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SUMMARY

This paper proposes a trustworthiness-based approach for the design of secure learning activities in on-line learning groups. 
Although computer-supported collaborative learning has been widely adopted in many educational institutions over the last 
decade, there exist still drawbacks that limit its potential. Among these limitations, we investigate on information security 
vulnerabilities in learning activities, which may be developed in on-line collaborative learning contexts. Although security 
advanced methodologies and technologies are deployed in learning management systems, many security vulnerabilities are 
still not satisfactorily solved. To overcome these deficiencies, we first propose the guidelines of a holistic security model in 
on-line collaborative learning through an effective trustworthiness approach. However, as learners’ trustworthiness analysis 
involves large amount of data generated along learning activities, processing this information is computationally costly, 
especially if required in real-time. As the main contribution of this paper, we eventually propose a parallel processing 
approach, which can considerably decrease the time of data processing, thus allowing for building relevant trustworthiness 
models to support learning activities even in real-time. 

KEY WORDS: trustworthiness; e-learning activities; computer-supported collaborative learning; information security; 
parallel processing; log files; massive data processing, Hadoop, MapReduce 

1  INTRODUCTION 

Computer-Supported Collaborative Learning (CSCL) has become one of the most influencing 
educational paradigms [1], [2] widely adopted in many educational institutions over the last two decades. 
Among these institutions, our real e-Learning context of the Open University of Catalonia1 (UOC) 
develops online education based on collaborative learning activities. This institution is supporting the 
research work presented in this paper and its results are considered and included in other UOC’s research 
projects, with the aim of enhancing e-Learning factors, such as assessment cost reduction and students 
scalability. Although CSCL activities have been incorporated in many on-line educational settings, there 
exist still many drawbacks that limit their potential. Among these limitations, collaborative learning 
services and activities are usually designed and implemented without much consideration of security 
issues. As a result, information security vulnerabilities may interfere in these activities, thus threatening 
and reducing the effectiveness of the overall collaborative learning process [3], [4]. 

Information security requirements have been generally considered and developed recently in Learning 
Management Systems (LMS) [5]. However, to the best of our knowledge, integrated and holistic security 
models have not been carried out yet. As a result, many security vulnerabilities are still reported in LMSs 
and remain unsolved [6], [7]. Therefore, innovative security solutions are needed to overcome these 
limitations and support a secure learning process. To this end, in this paper we propose a trustworthiness 



model based on a multi-fold assessment approach of CSCL activities, which can meet security 
requirements of on-line collaborative learning process. 

Finally, in order to provide effective and just-in-time trustworthiness information from the LMS, it is 
required a continuous processing and analysis of group members’ interaction data during long-term 
learning activities, which produces huge amounts of valuable data stored typically in server log files [8], 
[9]. CSCL activities may demand a great amount of communication processes, collaborative contents and 
many types of interactions [1], [2]; if our model aims to analyze how trustworthiness factors are related to 
these resources, the context of CSCL will be an ideal case study. Due to the large or very large size of 
data generated daily in online learning activities, the massive data processing is a foremost step in 
extracting useful information and may require computational capacity beyond that of a single computer 
[10]. We study the feasibility of a parallel approach for processing large log data files of a real LMS 
using distributed infrastructures and show how considerable improvements in performance can be 
achieved via Hadoop MapReduce implementations.  

The paper is organized as follows. Section 2 presents the background and context information on 
security in e-Learning. Section 3 endows our security model with trustworthiness properties on learning 
activities describing relevant trustworthiness factors and rules that have an effect in the collaborative 
learning process. Parallel processing paradigms are analyzed in section 4 to massive data processing and 
build relevant trustworthiness models. Finally, Section 5 concludes the paper highlighting the main 
findings and outlining ongoing and future work. 

2 BACKGROUND  

In this section we first review main works in the literature on general security in e-Learning, including 
our previous research. Then, we propose complementary solutions to secure e-Learning beyond 
technological approaches. To this end, a trustworthiness approach for secure e-Learning is provided. 

2.1 Information Security in e-Learning 

Early research works about information security in e-Learning [11], [12] are focused on confidentiality 
issues with respect to ensure students’ and tutors’ privacy requirements. An initial work [13] suggests that 
the most effective mechanism for dealing with the privacy issues raised in the virtual learning 
environment should be a task force or committee made up of those who are closely involved. This 
proposal is quite general and then in subsequent works on privacy in e-Learning some authors have 
addressed the need for more specific approaches [3]. Further works [4], [14] consider other aspects of 
security in e-Learning. In [14], the author argues that security is mainly an organizational and 
management issue and improving security is an ongoing process in e-Learning. This is in fact the first 
proposal in which information security is applied to learning management systems as a general 
requirement in e-Learning design and management. The authors in [4] presented how security in e-
Learning can be analyzed from a different point of view, namely by first analyzing threats for e-Learning 
and then, recommendations are introduced and discussed in order to cope with detected threats. Finally, 
more specific security issues in e-Learning have been investigated (e.g. virtual assignments and exams, 
security monitoring, authentication and authorization services) in [15]–[18]. 

Although the above literature discuss on security design in e-Learning from a theoretical point of 
view, there is still needful to understand attacks in order to discover security design factors and figure out 
how security services must be classified and designed [19]. In [20], through analyzing existing research 
in attack classification, a new attack taxonomy is constructed by classifying attacks into dimensions. 
Nevertheless, since attacks taxonomies might be applied to cover each kind of attack which might occur 
in LMS they are not closely related to security design in e-Learning. In order to fill this gap, in [17], we 
have proposed an alternative approach which associate attacks to security design factors. 



There is an increasing interest in understanding security attacks in real life scenarios. Several reports 
justify the relevance of security attacks during the last two years. In particular, the study presented in [7] 
revealed that security attacks are a reality for most organizations: 81% of respondents’ organizations 
experienced a security event (i.e. an adverse event that anyhow compromises security). Finally, we can 
consider specific LMS real software vulnerabilities. Moodle is an Open Source LMS which is massively 
deployed in many schools and universities. In Moodle Security Announcements 2 , 40 serious 
vulnerabilities have been reported in 2013. 

2.2 Previous Work on Security in e-Learning 

In previous research [15]–[18] we have argued that general security approaches proposed so far do not 
guarantee that learning processes are developed in a reliable way. Next we summarize the main research 
findings on security in e-Learning made so far focused mainly in the following educational contexts: 
collaborative learning (CSCL), mobile learning (m-Learning), and massive open online courses 
(MOOCs). These contexts are approached by several design methodologies and security considerations, 
such as, software modeling languages, risk management, security in LMS, attacks in e-Learning, 
students’ privacy, specific security properties, e.g. authentication, and global user authentication services. 

In [15] we proposed a new approach named Secure Collaborative Learning Management Systems 
(SCLMS) based on an the current developments in the domain of CSCL systems that consider security as 
a key requirement. As a result, an innovative guideline is proposed to develop secure learning 
management systems focusing on the support for CSCL with specific needs, such as interactions between 
participants, collaborative material management, communication processes and generation of 
collaborative results. Following the SCLMS roadmap, in [17] an innovative guideline to develop secure 
e-Learning systems was presented for m-Learning. In [18] we conducted research to provide information 
security to the Massive Open Online Courses (MOOCs) [18] and in particular supporting evaluation, 
grading and certification as the main challenges in the MOOC arena [21]. The core of this approach is an 
authentication service defined as a modular PKI-based security model called MOOC Smart Identity 
Agent (MOOC-SIA) [18], which is a global user authentication model for MOOC platforms. 

Considering the previous research experiences, the starting point of this paper is to extend our above 
proposals with a new trustworthiness model. 

2.3 Trustworthiness and Security for e-Learning 

In [22] it is discussed that security is both a feeling and a reality. The author points out that the reality 
of security is mathematical based on the probability of different risks and the effectiveness of different 
countermeasures. But, security is also a feeling, based not on probabilities and mathematical calculations, 
but on your psychological reactions to both risks and countermeasures [22]. This security model 
eventually concludes that security is a trade-off between the real fact that absolute security does not exist 
and the need to feel secure. This approach is very relevant in our model because it is based on a hybrid 
evaluation system in which technological and trustworthiness solutions are combined.  

In order to measure trustworthiness and identify what factors are involved in a quantitative study, in 
[23] it is proposed a data provenance trust model, which assigns trust scores to both data and data 
providers based on certain factors that may affect trustworthiness. For instance, in our e-Learning 
context, students and students’ resources (e.g. shared documents, posts in a forum, etc.) can be modeled 
following this approach when developing CSCL activities. To this end, in [24], the author designs a 
survey to explore interpersonal trust in work groups identifying trust-building behaviors ranked in order 
of importance. These behaviors can be used as trustworthiness factors, which can measure trust in those 
activities that students develop. In addition, [25] considers different aspects of trustworthiness in terms of 
expressions and classifications of trust characteristics, such as trust asymmetry, time factor, limited 
transitivity and reliability. 



3 METHODOLOGY 

This section shows a methodological approach to build our trustworthiness-based security model for 
CSCL. First, we built our model by enhancing standard security models with trustworthiness factors and 
rules, following the considerations made in Section 2. Then, we apply some statistical techniques to the 
variables involved in our security model with the purpose to measure correlation. Finally, we conclude 
the section with important issues concerning the management of the large and complex data forming our 
model, which becomes the main motivation of this research. Next section presents a solution to these 
issues. 

3.1 Trustworthiness for Secure e-Learning 

Our security model is endowed in this subsection with trustworthiness properties on learning activities 
and learners themselves. First, we describe relevant trustworthiness factors and rules that have an effect 
in the collaborative learning process. Then, in order to measure the impact of these factors, we propose 
several indicators and levels of trustworthiness. 

3.1.1 Trustworthiness Factors and Rules 

The relevant trustworthiness factors identified are summarized in the following table: 
 

Table I: Trustworthiness Factors 

 
Trustworthiness Building Factors (TBF) 

Student “S” working in the group of students “GS” is building 
trustworthiness when… 

1 S communicates honestly, without distorting any information. 

2 S shows confidence in GS’s abilities. 

3 S keeps promises and commitments. 

4 S listens to and values what GS say, even though S might not agree. 

5 S cooperates with GS and looks for mutual help. 

 
Trustworthiness Reducing Factors (TRF) 

Student “S” working in the group of students “GS” is reducing 
trustworthiness when… 

1 S acts more concerned about own welfare than anything else. 

2 S sends mixed messages so that GS never know where S stands. 

3 S avoids taking responsibility. 

4 S jumps to conclusions without checking the facts first. 

5 S makes excuses or blames others when things do not work out. 

 
In addition, we take into account the following trustworthy rules: (i) Asymmetry, where A trust B is 

not equal to B trust A; (ii) Time factor, where trustworthiness is dynamic and may evolve over the time; 
(iii) Limited transitivity, where if A trusts C who trusts B then A will also trust B, but with the transition 
goes on, trust will not absolutely reliable; (iv) Context sensitive, when if context changes, then trust 
relationship might change too. 

However, it is worth mentioning that trustworthiness factors are defined from the perspective of 
students’ behavior, hence the methods discussed so far provide security improvements but cannot fully 
meet secure e-Learning activities requirements. Furthermore, neither trustworthiness nor PKI models 
define or manage the actions to take when the security service detects either anomalous situations or 
violation of the properties we have defined. 



Trustworthiness building and reducing factors are closely related to (see Table I): 
• Interactions between participants (e.g. TRF2). 
• Content management and generation of collaborative results (e.g. TRF1). 
• Communication processes (e.g. TBF1). 
• Group management tasks (e.g. TRF5). 

 
Every of these issues may be involved in e-Learning, but in CSCL learning experiences, we can find a 

higher amount of them than in other learning paradigms hence we focus our trustworthiness model on 
CSCL. 

3.1.2 Modeling Trustworthiness Levels and Indicators 

We introduce now the concept of trustworthiness indicator 𝑡𝑤!  (with  𝑖 ∈ 𝐼 , where 𝐼  is the set of 
trustworthiness indicators) as a measure of trustworthiness factors. Trustworthiness factors have been 
presented as those behaviors that reduce or build trustworthiness in a collaborative group and they have 
been considered in the design of questionnaires. A 𝑡𝑤! is associated with one of the measures defined in 
each e-assessment instrument (i.e. ratings, questionnaires, reports, etc.). The concept of trustworthiness 
level 𝐿𝑡𝑤! is a composition of indicators over trustworthiness rules and characteristics. For instance, we 
can consider two trustworthiness indicators (𝑡𝑤!  and 𝑡𝑤!). These indicators are different, the first 
indicator could be a rating in a forum post and the second one a question in a questionnaire; but they 
measure the same trustworthiness building factor (e.g. TBF-1: communicates honestly). With regarding 
to trustworthiness rules, this indicator may be compared to the group, over the time or considering the 
context. Trustworthiness indicators can be represented following these expressions: 

𝑡𝑤!!,! 𝑎 ∈ 𝑄,𝑅𝑃, 𝐿𝐺𝐼 , 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 

where Q is the set of responses in Questionnaires, RP is the analogous set in Reports, LI is the set of 
LMS indicators for each student (i.e. ratings and the general students’ data in the LMS). S is the set of 
students in the group and R is the set of rules and characteristics (e.g. time factor). These indicators are 
described above when presenting instruments. 

Once indicators have been selected, trustworthiness levels can be expressed as follows: 

𝐿𝑡𝑤! =
𝑡𝑤!
𝑛

!

!!!

, 𝑖 ∈ 𝐼 

where 𝐼 is the set of trustworthiness indicators which are combined in the trustworthiness level 𝐿𝑡𝑤!. 
Trustworthiness levels 𝐿𝑡𝑤!must be normalized; to this end, we have reviewed the normalization 

approach defined in [26] with regarding to support those cases in which particular components need to be 
emphasized more than the others. Following this approach, we previously need to define the weights 
vectors: 

𝑤 = 𝑤!,… ,𝑤! , . . .𝑤! , 𝑤! = 1
!

!

 

where 𝑛 is the total number of trustworthiness indicators and 𝑤! is the weight assigned to 𝑡𝑤!. 
Then, we define trustworthiness normalized levels as: 



𝐿𝑡𝑤!! =
(𝑡𝑤! ∗ 𝑤!)

𝑛

!

!!!

, 𝑖 ∈ 𝐼 

Therefore, trustworthiness levels allow us modeling students’ trustworthiness as a combination of 
normalized indicators using research and data gathering instruments. 

Regarding groups, this model may also be applied in cases with only one working group; in this 
scenario, all students would belong to the same group. 

3.2 Statistical Analysis 

Following the trustworthiness model presented above we proceed now with inquiring whether the 
variables involved in the model are related or not. With this purpose the correlation coefficient may be 
useful. Some authors have proposed several methods regarding rates of similarity, correlation or 
dependence between two variables [27]. Even though the scope of this paper is focused on user-based 
collaborative filtering and user-to-user similarity, the models and measures of the correlations between 
two items applied in this context are completely applicable in our scope. More precisely, we propose 
Pearson correlation coefficient r as a suitable measure devoted to conduct our trustworthiness model. 
Pearson coefficient applied to a target trustworthiness indicator is defined below: 

𝑟!,! =
(𝑡𝑤!,! − 𝑡𝑤!)!

!!! ∗ (𝑡𝑤!,! − 𝑡𝑤!)
(𝑡𝑤!,! − 𝑡𝑤!)!!

!!! ∗ (𝑡𝑤!,! − 𝑡𝑤!)!!
!!!

 

where 𝑡𝑤! is the target trustworthiness indicator, 𝑡𝑤! is the second trustworthiness indicator in which 
𝑡𝑤! is compared (i.e. similarity, correlation, anomalous behavior, etc.), 𝑡𝑤! and 𝑡𝑤! are the average of 
the trustworthiness indicators and n is the number of student’s provided data for 𝑡𝑤! and 𝑡𝑤! indicators. 

It is worth mentioning that if both a and b are trustworthiness indicators with several values over the 
time (e.g. a question which appears in each questionnaire), they must be compared in the same point in 
time. In other words, it is implicit that 𝑟!,! is actually representing 𝑟!!,!!, where 𝑎! is the trustworthiness 
indicator in time t. 

In addition, this test may be applied to every trustworthiness indicator taking one of them as target 
indicator. To this end, we define the general Pearson coefficient applied to a target trustworthiness 
indicator over the whole set of indicators, as follows: 

𝑟! = (𝑟!,!,… , 𝑟!,! ,… , 𝑟!,!!!), 𝑖 ∈ 𝐼, 𝑖 ≠ 𝑎 

where 𝑟!,! is the Pearson coefficient applied to a target trustworthiness indicator is defined above and 
𝐼 is the set of trustworthiness indicators. 

Both relation and similarity are represented by 𝑟!,! and 𝑟! grouping students’ activities and taking the 
variables at the same time. We are also interested in time factor and it may be relevant the evolution of 
trustworthiness indicators throughout the course. To this end, we extend pervious measures, adding time 
factor variable: 

𝑟!,!,!! =
(𝑡𝑤!!,! − 𝑡𝑤!!)

!
!!! ∗ (𝑡𝑤!!!,! − 𝑡𝑤!!!)

(𝑡𝑤!!,! − 𝑡𝑤!!)!
!
!!! ∗ (𝑡𝑤!!!,! − 𝑡𝑤!!!)!

!
!!!

 



where 𝑡 is the target point in time and 𝑡𝑡 is the reference point in time (i.e. 𝑡 is compared against 𝑡𝑡), 
all other variables have already been defined with this case they are instanced in two moments in the 
course. 

 Similarly, we can calculate 𝑟!,!,!! for each 𝑡𝑡, and then the following indicator may be used: 

𝑟!,! = (𝑟!,!,… , 𝑟!,! ,… , 𝑟!,!!!), 𝑖 ∈ 𝐼, 𝑖 ≠ 𝑎  

The trustworthiness indicators are summarized in the Table II: 
 

Table II: Trustworthiness Basic Indicators 

Basic 
Indicators 

Trustworthiness Statistical Analysis 

Description Group by Target/ 
Reference 

𝑟!,!  
Pearson coefficient applied 
to a target trustworthiness 
indicator. 

Students 𝑡𝑤!  
𝑡𝑤!  

𝑟!  𝑟!,!  over the set of indicators Indicators 𝑡𝑤!  

𝑟!,!,!! 
Pearson coefficient applied 
to a tw indicator throughout 
the course from t to tt. 

Time 𝑡𝑤!  
𝑡 

𝑟!,! 
𝑟!,!,!!  over the throughout 
the course. Course 𝑡𝑤!  

 
Finally, trustworthiness indicators may be gathered in a trustworthiness matrix with the aim of 

representing the whole relationship table for each indicator: 

𝑅!" =

0 𝑟!"!,!"! … 𝑟!"!,!"!
0 0 … …
0 0 0 𝑟!"!!!,!"!
0 0 0 0

 

Although the indicators presented are proposed as suitable options for our model, the model will be 
refined to select those indicators oriented to perform the best similarity and correlation. In addition, this 
approach is also intended to be a prediction tool, since similarity facts may conduct predictions about the 
evaluation system and its evolution. 

To sum up, the above indicators, levels, rules and statistical analysis can become robust instruments to 
appropriately modeling trustworthiness in e-learning groups and eventually extending current security 
models for CSCL that overcomes many of the limitations reported in Section 2. However, the collection 
of valuable data and their later statistical analysis to build our security model usually involves the 
constant processing and analysis of large amounts of ill-formatted information, even in real time, 
stressing even more the computational cost involved and requiring a high performance solution to 
alleviate this cost. For instance, in our real e-learning context of the UOC, with thousands of on-line 
courses and many of them involving e-learning in work teams, the amount of data collected can be of the 
scale of 20GB per day coming from different LMS with different formats, and the information is found 
with high degree of redundancy, tedious and ill-formatted as well as incomplete.  

Next section presents our parallel data processing approach to overcome this problem in order to make 
it feasible the construction of security models, such as our trustworthiness-based security model for 
CSCL presented above. 

 
 



4 PARALLEL PROCESSING APPROACH 

In this section we address the need to alleviate the computational cost of massive processing of the large 
amounts of data generated during long-term e-learning activities, with the aim to cope with learner’s 
trustworthiness analysis and the building of trustworthiness models, even in real-time. To this end, we 
propose a parallel approach for massive data processing. 

4.1 The Problem of Processing Log Files  

In previous research [28], [29], [10] we showed that extracting and structuring LMS log data is a 
prerequisite for later key processes such as the analysis of interactions, assessment of group activity, or 
the provision of awareness and feedback involved in CSCL. With regarding to BSCW, the computational 
complexity of extracting and structuring BSCW log files is a costly process as the amount of data tends to 
be very large and needs computational power beyond of a single processor (see Fig. 1-A and also [10], 
[29]).  In addition, in [30] we studied the viability of processing very large log data files of a real virtual 
campus (UOC Virtual Campus) using different distributed infrastructures to examine the time 
performance of massive processing of log files. It was also shown the linear execution time of the local 
processing of UOC log files (see Fig. 1-B); hence the computational cost of sequentially processing large 
amounts of log data becomes unfeasible.  
     Therefore, parallel techniques to speed and scale up the structuring and processing of log data are 
required dealing with log data. In [28] and [30] these models were implemented following the master-
slave paradigm and evaluated using Cluster Computing and Planet Lab platforms. 
 

 
 

Figure 1.  Sequential processing of BSCW log files (A) [10] and local processing of UOC logs (B) [30]. 

Taking these approaches as starting point, in this paper we extend our goals in two different directions 
which are presented in next sections: parallelizing the normalization of several LMS logs files (e.g. 
BSCW and UOC log files) and using MapReduce paradigm [31]. Then, we use Hadoop and Cluster 
Computing to implement and evaluate the parallelization of massive processing of log data [8]. 

4.2 UOC Virtual Campus Log Files 

Before presenting our parallel processing implementation details, we first show in this section the 
different format of BSCW and UOC log files and the problems to process them due to the large size and 
ill-structure formats of both. To this end, a normalization approach for both types of log data is proposed 
as an input to our general parallel processing model presented in next subsections.  



4.2.1 BSCW Log Files  

In our real learning context of the Open University of Catalonia, several on-line courses are provided 
involving hundreds of undergraduate students and a dozen of tutors in a collaborative learning 
environment. The complexity of the learning practices entails intensive collaboration activity generating a 
great amount of group activity information. To implement the collaborative learning activities and 
capture the group interaction we use the abovementioned BSCW as a shared workspace system, which 
enables collaboration over the Web by supporting document upload, group management and event 
service among others features. BSCW event service provides awareness information to allow users to 
coordinate their work [32].  
     In the BSCW, the events are triggered whenever a user performs an action in a workspace, such as 
uploading a new document, downloading (i.e. reading) an existing document, renaming a document and 
so on. The system records the interaction data into large daily log files and presents the recent events to 
each user. In addition, users can request immediate email messages whenever an event occurs, and the 
daily activity reports are sent to them daily and inform them about the events within the last 24 hours. 
The typical format of the BSCW log files is as follows: 
 
User:[3434841, '*******'] 
object:[3452718, 'Presentació A**** S*****'] 
Type:RateEvent 
Time:1078202945.04 
Members:[[3448332, '******', 'OyvLkYg2ueStI'], [3449370, '*****', …., [3425007, 'Aula 5 (*****)'], [3425034, 'Espai per a la Formació de Grups'], 
[3425118, 'Espai Presentacions']] 
On:[3425118, 'Espai Presentacions'] 
Touched:[3434844, ':********'] 
Icon:'/bscw_resources/icons/e_write.gif' 
Class:Document 
Content:application/octet-stream 
 
The BSCW log does not follow a standard log format therefore parsing these logs format requires a 
customized development. Moreover, relevant data are omitted, in the example above the student 3434841 
is rating the resource 3452718 but we cannot find additional information such as the rate value. 

4.2.2 UOC Log Files  

The Web-based Virtual Campus of the UOC is made up of individual and community virtual areas such 
as mailbox, agenda, classrooms, library, secretary's office and so on. Students and other users (lecturers, 
tutors, administrative staff, etc.) continuously browse these areas where they request for services to 
satisfy their particular needs and interests. For instance, students make strong use of email service so as to 
communicate with other students and lecturers as part of their learning process. All users’ requests are 
chiefly processed by a collection of Apache3 web servers as well as database servers and other secondary 
applications, all of which provide service to the whole community and thus satisfy a great deal of users’ 
requests. For load balance purposes, all HTTP traffic is smartly distributed among the different Apache 
web servers available. Each web server stores in a log file all users’ requests received in this specific 
server and the information generated from processing the requests. Once a day (namely, at 01:00 a.m.), 
all web servers in a daily rotation merge their logs producing a single very large log file containing the 
whole user interaction with the campus performed in the last 24 hours. A typical daily log file size may 
be up to 20 GB. This great amount of information is first pre-processed using filtering techniques in order 
to remove a lot of futile, non relevant information (e.g. information coming from automatic control 
processes, the uploading of graphical and format elements, etc.). However, after this pre-processing, 
about 2.0 GB of potentially useful information corresponding to 5,000,000 of log entries in average still 
remains [30]. 



The log files storing the whole activity of the UOC Virtual Campus follow the Apache log system. A 
typical configuration for the Apache log system is the Common Log Format [33]; a standard 
configuration for this log system is as follows: 

𝐿𝑜𝑔𝐹𝑜𝑟𝑚𝑎𝑡 "%ℎ %𝑙 %𝑢 %𝑡 \"%𝑟\" % > 𝑠 %𝑏" 𝑐𝑜𝑚𝑚𝑜𝑛 

where (h) is the IP address of the client or remote host; (l) indicates unavailable requested information; 
(u) is the user id; (t) is the time that the server finished processing the request; (r) is the request line; (s)  is 
the status code and (b) is the size of the object returned. 

In UOC Virtual Campus, log file records are managed following a variation of the Common Log 
Format known as Combined Log Format [33], with two additional fields: 

 𝐿𝑜𝑔𝐹𝑜𝑟𝑚𝑎𝑡 "%ℎ %𝑙 %𝑢 %𝑡 \"%𝑟\" % > 𝑠 %𝑏 \"%{𝑅𝑒𝑓𝑒𝑟𝑒𝑟}𝑖\" \"%{𝑈𝑠𝑒𝑟 − 𝑎𝑔𝑒𝑛𝑡}𝑖\"" 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 

 where (Referer) field shows the site that the client reports having been referred from, and (User-agent) 
field identifies information that the client browser reports about itself. 

As an example, the following is a record that is part of a real log of the UOC Virtual Campus (IP 
address has been anonymized): 

 
[15/Mar/2012:00:26:40 +0100] xxx.xxx.xxx.xxx "POST /WebMail/listMails.do?mensajeConfirmacion= 
El%20missatge%20s´ha%20desplaçat%20a%20la%20carpeta%20Rectorat HTTP/1.1" 200 
"http://cv.uoc.edu/WebMail/readMail.do" "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; Trident/5.0; SLCC2; 
.NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; OfficeLiveConnector.1.3; OfficeLivePatch.0.0; 
InfoPath.2; BRI/2)" 8857 20A 
 

This record example illustrates that the user id parameter described in Apache Combined Log Format 
is not available in this line. Moreover, both unavailable requested information (l) and the size of the 
object (b) do not meet the standard arrangement. Although user identifications are not stored in log files, 
the system maintains a session id, this value is a user session key (a 128-character string long) included as 
a parameter in the request. 

At this point, we highlight certain problems arisen by dealing with these log files: 
• We can identify uniquely neither the user nor the record. 
• Each explicit user request generates at least an entry in the log file but it usually generates 

additional requests, for instance, in order to compose a user web interface, each component (i.e. 
image, style sheets, etc.) will be loaded using GET operations. This information is not relevant and 
these records unnecessarily increase both the storage space and processing effort. 

• Additional parameters introduced in Combined Format (Referer and User-agent) may be useful for 
audit purposes, but in our context this values introduce a high degree of redundancy. 

Because of these problems must be solved, we propose several actions. In the case of the user 
identification, this limitation cannot be completely solved because this information is unavailable, but 
regarding records identification it is possible to combine several fields as a record key. The parameters 
selected to identify a record are: 

  𝑅𝑒𝑐𝑜𝑟𝑑!"# =  𝐼𝑃;𝑇𝑖𝑚𝑒; 𝑆𝑒𝑠𝑠𝑖𝑜𝑛  

Redundant and unnecessary information must be parsed and ignored. To this end, these actions have 
been implemented in the Java class Action, which is described in the following subsection following a 
record taxonomy devoted to clean unusable data. Moreover, regarding storage space, we next also 
propose which the most efficient way to store record data is. 



4.2.3 Log File Normalization 

Log data normalization or unification is gaining attention from the autonomic computing community [34] 
as a way to transform proprietary and heterogeneous formatted log data to a standard log data format. 
     In [28], the task of structuring event log data can be defined as the processes which provide structure 
to the semi-structured textual event log data and persist the resulting data structure for the later processing 
by analysis tools. Real e-Learning scenarios usually are formed by several LMS. Therefore, the input of 
the process is a set of LMS logs files generated by each source. As shown above, every log file, such as 
BSCW and UOC, has its own format showing strong differences in the formatting styles (e.g. in UOC 
Virtual Campus a log record is a text line in the text file whilst in BSCW each line represents an attribute 
value). Moreover, we cannot consider either unifying or normalizing those logs generated by the same 
Web Server (e.g., both Moodle and UOC Virtual Campus use Apache Web Server, but they log different 
information  stored in different format); hence a preliminary process is needed in order to normalize these 
sources following an unified format. To this end, we propose the following tuple: 

𝐿 = 𝑢, 𝑡,𝑎, 𝑣 ∗  

which represents an user 𝑢 performing an action 𝑎 which occurs in time 𝑡. A list of values 𝑣 ∗ is 
associated to the action. An example of a (𝑎, 𝑣 ∗) instance could be: 

 𝑐𝑟𝑒𝑎𝑡𝑒!"#$%&'( ,𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑡𝑥𝑡, 1024𝐾𝐵  

where first action-value is the filename of the document and the second is the size of the document. 
 
Once we have normalized the log files, the resulting data structure persists for later data processing 

and analysis [28]. Next we proceed with a log data processing approach.  

4.3 Parallel Processing Approach 

The parallel implementation in the distributed infrastructures that we propose in this subsection follows 
the MapReduce paradigm [31]. Therefore, we introduce first our MapReduce model on the normalization 
of different LMS log files, namely BSCW and UOC, described in previous section. The results obtained 
will conduct our parallel implementation approach based on Hadoop and Cluster Computing presented in 
the next sections. 

4.3.1 MapReduce Paradigm 

We can assume that each log file type is a semi-structured text file with record-oriented structure, and the 
input data set is made up of a large number of files storing log information (e.g. each LMS, log per day, 
etc.). The input may be represented as: 

𝐼 = 𝐿𝑜𝑔!! , 𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼 

where L is the set of LMS, and I is the set of log files in a LMS. 
The MapReduce paradigm works by splitting the processing into two stages, the map phase and the 

reduce phase, and each phase has key-value pairs as input and output. Therefore, we define the tasks in 
the Map phase and those processed in the Reduce phase, selecting the input and output keys for each 
phase. In this paradigm, the output from the map function could be processed by the framework before 
being sent to the reduce function. 

The Map phase takes as input a record stored into a log file in 𝐼; the key of this record is the offset in 
the file. When the map function receives the record, it will be processed following the normalization 



process which was presented above, and this output will be the input for the reduce function. At this 
point, we can decide among several alternatives dealing with reduce function. In order to only store 
normalized data, the reduce task does not perform additional work and store the output of map function in 
the distributed file system. In addition, the reduce function may be used to compute a relevant component 
as presented in the previous section. In that case, one of the keys is the student and the reduce function 
calculates the result of the parameter selected (e.g. number of documents created by the student, total 
session time, sum of ratings, etc.).  

4.3.2 Hadoop 

The abstract model proposed in above section supporting the MapReduce paradigm will be implemented 
in the parallel platform of Apache Hadoop4. In [31] MapReduce is presented as a model oriented to 
further implementations in Hadoop, hence we take this work as main reference in order to design our 
normalization LMS log files MapReduce framework.  

Hadoop MapReduce job is defined as a unit of work that the client wants to be performed [31] 
consisting in: the input data, the MapReduce program, and configuration information. Then, Hadoop runs 
the job by dividing it into tasks of two types: map tasks and reduce tasks. There are also two types of 
nodes: job tracker, which coordinates the paralleling process, and several workers that perform the target 
work. Hadoop divides the input to a MapReduce job into fixed-size pieces and creates one map task for 
each split, which runs the map function for each record in the split. It is important to note that the number 
of reduce tasks is not ruled by the size of the input. 

The implementation of map and reduce function is based on these previous works [28], [30], which 
deal with BSCW and UOC Virtual Campus log formats. Once the logs are computed by the event 
extractor functions, the output is normalized following the model presented. 

4.3.3 Record Taxonomy and Implementation 

The implementation of our parallel approach is in Java, which is compatible with Hadoop. Although 
certain implementation details are omitted, in this section we present the main services developed. These 
services are based on a study of the types of records registered in UOC Virtual Campus log files. 

The core of the service is implemented in the Java class Action, which offers the main methods to 
process a record (i.e. a log file line). An action object represents something which has occurred in the 
Virtual Campus as described in UOC Virtual Campus Log Files. The main services and functions offered 
by the class Action are a set of get methods (e.g. get_date(), get_ip(), get_junk(), etc.) intended to parse 
the log line, the following classification summarizes the output records which can be managed using 
these methods: 

• Record (R). Logs file line. 
• Invalid Record (IR). An IR is a record which does not have a valid key. As previously stated, a 

valid key is a tuple with these components: session, IP and time. 
• Valid Record (VR). In contrast, a VR contains each necessary field to form a valid record key. 
• Request Record (RR). This type of record is a VR, which has requests and the server generates a 

200 return code value. The set of CR includes Junk, Analysis and System records (which are 
defined below). 

• Short Record (SR). If a VR does not reach conditions of RR (i.e. request and 200 code). 
• Junk Record (JR). We define a JR as a RR on which we can ensure that does not contain relevant 

data. For instance, an image file requested by the client when creating a user web interface. In 
other words, a JR is valid but it does not contain useful data. 

• Analysis Record (AR). Over the set of CR and those which are not JR, we select such records, 
which are relevant to a specific analysis. As we will present below, we select eleven representative 



actions that a student may perform in the UOC Virtual Campus (e.g., an action may be a student 
accessing to a classroom environment). 

• System Record (SR). Since the set of AR is selected for a specific case study, there exists a certain 
amount of Request Records that are not considered in the analysis. We name this type of records, 
System Records. 

4.3.4 Type of Records 

Of particular relevance is the amount of records computed of each type described above. These results 
will determine the best approach, sequential or parallel, to design the processing log model. 

We run four types of records benchmarks for 10, 100, 1.000, and 10.000 MB log files. Results of these 
tests are shown below (see Fig. 2): 
 

  

  

Figure 2.  Types of records benchmarks. 

As can be observed in Fig. 2, the amount of AR over the total data set is very low. Therefore, we need 
a pre-processing phase in order to extract useful information from logs files. Moreover, the average of 
each type of record is similar over the four tests; the size of the file does not generate different averages. 
Even when extending the study to more than the eleven selected actions in AR, the amount of BR is also 
very low. 

 
 
 
 
 



4.3.5 Results for Analysis Records 

We select those records that are relevant to our specific analysis associated to the actions performed in 
the LMS1, which must be analyzed. The following table shows the name of each action, a short 
description, and the number of user actions computed in each input log file. 
 

Table III: Trustworthiness Basic Indicators 

Name Description 
Benchmark  (xMB) 

1 10 50 250 100 500 1000 2000 4000 8000 10000 

Classroom Access to a classroom environment 2 21 118 229 603 1112 2222 4429 8861 17624 22388 

Login Login LMS session 0 4 18 47 106 217 461 904 1717 3623 4617 

Logout Logout LMS session 1 2 3 8 17 23 67 155 325 747 954 

File Download a file 0 7 57 119 253 524 934 1982 4008 7841 9958 

Mail Load the E-Mail service 0 0 1 3 11 37 118 232 466 835 973 

Community Community campus 0 0 3 9 22 55 123 263 536 1125 1390 

Services General services 0 0 1 7 19 38 66 126 273 521 642 

Secretary Secretary´s office service 0 2 13 33 69 127 295 648 1283 2563 3081 

Profile Load an user profile 0 1 7 12 22 40 69 127 235 472 592 

News UOC news service 0 1 7 14 28 41 78 184 431 901 1087 

Help Help Desk 0 0 1 2 6 11 20 49 127 264 316 

 

4.4 Hadoop Processing Logs Implementation 

In this section, we present the most significant aspects of deploying and implementing a MapReduce 
paradigm intended to manage log data as described in this paper. 

4.4.1 MapReduce Java Implementation 

MapReduce Java Implementations are completely based on the class Action, which was early developed 
to test sequential results with regarding to time and records types benchmarks. We have developed two 
separated Java applications, which are presented in this section. 

UOCLogDriverClean program normalizes UOC logs files cleaning unnecessary data. Only records in 
the AR set are considered as outcome, and the other record sets are ignored. In order to improve 
computational performance, the algorithm progressively inspects each condition in a well-arranged way, 
that is, firstly the most restrictive and general condition (e.g. has_session) and finally the most specific 
one (e.g. has_opa).  The mapper receives as parameters a pair (key, value), where the key is 
automatically generated by Hadoop and the value is a line of a log file. The output is a different pair 
where the key is the record id and the value is the request. It is important to note that, in this case, we do 
not use Reduce function because we are not running Reduce tasks (i.e. grouping, computing, etc.). 

UOCLogDriverCountOp is the second application developed and it has both Map and Reduce 
functions. In this case, our goal is computing aggregate data by computing the sum of each action type 
(the same outcome as in sequential implementation). The UOCLogDriverCountOp Map code is similar to 
UOCLogDriverClean implementation, however, output key-value for the type of value has been denied 

                                                
1  Although we focus on students’ e-Learning and behavior actions, additional technological 

information, such as students’ device or IP control, could be also included in the study. 



as integer to compute each instance. When Map function has generated each key-value pair, the output is 
combined over the value key and processed by the Reduce function. 

Finally, collected data are stored in the output directory, which is defined when the job is executed. 

4.5 Analysis of the Results 

Once the MapReduce applications have been developed, before running the jobs in parallel processing, 
network and distributed file systems are needed. Hadoop Distributed File System (HDFS) supports large 
datasets across multiple hosts to achieve parallel processing. HDFS is a block-structured file system 
based on splitting input data into small blocks of fixed size, which are delivered to each node in the 
cluster. We use HDFS as Hadoop MapReduce storage solution; therefore some file system configuration 
tasks are needed, such as create user home file and define suitable owner, create MapReduce jobs input 
directory, upload log files and retrieve results actions.  
In Table IV and the corresponding Fig. 3, we can see comparative results of the battery of tests with 
multiple Hadoop nodes (i.e. 2, 4, 6, 8 and 10 workers) in RDlab5 cluster. Note that 0-node shows results 
of local sequential processing benchmark. Furthermore, we have carried out additional file system 
integration processes by running Hadoop jobs over the open-source Lustre6 file system, which is 
deployed in the RDlab. 

From this experimental study, we can see that the results do not grow linearly anymore. We can also 
see that by using a distributed MapReduce Hadoop infrastructure, a considerable speed up is achieved in 
processing large log file data as shown in Table IV last column (i.e. more than 50% for infrastructures 
with more than 4 nodes and more than 75% for 10 nodes). Regarding log file size, for too small values, 
the overhead introduced by the MapReduce framework, when sending the parts to the nodes and 
combining output data is noticeable and the framework control tasks, spends too much time managing 
and distributing data. On the other side, values of the task size close to 3,000 MB considerably diminish 
this amount of time in comparison with the total processing time. Moreover, Reduce tasks spend too 
much time when the number of nodes is low. 

 

 

Figure 3.  Comparative Mapreduce Results. 



 

Table IV: Comparative MapReduce Results. 

Nodes 
Log File Size 

1 10 50 250 100 500 1000 2000 4000 8000 10000 Speed up (%) 

0 0 0 2 2 9 19 35 75 141 288 353  

2 14 14 15 14 15 29 44 77 141 280 339 4% 

4 15 15 15 14 15 20 27 44 74 134 170 52% 

6 14 14 16 15 15 15 25 38 64 117 151 57% 

8 16 14 15 16 16 16 21 33 44 83 102 71% 

10 14 22 15 17 16 21 16 33 37 72 83 76% 

5 CONCLUSIONS AND FURTHER WORK 

In this paper, we first motivated the need to improve information security in e-Learning and in particular 
in CSCL activities. Then, we proposed a methodological approach to build a security model for CSCL 
activities with the aim to enhance standard technological security solutions with trustworthiness factors 
and rules. As a result, the guidelines of a holistic security model in on-line collaborative learning through 
an effective trustworthiness approach were first proposed. However, as learners’ trustworthiness analysis 
involves dealing with large amount of data generated along learning activities, processing this 
information is computationally costly, especially if required in real-time. To this end, and as a main 
contribution of this paper, we proposed a parallel processing approach that can considerably decrease the 
time of data processing, thus allowing for building relevant trustworthiness models to support learning 
activities even in real-time.  
     The implementation of our parallel approach faced two important challenges: handle several formats 
of logs files coming from different LMS and the large size of these log files. We showed how to 
normalize different log file structures as an input for the MapReduce paradigm to manage huge amounts 
of log data in order to extract the trustworthiness information defined in our model. 
     Finally, we used distributed infrastructure, such as Hadoop and Cluster Computing, to implement and 
evaluate our parallelization approach for massive processing of log data. The experimental results showed 
the feasibility of coping with the problem of structuring and processing ill-formatted, heterogeneous, 
large log files to extract information on trustworthiness indicators and levels from learning groups and 
ultimately fill a global framework devoted to improve information security in e-Learning in real-time. We 
eventually conclude that it is viable to enhance security in CSCL activities by our trustworthiness model, 
though taking on the overhead caused by the use of distributed infrastructure for massive data processing. 

As ongoing work, we plan to improve the MapReduce configuration strategies that would result in 
improvement of a parallel speed-up, such as customized size of partitions. Furthermore, we are 
investigating normalized trustworthiness improvements to extend the model presented in this paper. 
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