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SUMMARY

Autonomic computing is a paradigm for building systems capable of adapting their operation when
external changes occur, such as workload variations, load surges and changes in the resource availability.
The optimal configuration in terms of the number of computing resources assigned to each component
must be automatically adjusted to the new environmental conditions. To accomplish the execution goals
with the desired Quality of Service, decision-making strategies should be in charge of selecting the best
reconfigurations by taking into account metrics like performance, efficiency (avoiding wasting resources),
number and frequency of reconfigurations and their amplitude (performing minimal modifications of the
current configuration). This paper presents a decision-making strategy that merges the potential of Model
Predictive Control with a cooperative optimization framework. After a description of our approach, we
investigate the effect of different switching costs to model the resource allocation problem. We use a control
method in which our proactive decision-making strategy (designed to use future prediction horizons) is made
adaptive itself by dynamically changing the horizon length on the basis of the prediction errors. Simulations
have been used to exemplify our approach and to discuss the effectiveness of the variable-horizon strategy in
achieving the best trade-offs between reconfiguration metrics. Copyright c© 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The recent technological advancement in computing and networking technology has resulted in
a rapid growth in the size and complexity of modern distributed parallel applications, usually
assembled out of a set of interacting (possibly parallel) software components executed over
distributed and heterogeneous resources. Examples are streaming applications for the execution
of continuous queries [1], distributed surveillance systems [2], financial trading and emergency
management systems [3, 4]. For these applications the resource requirement to maintain the desired
level of Quality of Service (QoS) is often dynamic, not easily predictable, and dependent upon the
future workload. For this reason, the optimal configuration in terms of component identification and
mapping onto the physical resources must be continuously adapted to the new operating conditions.

The paradigm enabling this behavior is known as Autonomic Computing [5]. An autonomic
application is able to automatically modify its configuration according to the settings of its
computing environment and the properties of its workload, by reducing the management complexity
to the users. The key aspect of this paradigm is the synergic interaction between: i) proper run-time
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2 G. MENCAGLI

support mechanisms in charge of modifying the resource allocation to the different parts of the
application, and ii) a decision-making strategy (also called adaptation strategy in the sequel) that
triggers reconfigurations when specific execution conditions are met.

In recent years several studies have focused on the definition of software mechanisms to support
the dynamic adaptation with minimum execution overhead. A survey is presented in [6], while
a description of the most important performance and consistency issues has been provided in [7].
Although reconfiguration mechanisms are an important part of autonomic systems, decision-making
strategies are essential to achieve the system goals [8]. Decision-making strategies should be
qualitatively and quantitatively compared using specific metrics of the adaptation process: the
performance (throughput, response time), number of QoS violations, number of used resources,
frequency of reconfigurations and their complexity in terms of number of involved components,
amount of allocated/deallocated resources and the reconfiguration overhead.

The definition of decision-making strategies can exploit a mature set of methodologies used in
a variety of disciplines such as control theory, artificial intelligence, machine learning, distributed
optimization and decision theory. A brief review of the most recent solutions is presented in Sect. 2.
Along this line, this paper follows the research direction of investigating novel adaptation strategies
for distributed parallel applications. The rationale of our approach is to combine formal control
techniques inspired by control theory with advanced distributed optimization methods. Our work is
based on the following characterizing aspects:

• the application of an optimal control method known as Model Predictive Control [9] (MPC),
based on the knowledge of mathematical models of the target system and the on-line
optimization of cost/utility functions over future time horizons with a fixed or variable length;

• the distributed cooperative solution of the optimization problems using an optimization
technique known as Distributed Subgradient Method [10];

• the formulation of the optimization problems using different switching cost functions
modeling the cost incurred in applying reconfigurations on the system, and their impact on
the quantity and quality of reconfigurations.

This paper is organized as follows. Sect. 2 provides a comparison with the existing literature.
Sect. 3 presents a general description of autonomic parallel applications, and outlines the properties
and metrics to evaluate and compare adaptation strategies. Sect. 4 introduces our methodology.
Sect. 5 presents a validation of our approach in a simulation environment by showing the concrete
application of our technique on a video-streaming application. Finally, Sect. 6 gives the conclusion
of this work and the future research directions.

2. ANALYSIS OF THE LITERATURE

In this section we present an overview of the literature about autonomic solutions for
distributed/parallel environments. Then, we compare the autonomic features provided by our
approach and by similar existing works. Finally, we discuss how this paper extends our prior works.

2.1. Overview of autonomic solutions for distributed/parallel systems

A systematic comparison of different methodologies to develop adaptation strategies has been made
in [8]. An approach inspired by artificial intelligence methods consists in providing the mapping
between execution conditions and corresponding reconfigurations through heuristics expressed
by policy rules [11, 12]. As an example, event-condition-action rules [13] (ECA) indicate the
system reaction to the presence of specific conditions whose occurrence is continuously monitored.
Rule-based strategies have been applied in [14] for distributed emergency management systems,
and in [15, 16] for parallel applications expressed by composition of algorithmic skeletons [17].
Although they are a very flexible solution, policy rules are not easy to be tuned: rules calibration
may be hard and it is often difficult to prove the convergence to optimal reconfiguration choices.
Furthermore, when different rules make contrasting decisions, conflict resolution strategies [18]
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must be taken into account to avoid to take the system into meta-stable states. In more advanced
works policy rules are not static, but they are dynamically modified by using the past knowledge of
the system behavior (particularly, the use of reinforcement learning has been investigated in [19]).

Another branch of the research focuses on the definition of adaptation strategies using ideas
and principles inspired by control theory and automation. Canonical approaches based on
proportional, proportional-integrative and proportional-integrative-derivative controllers have been
used to control software performance [20, 21]. Standard control techniques have been applied to web
servers and enterprise applications [22, 23] with the goal of adapting the performance and power
consumption. The control of jobs progress and CPU allocation of data centers has been studied
in [24] by using a combination of admission control and standard feedback control laws.

One of the most critical issues of autonomic systems is the ability to determine the most
effective reconfigurations to fulfill the system objectives, that is by trading-off the transient cost
of reconfigurations and their benefit at steady state. This aspect is critical in environments like
Grids and Clouds, where the resource (re)allocation process may incur significant performance
and economic costs. This problem has been addressed in [25, 26, 27], in which algorithms for
the dynamic resizing of data centers have been discussed by introducing switching costs to model
the penalty of toggling a server back-and-forth between active and power saving modes. Adaptive
cost prediction for Grid and Cloud computing applications has been studied in [28] by proposing a
programming framework for Java based on the Bulk Synchronous Parallel model (BSP).

Recently, advanced control-based techniques have been studied as alternative solutions to improve
the effectiveness of the reconfiguration selection. Model Predictive Control [9] (briefly MPC) is
a popular approach that has inspired our work. MPC is based on the use of a system model as
a prediction model to calculate the optimal reconfiguration trajectory over a limited future time
horizon. Only the first element of the optimal trajectory is applied to the system and the procedure
is repeated at the beginning of the next sampling interval (this principle is called receding horizon).
MPC has been one of the most promising and successful advanced control-based strategies [9].
First works to control computing systems using MPC have been described in [29] to adapt the
number of physical machines allocated to web servers. On Clouds these concepts have been studied
for the dynamic allocation of virtual machines in [30, 31]. However, the potential of MPC-based
strategies in the context of distributed/parallel systems, e.g. to control the quality and the quantity
of reconfigurations and their impact on the system objectives, is not fully explored and deserves
further research efforts.

2.2. Comparison with previous research

Autonomic frameworks for distributed/parallel systems can be classified according to four general
characteristics: i) the goal of the adaptation process, ii) the classes of reconfigurations supported,
iii) the strategy, e.g. policy-based or control-based, iv) the organization of the control scheme,
i.e. a unique, centralized control entity, or multiple control entities organized in a decentralized,
distributed or hierarchical manner. Tab. I shows the comparison of the works presented in Sect. 2.1.
Although these works represent only a fraction of the ongoing research (which is quite large), they
are a representative summary of the current status of the studies. The goal of this comparison is to
fit our work into the literature and highlight the differences with the existing approaches.

The first four works are policy-based autonomic systems. In the most cases the control logic is
executed by a centralized entity [11, 12, 19]. For large systems in terms of number of components
and reconfiguration choices this solution is infeasible for scalability, reliability and expandability
reasons. In [14] each autonomic entity has a local controller executing private policy rules. The
approach is decentralized, in the sense that controllers do not communicate to achieve a global
goal: rules are split into distinct parts assigned to local controllers that work separately. More
sophisticated interactions have been studied in [15, 16], in which controllers are organized in a
hierarchy exploiting the fact that applications are expressed as composition/nesting of well-known
parallelism patterns (skeletons like farm, pipe, loop). Our approach proposes a different solution
for distributed applications expressed as autonomic parallel components interconnected in generic
graph structures. The adaptation strategy of the application is decomposed into a distributed set
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4 G. MENCAGLI

of controllers organized in a single layer (without a hierarchy). Controllers exchange information
between neighbors iteratively and cooperatively: at each iteration controllers obtain information
about what the plans of the other controllers are. At the end of the iterations the controllers find
reconfiguration choices that lead to the global optimization of the system behavior. To the best of
our knowledge this is the first time that such distributed cooperative single-layer control scheme is
used for controlling distributed parallel applications.

Goal of Adaptation Reconfigurations Strategy Scheme

Bahati et al. [11, 12] [response time,
throughput]

[buffer size,
num. of threads] static rules centralized

Bahati et al. [19] [response time,
throughput]

[MaxClients,
TCP keepalive] dynamic rules centralized

ACCORD [14] [CPU load, memory] [algorithms, data layout] static rules decentralized
Behavioural

Skeleton [15, 16] [throughput] [parallelism degree] static rules hierarchical

Controlware [22] [hit rate,
response time]

[cache space,
num. of processes] feedback loop centralized

Raghavendra et al. [23] [power consumption]
[clock frequency,

power budget,
turn on/off nodes]

feedback loop hierarchical

Park&Humphrey [24] [job progress time] [CPU allocation] feedback loop
admission control centralized

LLC
(Data Centers) [29]

[profit optimization
with switching costs]

[nodes per service cluster,
clock rate of nodes]

fixed-horizon
MPC centralized

LLC
(Clouds) [31]

[response time,
power consumption]

[fraction of CPU,
node on/off, VM on/off]

fixed-horizon
MPC centralized

LLC
(Distributed) [32] [profit optimization] [clock rate of nodes,

node on/off]
fixed-horizon

MPC hierarchical

Table I. Comparison between autonomic frameworks for distributed/parallel environments.

The works in the second group [22, 23, 24] are based on reactive feedback controllers
that use PI (proportional-integrative) or PID (proportional-integrative-derivative) control laws
exploiting linearized system models. As it is known, such canonical control-theoretic solutions
have inherent limitations as the need of linearized models with continuous inputs that are
limiting factors for controlling distributed/parallel systems with discrete reconfiguration choices
and switching behaviors. Moreover, when corrective actions have long dead times (time to complete
a reconfiguration) as for resource (re)allocation mechanisms in Grids and Clouds, reconfiguration
choices must be planned in anticipation to changes in the operating conditions. Also our work
follows a control-theoretic perspective, with the adoption of a non-standard control method (Model
Predictive Control) which will be used to devise effective resource (re)allocation policies acting
proactively to workload variations.

MPC is a very popular controller design method in the process industry whose potential in
the control of computing systems has not been explored fully. The existing work closest to our
research is the Limited Look-ahead Control framework (LLC) published in several papers since
2003 ([29, 31, 32] represent a subset of the most recent, interesting publications). Our work has
many distinguishable features with respect to this research. First of all, all the applications of
LLC use predictive strategies working with fixed-length prediction horizons. Our work, for the
first time in this domain, proposes a variable-horizon strategy in which the length of the horizon is
adapted according to the current prediction errors. As it will be shown in this paper, this strategy is
beneficial to improve the effectiveness of the adaptation process. Furthermore, our work discusses
the use of different switching costs. Switching costs have been used also in [29] to model the cost
incurred when powering up/down virtual machines. In this paper we study three popular definitions
of switching costs, and for the first time we analyze their impact on the following set of metrics:
reconfiguration stability (number and frequency of reconfigurations), amplitude (average ”size” of
reconfigurations), efficiency (use of resources) and performance (throughput). As far as we know,
this is the first time that these metrics have been analyzed in an integrated manner. Finally, in the
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existing publications LLC has been mainly used in a centralized fashion [29, 31]. A hierarchical
scheme is proposed in [32], in which controllers have been organized in a three-layer hierarchy.
Controllers at the different layers use different fixed horizon lengths and control a subset of the
system parameters. In contrast, the strategy proposed in this paper organizes controllers at the same
layer, without higher-layer controllers that may constitute centralization points or single points of
failure. For these reasons our work differentiates itself from the existing literature by proposing an
application of Model Predictive Control with novel features in terms of distribution and cooperation.

2.3. How this paper extends our prior works

This paper continues our research published in [33, 34, 35, 36, 37, 38]. Our predictive strategy has
been presented for the first time in [34] for the centralized control of distributed parallel applications
on clusters and clouds. The distributed control strategy and the cooperative formulation have been
described in [33, 35, 36]. This paper extends these prior works in the following directions: i) we
study the impact of different switching costs in the formulation of the control problem, and we
analyze their effect on a meaningful set of adaptation metrics; ii) we propose a variable-horizon
strategy in which the horizon length is adapted step-by-step achieving better trade-offs between
reconfiguration metrics with respect to the ones achieved using fixed horizons.

3. AUTONOMIC APPLICATIONS AND DECISION-MAKING STRATEGIES

In this section we describe our vision of autonomic distributed parallel applications. The goal of
the discussion is to state the fundamental properties that we want to achieve from the adaptation
strategies studied in this paper.

3.1. Overview of the problem

Complex distributed applications can be structured as computation graphs (flow graphs, workflows
as in Fig. 1) whose nodes are components/modules† operating on data streams and applying a
computation on each stream element. Each module (briefly ParMod) is an autonomous computing
agent: i) it receives stream elements (tasks) from preceding modules, ii) executes a computation on
each received stream element, iii) sends results to a destination selected according to a deterministic
or a probabilistic criterion. This vision is representative of many real-life stream-based applications
like the ones in the domains of video streaming and image processing, scientific applications,
continuous queries and emergency management systems.

ParMod
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Control Part

Operating Part

E
W
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Control Part

Operating Part
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Control Part

Operating Part
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Control Part

Operating Part

E
W

W
C

Control Part

Operating Part

data stream

data stream ParMod
ParMod

ParMod
ParMod

data stream

Figure 1. Example of workload graph of parallel modules interconnected by data streams.

†In the following we use the term processing module as a synonym of component.
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6 G. MENCAGLI

We can identify two levels of parallelism. Inter-component parallelism consists in the
decomposition of an application in distinct components. Components operate on different tasks
in parallel. To remove or reduce the presence of bottlenecks, each component can be parallelized
in order to sustain the current arrival rate of tasks. Intra-component parallelism consists in
parallelizing each component by using proper parallelism patterns. Both task parallel and data
parallel skeletons [17] are exploitable inside each component, the former by processing multiple
tasks in parallel (e.g. task farming), the latter by partitioning each received task (typically consisting
in a large data structure such as a multi-dimensional array) on multiple Workers applying the same
computation in parallel on different partitions. This vision of two-level skeleton-based graphs is
representative of our past experience in programming models for parallel computations (SkiE, P3L
and ASSIST [39, 40, 41]) expressed according to the Structured Parallel Programming [17, 42].

Several component parameters can be modified at run-time in order to adapt to the current
execution condition and workload. Reconfigurations are changes in the parallelism degree, the size
of input buffers, or the dynamic redistribution of the input data to achieve better load balancing.

Fig. 1 shows a computation graph and the internal structure of the processing modules. Each
module is composed of two parts named Operating Part and Control Part interconnected in a
closed-loop fashion. QoS measurements from the Operating Part are periodically sampled by
the Control Part that issues reconfiguration inputs to the Operating Part. The Operating Part
performs a structured parallel computation executed by different functionalities, e.g. an Emitter
(E) implementing distribution strategies of the input tasks to the Workers, a set of Workers ({W})
realizing the computation on the tasks (the cardinality of this set is called parallelism degree), and
a Collector (C) responsible to collect results and transmit them to the output streams. Based on
the parallelism form, Workers can be independent (e.g. farm or map skeletons) or they interact
according to a specific communication pattern (e.g. stencils).

In this paper we focus on the general and important problem of adapting the parallelism degrees of
the processing modules (i.e. the amount of resources they use) according to the workload variations,
with the goal of maintaining acceptable levels of performance and avoiding wasting resources.

3.2. Properties of adaptation strategies

Performance and efficiency are two critical properties that drive the reconfiguration process. The
allocation of new resources by increasing the parallelism degree is a necessary action to deal with
rapid workload peaks. In this case a fast allocation of new resources allows the component to sustain
higher arrival rates. On the contrary, when the workload features a lower intensity, idle resources
can be released to improve the efficiency.

This problem is exacerbated by the cost of the resource (re)allocation. The first type of cost
is a performance overhead. In fact, even in the case of resources immediately available to join
the computation, the execution needs to be stopped and reach a consistent state before using
the new parallelism degree. The task currently being executed and possibly the internal state of
the component must be redistributed among the new set of Workers. To do that, reconfiguration
protocols [3, 43] must be implemented to maintain the computation semantics. Furthermore, the
reconfiguration overhead can be related to the manage of the physical platform. As an example
changes in the parallelism degree imply to recruit and reserve a proper amount of resources with a
time delay incurred when reassigning resources, e.g. by powering up a physical node or the delay
in migrating connections/data when activating a server.

Other types of costs have a different nature. As an example on data centers the cost of toggling a
server back-and-forth includes the energy used [23, 27] during the reconfiguration process. In elastic
Cloud environments virtual resources are usually delivered on a pay-per-use basis. Therefore, during
a switching between different configurations, it is important to take into account the monetary cost
of the newly selected configuration. For instance this cost can depend on the type of provisioned
resources [44], or it can be proportional to the amount of allocated/deallocated resources [45].

The role of decision-making strategies is to take into account all the meaningful properties of the
resource allocation problem in order to choose the best reconfiguration decisions. We can identify
four main properties:
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VARIABLE-HORIZON MODEL PREDICTIVE CONTROL WITH SWITCHING COSTS 7

Performance: an important aspect of the adaptation strategy is the ability to achieve the best
performance as possible with the current execution conditions and workload. Adaptation
strategies can be compared in terms of throughput, i.e. number of completed tasks per time
unit, and/or by taking into account the response time to process a single task.

Efficiency: it is a metric telling us how close the effective performance of a component is from its
ideal one. Efficiency closes to unity means that the assigned resources are used effectively;
low efficiency (near to zero) means that we are wasting resources, i.e. the parallelism degree
is oversized with respect to the operational needs.

Reconfiguration number and stability: due to the presence of reconfiguration costs, the goal of
the adaptation strategy is to do the strictly necessary number of reconfigurations to achieve
the desired QoS. Furthermore, if reconfigurations are applied too frequently, the system can
spend more time in reconfiguring itself than processing incoming tasks. To capture this aspect,
the stability of an adaptation strategy is expressed as the average time between consecutive
reconfigurations of the same component, i.e. how frequently reconfigurations are issued by
the Control Part (see Fig. 2).

Reconfiguration amplitude: for amplitude we intend the number of allocated/deallocated
resources (see Fig. 2) during a reconfiguration of an application component. It is reasonable
to bind the cost of a reconfiguration to its amplitude. On distributed environments performing
a large reconfiguration incurs in searching and locating many resources suitable to join the
execution. The delay and the monetary cost to find such resources is realistically proportional
to the number of resources needed [46, 47], thus the minimization of the reconfiguration
amplitude is often an important factor.

time

parallelism degree

0

largest
amplitude

time between two reconfigurations

reconfiguration

Figure 2. Time between successive reconfigurations and reconfiguration amplitude.

The general goal of adaptation strategies is to reach a good trade-off between these properties.
In the next section we will describe our strategies and we will show how reconfiguration goals and
costs are modeled in our approach.

4. DISTRIBUTED COOPERATIVE MODEL PREDICTIVE CONTROL

Distributed Model Predictive Control [48, 9] is an advanced control approach applied to a complex
system composed of several interconnected sub-systems. Each sub-system is associated with a
control problem composed of a local model and an objective function, as schematized in Fig. 3.
Usually the passing of time is discretized in fixed time intervals called control steps. For the sake of
simplicity we assume that all the sub-systems use the same control step definition.

The local model describes the relationship between local QoS variables representing quantitative
and qualitative metrics of the sub-system execution, and local control and disturbance variables,
which in turn represent the reconfiguration decisions and exogenous uncontrollable events affecting
the relationship between reconfigurations and the resulting QoS.

For each sub-system the adaptation strategy consists in finding the best control sequence that
optimizes the local objective function. The objective function takes into account the future values
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8 G. MENCAGLI

of local QoS variables over a prediction horizon of h ≥ 1 future control steps from the current
time, where the predictions are computed by using the local model and future forecasted values of
disturbances (usually obtained by time-series forecasting tools).

Sub-
System 2

Sub-
System 1

Sub-
System 5

disturbances

disturbances disturbances

disturbancesdisturbances

J1�1

J2 �2

Sub-
System 3

J3 �3

Sub-
System 4

J4 �4

control problem

u1(k)

u2(k)

u1(k)

u3(k)

u2(k)
u3(k)

u2(k)

u4(k)

u4(k)

u5(k)

u3(k)

u5(k)

J5 �5

Figure 3. Interconnected sub-systems and control sub-problems. We denote by ui(k), Ji and Φi the control
inputs, the objective function and the model of the i-th sub-system.

At the beginning of each control step MPC controllers (one for each sub-system) apply the
following procedure in parallel:

1. future values of local disturbances are estimated over a prediction horizon of h control steps.
Time-series analysis and statistical filters (e.g. ARMA, ARIMA, Holt-Winters, Kalman Filters
and Artificial Neural Networks) are common tools used to make such predictions;

2. the local optimization problem is solved by finding the optimal trajectory of reconfigurations
over the prediction horizon;

3. the controller applies the receding horizon principle, i.e. only the first control choice of the
optimal trajectory is applied to the system and the procedure is repeated at the beginning of
the next control step.

The rationale is intuitive: by applying only the first element of the optimal trajectory, disturbance
forecasting errors and model inaccuracies do not accumulate, yielding an implicit feedback
mechanism.

A complex issue of distributed control is the presence interrelated sub-problems. The values of
the QoS variables of a sub-system may depend on the values of control variables adopted by other
sub-systems, as in Fig. 3. The consequence is that controllers need to coordinate themselves in the
decision process. This is possible by establishing an interaction pattern between controllers that
exchange their reconfiguration proposals until an agreement is reached.

Several interaction methods have been studied in the literature [49] by distinguishing between
the way in which controllers communicate (hierarchical, decentralized or distributed schemes) and
the goal of the optimization (e.g. controllers working selfishly or cooperatively). Our approach is
characterized by two important features:

• a single-layer scheme in which all the controllers are at the same level and perform the MPC
strategy in a fully distributed manner. This approach makes it possible to develop reliable
distributed control strategies without single points of failure and centralization points;

• a cooperative interaction between controllers that minimize the global cost of the application
rather than pursuing their individual objectives.

4.1. Problem formulation

In this paper we are interested in studying MPC strategies for adapting the parallelism degrees
of parallel modules in stream-based distributed computations. According to the classic MPC
formulation, Control Parts work in a synchronous fashion by evaluating the adaptation strategy
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at fixed time intervals (control steps). In contrast, the Operating Part execution proceeds
asynchronously with respect to their control logic, i.e. parallel computations respond to the control
decisions of the controllers by reconfiguring themselves. We identify for each ParMod Mi the
following set of model variables used by the adaptation strategy:

• a QoS metric of a ParMod is its mean inter-departure time between two consecutive results
onto the output streams, i.e. the average time between the completion of two successive tasks
(inverse of the throughput). We denote by TDi(k) the inter-departure time of Mi during
control step k;

• the control variable ofMi is its parallelism degree ni(k) ∈ Ui, where Ui is the closed interval
[1, nmaxi ] of integers;

• we model two disturbance variables affecting the performance: the mean calculation time
per task Tcalc-i(k), i.e. the average granularity of tasks during control step k, and the output
stream probabilities, i.e. pi,j(k) indicates the transmission probability fromMi toMj .

The performance of a module Mi can be measured in isolation, i.e. without considering the
interaction with other application modules. This concept of ideal performance is captured by the
mean service time of a module TSi(k), i.e. the average time interval between the beginning of the
executions on two consecutive input tasks. We assume that TSi

(k) = Hi(ni(k)), where Hi is a
model describing the relationship between service time and parallelism degree. As an example H
can be an analytical model of the performance, as studied in the literature for structured parallel
computations [42, 50], or an empirical model based on measured data.

The effective performance of a module can be different than the ideal one. The presence of
bottlenecks (hot spots) in the graph causes a slow-down in the performance of all the application
modules. This behavior is due to two main reasons: i) the finiteness of the input queues in front
of modules, and i) the blocking semantics of communications in distributed environments, i.e. the
transmission of a task to a full capacity destination queue is delayed until a free position is available.
The effective performance is captured by the inter-departure time. To model the relationship between
service times and inter-departure times, we use a model valid for acyclic graphs with a single source
module (the proof of this result is provided in [51]):

Proposition 4.1 (Inter-departure times). Given a single-source acyclic computation graph G of N
components, the inter-departure time TDi from a generic component Mi can be expressed in the
following way:

TDi
(k) =

N
max
j=1

{
fi,j
(
TSj

(k)
)}

(1)

Each function fi,j models the inter-departure time ofMi ifMj is the bottleneck of the workflow
graph. fi,j is defined as a function of the service time ofMj :

fi,j
(
TSj (k)

)
= TSj (k) ·

∑
∀π∈P(Ms→Mj)

( ∏
∀(u,v)∈π

pu,v(k)

)
∑

∀π∈P(Ms→Mi)

( ∏
∀(u,v)∈π

pu,v(k)

) (2)

We denote byMs the source of the graph, P(Ms →Mi) the set of all the paths starting fromMs

and reachingMi, and (u, v) an edge of the path π. Since we do not know which component is the
bottleneck, the inter-departure time is calculated as the maximum between the functions fi,j for
j = 1, . . . , N .

Fig. 4a shows an example of a graph in which modules are labeled with their service times (t is a
standardized time unit) and with the routing probability for each arc. Fig. 4b shows the steady-state
behavior of the graph by applying Proposition 4.1. In this exampleM7 is the bottleneck.

As demonstrated in [51] this method provides sufficiently accurate results independently from
the statistical distribution of service times and when the input queues are sufficiently sized. In the
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Figure 4. The ideal graph (labeled with service times) and the corresponding steady-state graph (labeled
with inter-departure times).

example of Fig. 4 few tens of buffer positions are sufficient to get an error lower than 2% with
exponential, normal and uniform distributions (see [51] chapter 3 page 70 for further details).

Each ParMod is characterized by a local objective function Ji modeled as a cost function taking
into account the future performance results, resource consumption and reconfiguration costs:

Definition 4.1 (Local Cost Function). We define the local cost function of a ParModMi as follows:

Ji(k) =

k+h(k)−1∑
t=k

αi TDi
(t)

performance cost

+

k+h(k)−1∑
t=k

βi ni(t)

resource cost

+

k+h(k)−1∑
t=k

∆sw
i (t)

switching cost

(3)

In the definition αi and βi are positive weights. The performance cost is proportional to the inter-
departure time: the higher the inter-departure time (the slower the ParMod) the higher the cost.
Analogously, the resource cost is proportional to the parallelism degree. The local cost function
accounts for horizons of several steps in the future, where h(k) is the horizon length used at control
step k. For the sake of simplicity controllers adopt the same horizon length at each step.

The switching cost plays a critical role in the selection of the optimal control trajectory. Its intent
is to bind control decisions between consecutive control steps by modeling the penalty for switching
from a parallelism degree to another one. The goal of the switching cost is to capture different costs
related to a reconfiguration, such as the setup time, power consumption and the monetary cost for
changing the ParMod configuration. In the following we present three switching costs that have
been proposed in the literature in similar works:

� The Absolute Value Switching Cost (abs sw) models a cost proportional to the absolute
value between parallelism degrees at consecutive control steps, i.e. the number of
allocated/deallocated resources during a reconfiguration:

∆sw
i (k) = γi

∣∣ni(k)− ni(k − 1)
∣∣ (4)

the parameter γi is a constant representing the weight of the switching amplitude on the total
cost (e.g. by including all the penalties incurred in a reconfiguration). Similar switching costs
have been applied to the dynamic control of data centers [25] (by regulating the number of
active servers) and in video streaming computations [26].

� The On-Off Switching Cost (on/off sw) is a slight modification of the previous definition
characterized by a different cost for the acquisition and the release of resources:

∆sw
i (k) = γoni

[
ni(k)− ni(k − 1)

]+
+ γoffi

[
ni(k − 1)− ni(k)

]+
(5)
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VARIABLE-HORIZON MODEL PREDICTIVE CONTROL WITH SWITCHING COSTS 11

where γoni and γoffi are positive constants and (·)+ = max{0, ·}. This switching cost has been
used in dynamic resizing algorithms of data centers [27, 52].

� The Square Switching Cost (pow sw) defined as follows:

∆sw
i (k) = γi

[
ni(k)− ni(k − 1)

]2
(6)

it is defined as the square of parallelism degree variations, where γi is a constant weight.
Quadratic cost functions are widely used in control theory literature, as they penalize rapid
reconfiguration of system states [53].

Switching costs are important in the case of disturbances with high variance or exhibiting trends
and seasonal patterns. In those cases it is possible that reconfigurations made without switching
costs would have been big in amplitude and prone to some kind of up and down fluctuations. In this
scenario switching costs act as a brake by smoothing the reconfiguration trajectories.

Different definitions of switching costs can have different effects on the reconfiguration decisions.
As an example Fig. 5 shows two trajectories of parallelism degrees of a ParMod with a horizon of
three control steps starting from the current step k. The two trajectories differ in the value used
at control step k + 1 (6 in the first trajectory, 7 in the second one). According to Expr. 3 the local
cost function takes into account the sum of the switching costs over the horizon. With the abs sw

definition the two trajectories have the same cost, since the sum of the reconfiguration amplitudes is
the same for the two control trajectories. In contrast, the pow sw definition returns a different cost,
higher for the first trajectory where we have the highest reconfiguration amplitude equal to 3 from
step k + 1 to k + 2.

5 6
PAST FUTURE

prediction horizon

k-1 k k+1 k+2
95

(a) First control trajectory.

5 7
PAST FUTURE

prediction horizon

k-1 k k+1 k+2
95

(b) Second control trajectory.

Figure 5. Examples of control trajectories of the parallelism degree with a three-step horizon.

From this example we evince that the pow sw switching cost penalizes control trajectories with a
larger reconfiguration amplitude. This aspect plays a central role in this work and will be studied in
Sect. 5 devoted to the experimental evaluation of our approach.

4.2. Enabling cooperation with the Distributed Subgradient Method

Two characterizing aspects of distributed MPC strategies are the way in which controllers are
interconnected and the type of agreement that they achieve. In our approach we use the following
principle to interconnect controllers in a single-layer scheme:

Assumption 4.1 (Interconnections between Control Parts). Two Control Parts are interconnected
(in both the directions) if and only if there exists a data stream between their Operating Parts.

The second point concerns the type of negotiation. At each control step the goal of the controllers
is to cooperatively minimize the sum of their local cost functions. We implement this behavior
by using the Distributed Subgradient Method originally proposed in [10, 54, 55] for multi-agent
environments. To apply this method, we use a continuous relaxation of the problem in which
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parallelism degrees are positive real variables. The optimality loss of this relaxation is acceptable
if parallelism degrees assume large values, which is justified by the current tendency of today’s
distributed platforms featuring hundreds/thousands of processing elements as in data centers, Grids,
and more recently in Clouds.

The Distributed Subgradient Method optimizes the sum JG(k) =
∑N

i=1 Ji(k) of cost functions in
a distributed manner. This method has interesting properties that are particularly suitable to solve
our control problem:

• Local knowledge: each controller knows only its local cost function and the model to predict
the steady-state performance (inter-departure time) of the Operating Part;

• Convexity: the method is able to minimize the sum of convex cost functions. According to
Expr. 3, our cost functions are convex in the parallelism degrees provided that the service
time model Hi and the switching cost are convex functions (it can be easily verified that
abs sw, on/off sw and pow sw definitions preserve the convexity);

• Convex constraints: the admissible solutions of the problem must belong to a convex set
(closed intervals Ui are convex sets by definition);

• Non-differentiability: the method works without any assumption on the differentiability of
cost functions. This is important because our local cost functions are non-differentiable (due
to the pointwise maximum in Expr. 1);

• Partially interconnected controllers: controllers communicate with a limited set of neighbors.

Each Control Part maintains an estimate of the optimal strategy profile matrix S(k) ∈ Rh(k)×N ,
where the i-th column is the parallelism degree trajectory of ParModMi over a prediction horizon
of h(k) control steps. Neighboring controllers exchange their estimates iteratively within each
control step, and compute the next estimate using the following update rule:

S(q+1)
i (k) = PU

[
N∑
j=1

(
wi,j S(q)j (k)

)
− a gi

]
(7)

wherewi,j is a positive weight assigned by controller i to the estimate received by neighbor j (zero if
j is not a neighbor), q is the current iteration, a > 0 is a real positive step-size and gi is a subgradient
of Ji at point S(q)i (k) which denotes the estimate of the i-th controller at the iteration q. P is the
euclidean projection onto the convex set U of admissible strategy profile matrices.

To prove the convergence to the optimal solution [10, 54, 55] two important conditions must be
satisfied: i) a rule on the weights that a controller uses when combining its estimate with the ones
received from its neighbors; ii) a connectivity rule ensuring that the information of each controller
influences any other controller after a finite number of information exchanges.

The first aspect is related to how the weights are assigned to the estimates. We denote by
W ∈ RN×N the weight matrix. As proved in [10]W must be doubly stochastic:

Definition 4.2 (Doubly Stochastic Matrix). A doubly stochastic matrix is a matrixW = (wi,j) such
that wi,j ≥ 0 and whose rows and columns sum to 1, i.e.:∑

i

wi,j =
∑
j

wi,j = 1

The second aspect is related to the presence of a path between each pair of controllers:

Assumption 4.2 (Connectivity). The interconnection between Control Parts must form a connected
undirected graph, i.e. for each pair of controllers there must exist at least one path connecting them.

If the previous conditions are satisfied, the Distributed Subgradient Method converges to the
optimal solution [10, 54, 55], i.e.:

lim
q→∞

S(q)i (k) = Sopt(k) for i = 1, . . . , N
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VARIABLE-HORIZON MODEL PREDICTIVE CONTROL WITH SWITCHING COSTS 13

where Sopt(k) is the strategy profile matrix optimizing JG(k) =
∑
Ji(k).

The cooperative MPC strategy based on the Distributed Subgradient Method consists in an
iterative protocol in which local estimates are exchanged several times within each control step.
The sequence of actions performed by a generic controller i is the following:

• the controller acquires past disturbance values from its Operating Part and calculates statistical
predictions over the prediction horizon;

• the controller uses an initial estimate of the strategy profile matrix and begins the iterative
protocol for a fixed number of iterations I;

• at each iteration the controller receives the local estimates from the neighbors, applies the
update rule described in Expr. 7 and transmits the next estimate to the neighbors;

• after the last iteration the controller applies the first element of its optimal reconfiguration
trajectory (the i-th column of its final strategy profile matrix) as the new parallelism degree
for step k. The element needs to be rounded to an integer value (e.g. by rounding it to the
nearest integer).

4.3. Adaptive horizon and feasibility of the approach

In the following we discuss two important aspects of our distributed cooperative MPC strategy: i)
the selection policy of the horizon length, and ii) the feasibility of the approach.

Variable Horizon MPC: we have denoted by h(k) the length of the prediction horizon at control
step k. Long horizons increase the foresight of the controller with a potential advantage in improving
the desired control properties. However, a too long horizon requires very accurate predictions
to determine good reconfiguration trajectories. The prediction accuracy is a critical problem of
MPC controllers. In this paper we propose an adaptive horizon strategy in which the controllers
choose the best time horizon in an adaptive fashion for each step of the execution. Variable horizon
strategies have been applied in autonomous navigation systems [56] and for general time-varying
linear dynamical systems [57]. As stated in Sect. 2.2, its application in distributed/parallel systems
is a novelty of this work. We will take into account two strategies:

• a fixed-horizon MPC strategy (FH-MPC) in which the length of the prediction horizon is fixed
throughout the execution, i.e. h(k) = h;

• a variable-horizon MPC strategy (VH-MPC) in which the length of the prediction horizon can
be modified at each control step by evaluating proper shortening and prolongation strategies.
The length at step k is a value h(k) such that 1 ≤ h(k) ≤ hmax where hmax is an upper bound.

In this paper we use a simple prolongation/shortening strategy in which the horizon length is
adapted to the current accuracy of disturbance predictions. The idea is to change the horizon length
based on how well we are predicting disturbances. This idea is based on the assumption that the
immediate future is similar to the immediate past and the last prediction errors are likely near to the
errors for the predictions that will be made at time instants close in the future.

We denote by Err(k, h) the mean absolute percentage error (MAPE) between the predicted
disturbance trajectory and the corresponding real measurements over a horizon of h steps starting
from step k:

Err(k, h) =
100

h

h−1∑
i=0

∣∣d(k + i
)
− d̂

(
k + i|k

)∣∣
d
(
k + i

)
where d is the vector of disturbance variables and d(k + i) is the real value of the disturbances for
step k + i. We denote by d̂(k + i|k) the prediction for step k + i performed using the information
available at time instant k.

The idea is to dynamically regulate the horizon length on the basis of the past prediction errors. In
particular we are interested in the errors of the last h-step ahead predictions for h = 1, 2, . . . , hmax.
A graphical description is shown in Fig. 6 where we denote by k the present control step:

This scheme is characterized by two important aspects. Firstly, at each control step controllers
perform several h-step ahead predictions (for h = 1, . . . , hmax), since their accuracy will be used
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PAST FUTURE
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Err(k-4,4)

Figure 6. MAPE of the last predicted trajectories up to control step k with hmax = 4.

in the future to select the best horizon length. Secondly, the same horizon length should be used by
all the controllers at each step. To do that, the controllers can exchange their local disturbances in
order to have a global knowledge of the prediction errors. Alternatively, each controller can evaluate
the prediction accuracy on its local disturbances only (Erri(k, n) denotes the prediction error of
disturbances belonging to Control Part i), and the final horizon is selected by reaching an agreement
among controllers, e.g. by choosing the minimum horizon length from the ones calculated by the
controllers. This second solution is sketched in Alg. 1.

The value at the end of the for loop is the longest horizon such that the last l-step ahead prediction
of local disturbances has an error smaller than a threshold θ. The final length of the horizon (row 6)
is the minimum between the lengths found by the controllers.

Algorithm 1: Dynamic selection of the horizon length.
1 foreach control step k each Control Part i do
2 hi(k)← 1;
3 for l = 1 to hmax do
4 if Erri(k − l, l) ≤ θ then
5 hi(k)← l;

6 hi(k) = minNj=1{hj(k)}

On the approach feasibility: the Distributed Subgradient Method has some interesting features
from the feasibility viewpoint. A critical parameter is the number of messages exchanged by
controllers before reaching a sufficiently approximate estimation of the optimal solution. The total
number of messages nmsg per step can be calculated as follows: nmsg = I ∑N

i=1 |Ni| where I is
the number of iterations and Ni is the set of neighbors of Control Part i. As proved in [10], if the
step-size a in Expr. 7 is too small and the distance from the starting estimate to the optimal solution
is large, the method may take thousands iterations to converge. However, in our application of the
Distributed Subgradient Method two aspects can be considered:

• we can choose in a clever way the initial estimate S(0)[i] (k) in Expr. 7. An effective strategy
consists in a warm start, i.e. the initial estimate is equal to the final one calculated at the
previous control step. The rationale is the following: if the values of disturbances between
consecutive steps are similar, the optimal strategy profile matrix determined at the previous
step is a starting estimate likely near to the new optimal solution;

• few iterations are in general sufficient since controllers apply an integer rounding at the end
of the method. Therefore, a high level of precision is not required actually.

Further details can be found in [33]. The next section exemplifies our approach by discussing the
results in terms of the properties introduced in Sect. 3.2.
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5. SIMULATION RESULTS

In this section we provide an evaluation of our approach through experiments performed in the
OmNeT++ discrete event simulator‡. OmNeT is an open-source simulation environment offering
several features aimed at facilitating computer network modeling. Over the last years the simulator
has been extended to reproduce the behavior of Grids and Clouds [58]. The ParMod logic has been
simulated by two interacting simulation objects implementing the Operating Part and the Control
Part. Simulation objects can be programmed using an event-driven programming style and they
exchange messages through communication ports.

The Operating Part implements a queue logic. Parallelism inside the Operating Part can be
controlled using the parallelism degree attribute. The Operating Part implements different parallel
working logics: i) the task-farm semantics, in which the Operating Part is able to execute more
tasks in parallel (up to the value of the parallelism degree); ii) the data-parallel semantics, in which
the execution of each single task is parallelized by reducing its calculation time. The value of the
calculation time of a task is modeled by a random variable (with exponential, normal or uniform
distribution) with a given mean and variance. Result messages are transmitted onto one of the output
ports selected according to a discrete probability distribution.

The Control Part has an internal notion of control step emulated by the reception of a self-message
generated by an internal timer. Reconfigurations are implemented as simple modifications of the
parallelism degree attribute of the Operating Part. The simulator can reproduce a reconfiguration
overhead implemented by a variable waiting time before re-starting the execution with a different
parallelism degree. The goal of this feature is to model the delay in adding/removing servers in data
centers or the time-to-deploy of virtual machines in Cloud environments [59].

The workflow graph used in the experiments is depicted in Fig. 7. The computation graph
describes a synthesized video-streaming application for video surveillance in which an initial stream
of video frames (each frame is considered a task) is produced by a sequential source component (an
interface with a set of properly localized cameras). The sets {M2} and {M1,M3} represent two
sub-parts of the application responsible to apply different denoising filters on the received frames.
Based on a pre-processing phase performed by the source, frames are grouped together according
to their features (e.g. presence of quiet zones, direction of the image gradient, pixel brightness as
described in [60]) and transmitted either to the first or to the second filter.

control messages

Source

Two-phase Filter

Low-pass Filter

noised frames

sequential
comp.

Control Part

Operating 
Part

Control Part
Operating 

Part

Control Part

Control Part

Operating 
Part

Control Part

Operating 
Part

Demultiplexer Edge Detection

(Detection) (Denoising)

de-noised frames
M2

M1 M3

M4

Figure 7. Computation graph of the synthesized video-streaming application.

Both the filters implement computationally demanding functions that need to be parallelized
to meet real-time constraints. The first one is a simple low-pass filter applied to different frames
independently, i.e.M2 is parallelized as a task-farm. The second one is more complex and simulates

‡Visit http://www.omnetpp.org/ for further details about the OmNeT++ simulator.
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the two-phase filter described in [61]. The detection phase is performed by component M1 and
consists in a map data-parallel parallelization. The second one (denoising), performed by M3,
is a map-reduce parallelization operating on a sub-set of the image pixels identified by the first
phase. The two phases operate in a pipeline fashion on each received frame. Filtered frames
are finally collected by component M4 which performs a data-parallel computation for the last
phase of edge detection. Final results are transmitted to further phases of the application (motion
detection and object recognition) not analyzed in this benchmark. For the sake of simplicity we
assume that the service time of the components decreases ideally with the parallelism degree, i.e.
TSi(k) = Tcalci(k)/ni(k) which maintains the convexity required by the Distributed Subgradient
Method.

Tab. II summarizes the main configuration parameters by showing the mean calculation time per
task and the maximum parallelism degree that can be assigned at each ParMod. The sequential
calculation time per tasks (in seconds) is simulated by a normal random variable with a fixed mean
and a standard deviation equal to 30% of the mean. The parameters represent a realistic configuration
by assuming a frame size of 352x240 pixels and an average range of noise levels of 10% (see [61]
for further details).

Low-pass Filter Two-phase Filter Edge Detection

M2 M1 (Detection) M3 (Denoising) M4

Calc. Time (s) 2.48s 1.90s 10.31s 4.30s
Max Par. Degree. 32 48 128 64

Table II. Sequential calculation times and maximum number of nodes per ParMod.

The ParMods adapt their parallelism degrees in order to sustain the current workload intensity.
We analyze a scenario characterized by the presence (and the combined effect) of two disturbances:

• the source generates frames with a variable intensity (e.g. the frame rate is higher when motion
is detected). In other words the mean service time of the source may change significantly
during the execution;

• the source transmits frames to the first or to the second filter with a time-varying probability.
We denote by p(k) the probability to transmit a frame to M2. Therefore 1− p(k) is the
probability to transmit a frame to the two-phase filter implemented by {M1,M3}. Higher
values of p(k) correspond to a higher arrival rate toM2 and vice-versa.

The workload characterization of video surveillance systems has been studied in some past
research works [62, 63, 64] by analyzing the behavioral patterns and workload models of
some existing applications. As stated in these works, cyclic (seasonal) patterns and trends are
representative patterns that characterize the workload of such systems (e.g. dynamic frame rate).
In our benchmark we use two synthesized workload traces depicted in Fig. 8a, for the probability p,
and in Fig. 8b for the service time of the source module. The execution consists of 600 control steps
each one of 60s for a total simulation time of 10 hours.
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Figure 8. Multi-disturbance scenario of the application.
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We use time-series forecasting methods to predict the future behavior of the workload. For the
time-series in Fig. 8a we adopt a Holt-Winters forecasting model [65] able to estimate trends by
using two exponentially weighted moving average filters (EWMA) for the level and the trend parts
of the prediction. For the service time time-series, the predictions are generated by a seasonal Holt-
Winters model with a third EWMA filter for the cyclic part. The filter parameters have been trained
using an initial fitting period of observations, by minimizing the sum of the squared one-step ahead
forecast errors.

5.1. Results with fixed horizons

We evaluate our MPC strategies on the benchmark application. Local control problems are solved in
a cooperative fashion with the Distributed Subgradient Method. Each Control Part assigns the same
weight to its estimate and the estimates received by its neighbors (Equal Weight Rule [10, 54]). The
weight matrix for the graph of Fig. 7 is the following:

W =

source M1 M2 M3 M4


1/3 1/3 1/3 0 0 source
1/3 1/3 0 1/3 0 M1

1/3 0 1/3 0 1/3 M2

0 1/3 0 1/3 1/3 M3

0 0 1/3 1/3 1/3 M4

The graph between controllers (red dashed lines connecting Control Parts in Fig. 7) is connected,
so we can prove that the Distributed Subgradient Method converges to the optimal set of
reconfiguration trajectories at each control step. Thanks to the use of the integer rounding and the
warm start approach (see Sect. 4.3), only I = 100 iterations are sufficient to achieve an average
error of 2% between the optimal solutions and the final estimates calculated by the controllers.

In the first series of experiments we compare the results of FH-MPC strategies with different
switching costs and horizon lengths. According to the concepts introduced in Sect. 3.2 we use the
following metrics:

• the stability (frequency) of reconfigurations is measured by the total number of parallelism
degree variations performed by the application components, and the average time between
reconfigurations. We denote by MSI (Mean Stability Index) the average number of control
steps between two successive reconfigurations of a ParMod;

• we use three metrics for the reconfiguration amplitude: i) the mean amplitude (the average
number of nodes allocated/deallocated during a parallelism degree variation), ii) the standard
deviation of the reconfiguration amplitude, iii) the ”largest” reconfiguration occurred during
the execution (peak amplitude);

• we define the relative efficiency as the ratio between the ideal service time of a ParMod and
its inter-departure time i.e. Ei(k) = TSi

(k)/TDi(k). We measure the average efficiency as
follows:

E =

N∑
i=1

T∑
k=1

Ei(k)

where N is the number of ParMods and T is the number of control steps (N = 5 and T = 600
in the experiments);

• for the performance we measure the total number of frames (tasks) leaving the systems, i.e.
departing from ParModM4.

Tab. III shows the values of the metrics for all the application components. For the sake of brevity
the amplitude results are shown only for the third ParMod (M3), which is the one subject to more
reconfigurations and with the highest amplitude among the other components (M3 executes the
most compute-intensive phase of the application and needs more resources).

In the table we denote by no sw the strategy without any switching cost (∆sw
i (k) = 0 in Expr. 3).

This strategy is applied with a horizon of one step since longer horizons would not change the
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Strategy Reconf. Stability Reconf. Amplitude (M3) Efficiency Tasks

Num. reconf. MSI mean stddev max

no sw (h = 1) 1069 2.64 1.21 0.47 3 0.94 192,467
abs sw (h = 1) 612 4.16 1.19 0.50 4 0.86 200,987
abs sw (h = 2) 897 3.42 1.15 0.39 3 0.92 198,258
abs sw (h = 3) 999 2.78 1.17 0.44 3 0.92 193,857
pow sw (h = 1) 530 4.87 1.05 0.28 2 0.84 202,043
pow sw (h = 2) 690 3.77 1.09 0.37 3 0.88 209,498
pow sw (h = 3) 716 3.73 1.07 0.33 3 0.91 201,569
max degree - - - - - 0.52 289,086

Table III. Results of FH-MPC strategies with different types of switching costs (h is the horizon length).

reconfiguration trajectories without a switching cost. The other strategies take into account different
switching costs: the absolute value switching cost (abs sw) and the square switching cost (pow sw)
introduced in Sect. 4.1, and three different lengths h of the prediction horizon of one, two and three
control steps. Furthermore, in order to compare our adaptation strategies with a static configuration,
we analyze the results of the execution with all the ParMods using their maximum parallelism degree
throughout the execution (strategy denoted by max degree).

The static max degree strategy is the one optimizing the number of completed tasks at the
expense of a very low efficiency. In the average case we waste half of the assigned resources (the
efficiency is near to 0.5).

The no sw strategy is effective to improve the efficiency. At each control step the Control
Parts select the optimal parallelism degrees to achieve the best trade-off between performance and
resource consumption. If the workload can be accurately predicted, the use of oversized parallelism
degrees is undesirable since it increases the resource cost without a real performance improvement.
With this strategy the efficiency becomes near to the ideal one but we lose 33% in completed tasks
than the max degree strategy. The reason for this loss in performance has two folds. Firstly, the use
of parallelism in excess in the max degree strategy makes it possible to complete more frames when
the future workload is underestimated. Secondly, a high number of reconfigurations can be counter-
productive because reconfigurations may bring to a long-term improvement in performance, but this
positive aspect must be traded-off with the transient cost to apply them. To model this aspect in the
simulator we use an average reconfiguration delay of 15s.

An effective adaptation strategy should avoid to perform unnecessarily reconfigurations. This is
the intent of switching cost strategies. In Tab. III we can see that by using a switching cost and a
horizon of one step, the reduction in reconfigurations is remarkable (of 42.75% and 50.42% with
abs sw and pow sw). To understand the effect of switching costs Fig. 9 shows the sequences of
reconfigurations of M3 and M4 with the no sw and the pow sw strategies (qualitatively the same
behavior has been observed with abs sw). The reconfiguration sequence of M3 depends on the
combined effect of the source service time variability and the probability p(k). In fact, both of them
influence the arrival rate (workload) to the sub-system {M1,M3}. During phases in which the
arrival rate is higher the parallelism degree ofM3 increases. The contrary happens during phases
characterized by a lower pressure of the input stream.

The reconfiguration sequence of M4 is not influenced by the probability p(k) but follows the
variability of the source service time only. This is an expected phenomenon. In fact,M4 receives
frames from M2 and M3 and processes them in a FIFO fashion. Thus, its arrival rate does not
depend on how the source split the frames between the low-pass filter (M2) and the two-phase filter
({M1,M3}).

By observing Fig. 9 we can point out that the switching cost is a disincentive to reconfigurations.
During phases in which the arrival rate becomes lower it slows down the release of computing
resources, while during phases with a growing rate it slows down the allocation of new resources.
As we consider longer horizons the number of reconfigurations increases (this is also true for the
abs sw switching cost). The reason is that our multiple-step ahead forecasts are able to capture
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Figure 9. Reconfiguration sequences of the third and the fourth ParMod.

future trends in the workload. During increasing trend phases, if the horizon is sufficiently long
controllers can anticipate the acquisition of new resources that will be necessary in the near future
by reducing the number of reconfigurations and their amplitude. The opposite behavior characterizes
decreasing trend phases, where resources are released more quickly by using longer horizons. The
reduction in reconfigurations is more marked with the pow sw switching cost because the square of
parallelism degree variations has a higher weight than the absolute value.

In conclusion, by increasing the horizon length more reconfigurations are performed and the
sequence tends to the one without the switching cost. However, many reconfigurations due to the
high variance of disturbances can be avoided by optimizing the reconfiguration stability. With
pow sw and h = 1 there is a reconfiguration every 4.87 control steps in the average case, that is
a 46% improvement compared with the MSI without using the switching cost (2.64).

A sufficiently long horizon has also a positive effect on the relative efficiency, since the
reconfiguration sequence follows more quickly the disturbance variability. In the case of a horizon
of three steps the average efficiency is similar to the one achieved by the no sw strategy, as depicted
in Tab. III and graphically represented in Fig 10 for ParModM4. It is worth noting that the phases
in which the efficiency is not optimal are the ones in which the ParMod releases resources during
decreasing trends of its workload (see Figs. 9d, 9e and 9f).

In terms of completed tasks the best strategy is pow sw with a prediction horizon of two
control steps. In this benchmark this strategy achieves the best trade-off between the number of
reconfigurations and their amplitude by optimizing the number of completed tasks, which is 8.13%
greater than in the no sw case (losing 6% in efficiency only).

The last aspect is the analysis of the reconfiguration amplitude. Tab. IV shows the percentage of
δ-reconfigurations (reconfigurations of amplitude δ) using different horizon lengths and switching
costs. As discussed in Sect. 3.2, the pow sw definition, besides being able to reduce the number
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Figure 10. Efficiency ofM4 at each control step of the execution.

of reconfigurations, is further capable of improving the reconfiguration amplitude. The baseline is
the case without switching costs, where there is no brake in the release/acquisition of resources. In
this case almost 20% of reconfigurations involve more than one added/removed node. As we can
observe, only a slight improvement in the average amplitude can be achieved with abs sw. With the
pow sw strategy and a horizon of one step the number of 1-reconfigurations increases of 14% and
we are able to remove completely reconfigurations with an amplitude greater than 2.

Strategy 1-reconf. 2-reconf. 3-reconf. 4-reconf.

no sw (h = 1) 82.2% 15.6% 2.2% -
abs sw (h = 1) 84.3% 11.8% 2.92% 0.98%
abs sw (h = 2) 85.6% 13.3% 1.1% -
abs sw (h = 3) 85.2% 12.9% 1.9% -

pow sw (h = 1) 96.2% 3.8% - -
pow sw (h = 2) 92.7% 6.9% 0.4% -
pow sw (h = 3) 93.8% 5.2% 1% -

Table IV. Analysis of the reconfiguration amplitude of ParModM4 with different switching costs.

To conclude this first part of the experiments, Tab. V shows a qualitative analysis of the adaptation
strategies designed with fixed horizon lengths. The table highlights an important fact: there does not
exist a strategy optimizing all the adaptation properties. The no sw strategy optimizes the efficiency
by properly sizing the parallelism degrees at each control step of the execution. The consequence is
a lower stability and a larger mean amplitude due to the disturbance variance. This also induces a
lower performance due to the overhead to apply reconfigurations. The stability and amplitude can
be optimized by using the pow sw strategies. In this case the horizon length plays a decisive role. As
we use longer horizons the stability and amplitude slightly worsen with the advantage of improving
the efficiency. In this example the strategy completing the highest number of tasks is achieved by
the selection of a two step ahead horizon.

In the last part of this paper we will extend our discussion by showing the application of variable-
horizon MPC strategies according to the formulation described in Sect. 4.3.

5.2. Results with variable horizons

Our VH-MPC approach consists in adapting the horizon length according to the current disturbance
prediction errors. Control Parts will prolong the prediction horizon during phases of the execution
characterized by sufficiently accurate predictions. On the opposite a shortening of the horizon
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Strategy Efficiency Stability Amplitude Performance

no sw (h = 1) ? ? ? ? ? ?
pow sw (h = 1) ? ? ? ? ? ? ? ??
pow sw (h = 2) ?? ?? ?? ? ? ?
pow sw (h = 3) ? ? ? ?? ?? ??

Table V. Qualitative analysis: ? ? ? denotes the best results, ? the worst ones.

will be performed when the current accuracy is not satisfactory. The rationale is intuitive: the
prediction accuracy decreases by using too long horizons, thus longer horizons will be chosen
provided that a sufficient accuracy can be expected by the next multiple-step ahead predictions.
Fig. 11 shows the percentage errors between the real disturbance trajectory and the h-step ahead
prediction (with h = 1, . . . , 4) performed at each control step. We measure the average errors of
both the disturbances, i.e. the probability p(k) and the source service time.
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(a) 1-step ahead prediction errors.
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(b) 2-step ahead prediction errors.
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(c) 3-step ahead prediction errors.
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Figure 11. Percentage error between real measurements and predicted trajectories at each control step.

We can note that with longer horizons we have lower error peaks. This is an effect of averaging,
since even if peaks are still present they are smoothed by the average of the errors over the horizon.
The total average error is of 6.7%, 6.9%, 7.2% and 7.4% for h = 1, 2, 3, 4 steps (hmax = 4 is the
maximum horizon length considered in this experiment). This behavior can be graphically observed
in Fig. 11, where the error lines are denser using longer horizons.

We have performed simulations using the VH-MPC strategy with different thresholds θ for the
prediction accuracy (see Sect. 4.3). Fig. 12 shows the horizon length used at each control step of the
execution with different thresholds of 4%, 6%, 8% and 12%.

It is interesting to compare the results of Fig. 12 with the prediction errors shown in Fig. 11. With
a low tolerance of 4% for most of the control steps we use the minimum horizon of just one step.
This can be clearly observed in Fig. 12a, where the average prediction horizon during the entire
execution is of 1.53 control steps. The horizon is prolonged up to the maximum length hmax = 4
mainly in the last part of the execution (from step 530 to 600), where the accuracy is good also with
4-step ahead predictions (see Fig. 11d).

With a high tolerance threshold the controllers use longer horizons on average. For higher values
of θ the number of steps in which we use the maximum horizon length increases. However, we can
recognize two execution phases characterized by less accurate predictions: the phase from step 100
to 220 and from 380 to 420. During these phases the ParMod controllers favor the use of the shortest
horizon also with a high threshold of 12%. A complete analysis of the average horizon length with
different threshold values is depicted in Fig. 13.
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(a) θ = 4%.
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(b) θ = 6%.
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(c) θ = 8%.
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Figure 12. Horizon length selected by the VH-MPC strategy at each control step.

The dynamic selection of the horizon length makes it possible to achieve better trade-offs between
performance, efficiency, number of reconfigurations, their stability and amplitude than by using a
fixed horizon length. Tab. VI shows the results in detail. The VH-MPC strategy with θ = 4% is very
effective. Compared with FH-MPC(h = 1), which is the best one in terms of reconfiguration stability
and amplitude, we reach a similar number of reconfigurations (we have only a small increase of
5.19%) and we are still able to remove all the reconfigurations with amplitude greater than 2. In
terms of efficiency the result is similar to the one of the FH-MPC(h = 2) strategy and 3.6% better
than FH-MPC(h = 1). Finally, in terms of completed tasks we are able to complete 207, 596 tasks
during the entire execution, slightly lower than the best fixed-horizon strategy. The difference with
FH-MPC(h = 2) is of 1% only.
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Figure 13. Average horizon length with different thresholds θ.

In conclusion the results are consistent with our initial intuitions. The variable-horizon strategy
with a good threshold achieves better trade-offs compared with strategies using a fixed horizon
length. The proposed scheme is effective and with low complexity since the horizon selection policy
only needs to collect the last prediction errors.
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Strategy Num. reconf. Avg. hor. Reconf. Amplitude (M3) Efficiency Tasks

mean 1-reconf max

VH-MPC θ = 4% 559 1.53 1.056 94.95% 2 0.896 207,596
VH-MPC θ = 6% 614 2.21 1.058 94.62% 2 0.898 203,708
VH-MPC θ = 8% 652 2.80 1.061 94.35% 2 0.900 204,616
VH-MPC θ = 12% 680 3.32 1.066 93.85% 2 0.900 203,717

Table VI. Results of the VH-MPC strategies with different thresholds.

6. CONCLUSIONS AND FUTURE WORK

The tendency of the modern distributed computing platforms is to provide autonomic features
enabling the users to dynamically manage their time-varying resource requirements through
(re)allocation policies. The optimal application configuration on these environments is a critical
problem that needs to take into account the optimization of several metrics. The reconfiguration
sequence can be evaluated according to metrics related to the reconfiguration stability and amplitude
(their frequency and ”size”), while the result of the adaptation process can be analyzed from the
performance (e.g. number of completed tasks) and efficiency (utilization factor of the assigned
resources) viewpoint.

In this paper we propose an application of Distributed Model Predictive Control, an adaptation
strategy in which the control problem of the entire system is decomposed in coupled sub-problems
solved by a set of controllers. In our method control problems are solved in a cooperative
fashion according to the Distributed Subgradient Method, a feasible technique applicable to non-
differentiable convex cost functions. The first goal of this paper is to study different switching
costs in the definition of the optimization problem, and their impact on the performance, efficiency,
reconfiguration stability and amplitude. Qualitatively, all the switching cost functions behave
similarly, with the pow sw definition able to optimize the reconfiguration amplitude.

The second goal is the analysis of a variable-horizon MPC strategy, in which the horizon length
is adapted during the execution instead of being a fixed value. We propose an approach in which
controllers choose the horizon length according to the last prediction errors. This paper presents a
validation on a simulation environment able to reproduce the interaction among distributed parallel
components. We evaluate fixed- and variable-horizon strategies and their qualitative/quantitative
effects on the interesting metrics of the adaptation process. The results show that with fixed horizons
there does not exist an optimal strategy achieving the best results for all the metrics, and the variable-
horizon MPC is effective in improving the trade-off.

On the future we plan to extend our work. A first direction is to explore the use of a discounting
factor in the formulation of optimization problems. Furthermore, the control step length, instead of
being a fixed sampling interval as in the examples considered in this paper, can be a manipulable
parameter of the controllers. This may be an interesting solution to quickly respond to the time-
varying nature of the workload without a too large control overhead, e.g. by intensifying the
sampling frequency when we detect highly variable disturbances. Finally, it is our goal to evaluate
our ideas in a real implementation for Grid and Cloud applications.
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