570] 0.03 1.15] 0.07
1200-600-0.04 - - - - - -
With Load Balance PBBspp
190-400-0.03 5.89 26028.11 0.01617] 0.20 3.43]0.21
190-400-0.04 17.39 115415.60 0.0074] 0.11 2211014
190-400-0.05 37.78 280954.67 0.0043] 0.02 248 0.15
1100-500-0.03 23.68 102316.00 0.0075] 0.18 1.88] 0.12
1100-500-0.04 119.14 804957.80 0.0019] 0.18 4111 0.26
1100-500-0.05 267.14 2075008.78 0.0007 | 0.04 2.78 | 0.17
1110-750-0.03 5893.70| 29515686.90 0.0000] 0.22 290 0.18
1110-750-0.04 39343.88| 143389240.00 0.0000 | 0.05 1.18] 0.07
1110-750-0.05 20018.02| 106427367.00 0.0074] 0.03 1.92] 0.12
1200-650-0.02-100 5690.85| 13006009.90 0.0001] 0.13 3.10]| 0.19
1200-650-0.02-152 9786.27| 24337676.10 0.0001] 0.18 3.22| 0.20
1200-600-0.04 30200.41] 132296456.50 0.0000] 0.01 1.92]0.12

Table VI. Information on the communication

L ocal Global
Instances % Time | #Local_Req | % Time | # Global_Req
190-400-0.03 3.155 50.854 12.456 5.500
190-400-0.04 1.594 125.113 8.226 10.450
190-400-0.05 0.276 78.597 0.845 5.056
1100-500-0.03 2.185 108.000 7.149 9.600
100-500-0.04 0.670 231.631 2.288 13.700
[100-500-0.05 0.154 249.896 0.630 10.684
[110-750-0.03 0.161 1381.688 0.448 36.450
[110-750-0.04 0.066 1149.050 0.131 33.200
[110-750-0.05 0.053 657.464 0.139 7.699
[200-650-0.02-100 0.048 647.656 0.114 19.931
[200-650-0.02-152 0.046 906.531 0.108 26.450
200-600-0.04 0.050 753.875 0.095 22.000

with the growing number of messages transmitted via netwoekformance was still improved
by PBBgspp.

Note that, the messages sizes were never longer than 4MBfdhe priority was given to condition
[2.d from the Load Balance Model in sectfonl3.4 other fhahRdwever, due the amount &f& B
free nodes created, more machines were allocateB B spp, upon the saturation of caches of
current machines.

6. CONCLUSIONS AND FUTURE WORK

This paper proposes the MCM model that represents the mesard characteristics of a multicore
cluster, based on the results of exhaustive experimentsyoftaetic application. In order to validate
the model, it was used in the design and development of al®aBaanch-and-Bound for the Set
Partitioning Problem .Under the MCM, a load balance frant&for solving this problem prevents
that memory contention directly affects the performancegduling the nodes of thB& B tree

Table VII. Size Messages (KB)

Instances Largest | Smallest| Average
190-400-0.03 591.73 8.50 | 336.28
190-400-0.04 480.80 29.10| 310.38
190-400-0.05 174.81 3.32 75.38
1100-500-0.03 770.92 16.48 | 403.37
1100-500-0.04 982.40 8.28 | 524.22
1100-500-0.05 810.58 443 351.16
1110-750-0.03 3468.72 11.08 | 1903.83
1110-750-0.04 3076.16 20.02| 736.14
1110-750-0.05 215.04 14,76 | 839.86
1200-650-0.02-100 | 1730.42 86.31| 894.08
1200-650-0.02-152 | 1279.84 30.08 | 748.10
1200-600-0.04 1395.79 492 736.14

Table VIII. PBBgpp execution on four machines

Instances Time # Nodes % Time Local # Local_Req % Time Global # Global_Req Un_Factor Speedup
190-400-0.03 4.49 25383 5.2656 50.1250 35.4018 11.2500 0.0339 4.505
190-400-0.04 10.44 115431 1.9193 115.3438 15.3741 18.0000 0.0084 3.687
190-400-0.05 19.66 282458 1.0993 162.5000 7.8492 19.0000 0.0073 4765
1100-500-0.03 11.83 90535 3.1212 90.7188 18.2631 15.5000 0.0131 3.757
1100-500-0.04 94.38 1166225 0.8258 291.9375 5.6362 26.5000 0.0022 5.184
1100-500-0.05 148.38 2247700 0.9256 401.2188 2.4457 24.5000 0.0041 49.990
1110-750-0.03 2345.01 20947396 0.3405 1492.2813 1.2305 66.0000 0.0000 7.291
1110-750-0.04 11338.25 | 127309716 0.1154 1368.5000 0.3227 47.0000 0.0000 4.106
1110-750-0.05 7349.01 | 111828773 0.0985 932.8438 0.4027 29.2500 0.0001 5.217
1200-650-0.02-100 2583.50 12962936 0.0792 675.1875 0.2889 29.7742 0.0001 6.839
1200-650-0.02-152 4692.99 24327659 0.0623 931.4688 0.2137 37.2500 0.0000 6.706
1200-600-0.04 9834.11 | 130502067 0.1349 1420.6875 0.3329 44.5000 0.0001 5.907
Table IX. PBBgpp execution on eight machines
Instances Time # Nodes % Time Local # Local_Req % Time Global # Global_Req Un_Factor Speedup
190-400-0.03 3.70 39845 0.204 56.609 1.726 15.938 0.035 5.463
190-400-0.04 7.34 119475 0.249 109.953 2.613 18.000 0.018 5.242
190-400-0.05 13.46 289197 0.242 120.570 2.977 16.375 0.016 6.962
1100-500-0.03 6.30 71820 0.298 72.016 2.030 16.125 0.023 7.052
1100-500-0.04 38.20 858877 0.589 203.945 3.208 24.813 0.004 12.807
1100-500-0.05 76.49 2186299 0.491 292.836 4.059 24.438 0.002 9.698
1110-750-0.03 5133.82 95623639 7.539 1325.859 23.942 69.375 0.000 3.331
1110-750-0.04 10256.64 | 248729987 11.959 1244.086 34.212 50.250 0.000 4.539
1110-750-0.05 3239.82 | 112034575 3.544 861.578 13.866 38.250 0.000 11.835
1200-650-0.02-100 1476.05 12948620 1.930 692.391 9.250 39.250 0.000 11.969
1200-650-0.02-152 2240.29 24332087 2.642 819.422 13.442 44.625 0.000 14.048
1200-600-0.04 425550 | 131120162 5.959 1273.219 21.805 50.625 0.000 13.651

accordingly to the available amount of the cache memory.als shown that the bottlenecks are
avoided since the execution times improved considerahisthEr analyzes will be conducted for
the model on other classes of application. The actual agpdic used is considered to be dynamic,
and therefore, other applications with different chanasties will be considered in future work in
order to show the efficiency of the model.

REFERENCES

. Savage JE, Zubair M. A unified model for multicore architees.Proceedings of the 1st international forum on
Next-generation multicore/manycore technologle$/T '08, ACM: New York, NY, USA, 2008; 9:1-9:12.

. Tang L, Mars J, Soffa ML. Contentiousness vs. sensitivityproving contention aware runtime systems on
multicore architecture®roceedings of the 1st International Workshop on Adaptele Bining Computing Systems
for the Exaflop EraEXADAPT '11, ACM: New York, NY, USA, 2011; 12-21.

. Alam SR, Barrett RF, Kuehn JA, Roth PC, Vetter JS. Charaettton of scientific workloads on systems with
multi-core processordEEE International Symposium on Workload CharacterizatiéSWC, IEEE, 2006; 225—
236.

. Song F, YarKhan A, Dongarra J. Dynamic task schedulindifiear algebra algorithms on distributed-memory
multicore systemdnternational Conference for High Performance ComputiNgtworking Storage and Analysis,
2009.

. Mars J, Tang L, Soffa ML. Directly characterizing crossecimterference through contention syntheBimceedings
of the 6th International Conference on High Performance &mibedded Architectures and CompilersPEAC

10.
11.

12.

13.

14.

15.
16.

17.
18.
19.

20.

21.

22.
23.

24,
25.
26.

27.
28.

29.
30.

31.
32.
33.

34.

35.
36.

37.

38.

11, ACM: New York, NY, USA, 2011; 167-176.

. Rashid H, Novoa C, Qasem A. An evaluation of parallel kaakpsalgorithms on multicore architectur€sSC’1Q

2010; 230-235.

. Fortune S, Wyllie J. Parallelism in random access macHifith ACM Symposium on Theory of Computation

(STOC) New York, USA, 1978; 114-118. URLttp://budiu.info/work/ipdpsll.pdfl

. Jaj JAn introduction to parallel algorithmsAddison Wesley Longman Publishing Co., Inc.: Redwood G,

USA, 1992.

. Cole R, Zajicek O. ThPRAM: incorporating asynchrony into tifRAMmodel.Proceedings of the first annual

ACM symposium on Parallel algorithms and architectu®BAA '89, ACM: New York, NY, USA, 1989; 169-178.
Gibbons PB. A more practicdRAM model. Proceedings of the first annual ACM symposium on Parallel
algorithms and architectureSPAA '89, ACM: New York, NY, USA, 1989; 158-168.

Gibbons PB, Matias Y, Ramachandran V. Can shared-memagel serve as a bridging model for parallel
computationProceedings of the ninth annual ACM symposium on Paraligb@dhms and architecturesSPAA
'97, ACM: New York, NY, USA, 1997; 72-83.

Gibbons PB, Matias Y, Ramachandran V. TPRQW PRAM accounting for contention in parallel algorithms.
Proceedings of the fifth annual ACM-SIAM symposium on Disakorithms SODA '94, Society for Industrial
and Applied Mathematics: Philadelphia, PA, USA, 1994; 638-

Maggs BM, Matheson LR, Tarjan RE. Models of parallel catafion: A survey and synthesis 1995.
Ramachandran \QSM A general purpose shared-memory model for parallel coatjmt. Foundations of
Software Technology and Theoretical Computer Scieh@@7; 1-5.

Aggarwal A, Alpern B, Chandra A, Snir M. A model for hiechical memoryProceedings of the nineteenth annual
ACM symposium on Theory of computig§g OC '87, ACM: New York, NY, USA, 1987; 305-314.

Aggarwal A, Chandra AK, Snir M. Hierarchical memory witlock transfer.Proceedings of the 28th Annual
Symposium on Foundations of Computer Scie®eCS '87, IEEE Computer Society: Washington, DC, USA,
1987; 204-216.

Juurlink B, Juurlink BHH, Wijshoff HAG. The parallel hirchical memory modelln Proc. Scandinavian
Workshop on Algorithms Theory, LNCS 83fringer-Verlag, 1994; 240-251.

Alpern B, Carter L, Ferrante J. Modeling parallel congpsias memory hierarchids. Proc. Programming Models
for Massively Parallel Computer$EEE Computer Society Press, 1993; 116-123.

Alpern B, Carter L, Feig E, Selker T. The uniform memorgrarchy model of computatiorlgorithmical1994;
12:72-109.

Papadimitriou C, Yannakakis M. Towards an architeciudependent analysis of parallel algorithr83.0C '88:
Proceedings of the twentieth annual ACM symposium on The#fa@ymputing ACM: New York, NY, USA, 1988;
510-513.

Sena A. Um modelo alternativo para execuo eficiente deagsl paralelabPl nas grades computacionais. PhD
Thesis, Universidade Federal Fluminense 2008.

Valiant LG. A bridging model for parallel computatiddommun. ACML990;33(8):103-111.

Williams TL, Parsons RJ. The heterogeneous bulk symdu® parallel modeProceedings of the 15 IPDPS 2000
Workshops on Parallel and Distributed Processit@DPS '00, Springer-Verlag: London, UK, UK, 2000; 102-108
Culler DE, Karp RM, Patterson D, Sahay A, Santos EE, SdtakE, Subramonian R, von Eicken DogP: a
practical model of parallel computatioBommun. ACMNovember 199639:78-85.

Alexandrov A, lonescu MF, Schauser KE, Scheiman C. Lad@®rporating long messages into the LogP model
- one step closer towards a realistic model for parallel agatpon 1995.

Ino F, Fujimoto N, Hagihara KLogGPS a parallel computational model for synchronization agislySIGPLAN
Not.June 200136:133-142.

Frank M, Agarwal A, Vernon MKLoPC: Modeling contention in parallel algorithmBPOPR, 1997; 276-287.
Cameron KW, Ge R, Sun XHog,, p andlog; p: Accurate analytical models of point-to-point communicatin
distributed systemd$EEE Transactions on Compute2§07;56:314-327, doi:10.1109/TC.2007.38.

Bilardi G, Herley KT, Pietracaprina A, Pucci G, SpiraRi&. Bsp vs logpSPAA 1996; 25-32.

Ramachandran V, Grayson B, Dahlin M. Emulations betw@&M, BSP and LogPa framework for general-
purpose parallel algorithm desigh.Parallel Distrib. Comput2003;63(12):1175-1192.

Tam AT, Wang CL. Realistic communication model for patadomputing on clustedst IEEE Computer Society
International Workshop on Cluster Computjri®99.

de Amorim Mendes H. HlogP : Um modelo de escalonamenta paecuo de aplicaeMPl em grades
computacionais. Master’s Thesis, Universidade FedetahiFlense 2004.

Badia RM, Perez JM, Ayguade E, Labarta J. Impact of the ongifmierarchy on shared memory architectures in
multicore programming model&roceedings of the 2009 17th Euromicro International Caeriee on Parallel,
Distributed and Network-based ProcessitlgEE Computer Society: Washington, DC, USA, 2009; 437-445
Chai L, Gao Q, Panda DK. Understanding the impact of reolté architecture in cluster computing: A case study
with intel dual-core systenRroceedings of the Seventh IEEE International Symposiu@luster Computing and
the Grid CCGRID '07, IEEE Computer Society: Washington, DC, USAQ20471-478.

Savage JE, Zubair M. Evaluating multicore algorithmstam unified memory modeBcientific Programming -
Software Development for Multi-core Computing SystBecsember 200917:295-308.

Tu B, Fan J, Zhan J, Zhao X. Accurate analytical modelsfessage passing on multi-core clustBreceedings of
the 2009 17th Euromicro International Conference on PaialDistributed and Network-based ProcessiftgEE
Computer Society: Washington, DC, USA, 2009; 133-139.

Mercier G, Clet-Ortega J. Towards an efficient procesegrhent policy for MPI applications in multicore
environments EuroPVM/MP| Lecture Notes in Computer Scienaml. 5759, Springer: Espoo, Finland, 2009;
104-115. URLhttp://hal.inria.fr/inria-00392581}

Song F, Moore S, Dongarra J. Analytical modeling for @ffthased thread scheduling on multicore plataforms.
Symposim onPrinciples and Parctice of Parallel Programgni2009.

http://budiu.info/work/ipdps11.pdf
http://hal.inria.fr/inria-00392581

39.

40.
41.
42.
43.
44.
45.
46.

47.

48.

49.

50.

51.
52.

53.

54.

55.
56.

Xia Y, Prasanna VK, Li J. Hierarchical scheduling of dagictured computations on manycore processors with
dynamic thread groupingroceedings of the 15th international conference on Jokdualing strategies for parallel
processingJSSPP’10, Springer-Verlag: Berlin, Heidelberg, 2016-11574.

Gonzlez-Domnguez J, Taboada GL, Fraguela BB, Martn Mrid J. Servet: A benchmark suite for autotuning
on multicore clusterdPDPS’1Q 2010; 1-9.

Smith AJ, Saavedra RH. Measuring cache and tlb perfarenand their effect on benchmark runtimé=EE Trans.
Comput.Oct 1995:44(10):1223-1235.

Innovating Computing Laboratory, University of Tenses. Performance application programming interface 2004.
Http://icl.cs.utk.edu/papi/.

Dongarra J, Moore S, Mucci P, Seymour K, You H. Accurateheaand tlb characterization using hardware
countersinternational Conference on Computational Scigri¢eakow, Poland, 2004.

Barreto L, Bauer M. Parallel branch and bound algoritha ecomparison between serial, openmp and mpi
implementationsJournal of Physics: Conference Seri&310;256(1):012 018.

Djerrah A, Cun BL, Cung VD, Roucairol C. Bob++: Framewdok solving optimization problems with branch-
and-bound method$iPDC, 2006; 369-370.

Galea F, Cun BL. A parallel exact solver for the threesinduadratic assignment probleiRDPS Workshops
2011; 1940-1949.

de A Drummond LM, Uchoa E, Goncalves AD, Silva JMN, SanMCP, de Castro MCS. A grid-enabled
distributed branch-and-bound algorithm with applicatmmn the steiner problem in graphBarallel Computing
2006;32(9):629-642.

Ralphs TK, Guzelsoy M, Mahajan A. SYMPHONY version 5.3 sets man-
ual. Technical Report COR@L Laboratory, Lehigh University 2011. URL
http://www.coin-or.org/SYMPHONY/doc/SYMPHONY-5.3.4-Manual.pdfl

Sanjuan-Estrada JF, Casado LG, Garca |. Adaptive phnaiérval branch and bound algorithms based on their
performance for multicore architecturdhe Journal of Supercomputirgp11l; :376-384.

Park S, Kim T, Park J, Kim J, Im H. Parallel skyline compigta on multicore architecture®roceedings of the
2009 IEEE International Conference on Data Engineeril@DE '09, IEEE Computer Society: Washington, DC,
USA, 2009; 760-771.

Eckstein J, Phillips CA, Hart WE. Pico: An object-oriesframework for parallel branch and bound 2001.
Shinano Y, Higaki M, Hirabayashi R. A generalized ufifitr parallel branch and bound algorithn®oceedings of
the 7th IEEE Symposium on Parallel and Distributeed PracgsSPDP '95, IEEE Computer Society: Washington,
DC, USA, 1995; 392—.

Budiu M, Delling D, Werneck R. DryadOpt: Branch-and-bduon distributed data-parallel execution engines.
IEEE International Parallel and Distributed Processing ngyosium (IPDPS)Anchorage, AK, 2011. URL
http://budiu.info/work/ipdpsll.pdfl

Hochbaum DSApproximation algorithms for NP-hard problen@WS Publishing Co.: Boston, MA, USA, 1997.
Boschetti MA, Mingozzi A, Ricciardelli S. A dual ascembpedure for the set partitioning probleBiscret. Optim.
Nov 2008;5(4):735-747.

Ma KL. Parallel volume ray-casting for unstructure@igitata on distributed-memory architecturBsoceedings

of the IEEE symposium on Parallel renderjigRS '95, ACM: New York, NY, USA, 1995; 23-30.

http://www.coin-or.org/SYMPHONY/doc/SYMPHONY-5.3.4-Manual.pdf
http://budiu.info/work/ipdps11.pdf

	1 Introduction
	2 High Performance Platforms Models
	2.1 Model for shared memory architecture
	2.2 Model for distributed memory architecture
	2.3 Multicore architectures - Models for distributed and shared memory architecture
	2.4 The application model

	3 On Modeling Multicore Clusters
	3.1 Computation Phase Tasks
	3.2 Communication phase
	3.3 Multicore Clusters Model - MCM
	3.4 A Load Balance Model

	4 Load Balance of a Parallel Branch-and-Bound based on MCM
	4.1 Sequential B&B applied to the Set Partitioning Problem
	4.1.1 Lower Bound
	4.1.2 Branching

	4.2 Parallel Branch-and-Bound applied to the Set Partitioning Problem - PBBSPP
	4.2.1 The load Balance Framework

	4.3 Load Balance Algorithms
	4.4 Implementation issues of the Load Balance Framework

	5 Experimental results
	5.1 Analyzing Memory Allocation in PBBSPP
	5.2 Evaluating the Load Balance Framework
	5.3 Scalability Experiments

	6 Conclusions and Future work

