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Abstract

Multi-core architectures comprising several GPUs have become mainstream in the �eld of High-
Performance Computing. However, obtaining the maximum performance of such heterogeneous machines
is challenging as it requires to carefully o�oad computations and manage data movements between the
di�erent processing units. The most promising and successful approaches so far build on task-based
runtimes that abstract the machine and rely on opportunistic scheduling algorithms. As a consequence,
the problem gets shifted to choosing the task granularity, task graph structure, and optimizing the
scheduling strategies. Trying di�erent combinations of these di�erent alternatives is also itself a challenge.
Indeed, getting accurate measurements requires reserving the target system for the whole duration of
experiments. Furthermore, observations are limited to the few available systems at hand and may be
di�cult to generalize. In this article, we show how we crafted a coarse-grain hybrid simulation/emulation
of StarPU, a dynamic runtime for hybrid architectures, over SimGrid, a versatile simulator of distributed
systems. This approach allows to obtain performance predictions of classical dense linear algebra kernels
accurate within a few percents and in a matter of seconds, which allows both runtime and application
designers to quickly decide which optimization to enable or whether it is worth investing in higher-end
GPUs or not. Additionally, it allows to conduct robust and extensive scheduling studies in a controlled
environment whose characteristics are very close to real platforms while having reproducible behavior.

1 Introduction

High-Performance Computing architectures now widely include both multi-core CPUs and GPUs. Exploiting
the tremendous computation power offered by such systems is however a real challenge. Programming them
efficiently is a first concern, but managing the combination of computation execution and data transfers can
also become extremely complex, particularly when dealing with multiple GPUs. In the past few years, it has
become very common to deal with that through the use of an additional software layer, a runtime system,
based on the task programming paradigm [1, 2, 3]. Applications are expressed as a task graph with data
dependencies, i.e., a Directed Acyclic Graph (DAG), and provide both CPU and GPU implementations for
the tasks. The runtime can then schedule the tasks over all available computation units, and automatically
initiate the entailed data transfers. Scheduling heuristics such as HEFT or work stealing are used to auto-
matically optimize that execution [1]. Such runtimes can also take into account the NUMA (Non Uniform
Memory Access) effects on architectures with large number of CPUs using shared memory [4, 5]. Application
programmers are thus relieved from scheduling concerns and technical details.

As a result, the concern becomes choosing the right task granularity, task graph structure, and scheduling
strategies optimizations. Task granularity is of a particular concern on hybrid platforms, since a trade-off
must be found between large tasks which are efficient on GPUs but expose little task parallelism, and a lot of
small tasks for CPUs. The task graph structure itself can have an influence on execution time, by requiring
more or less communication compared to computation, which can be an issue depending on the available
bandwidth of the target system. Last but not least, optimizing scheduling strategies has been a concern for
decades, and the introduction of hybrid architectures only makes it even more challenging.
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Figure 1: For dense linear algebra applications, most of the processing power is provided by GPUs. These
plots depict the performance of the Cholesky application on the Mirage machine (see Table 1). A clearer
view of these performance when restricting to CPU resources (8 cores) is provided in Figure 11 (4+4 cores).

Getting accurate measurement results for all combinations is nontrivial and requires reserving the target
system for a long period, which can become prohibitive. Moreover, experimenting over a wide range of
different platforms is also necessary to make sure that the resulting design choices are generic, and not
only suited to the few target systems which were available to developers. Finally, since computation kernel
execution time exhibits variability, dynamic schedulers take non-deterministic and opportunistic scheduling
decisions. The resulting performance is thus far from deterministic, which makes performance comparisons
sometimes questionable and debugging of non-deterministic deadlocks inside such runtimes very hard.

Simulation is a technique that has proven extremely useful to study complex systems and which could be
a very powerful way to address these issues. Performance models can be collected for a wide range of target
architectures, and then used for simulating different executions, running on a single commodity platform.
Since the execution can be made deterministic, experiments become completely reproducible, also making
debugging a lot easier. Additionally, it is possible to try to extrapolate target architectures, for instance by
trying to increase the available PCI bandwidth, the number of GPU devices, etc. and thus even estimate
performance which would be obtained on hypothetical platforms. Cycle-accurate simulation of GPUs has
hence received a lot of attention recently. However, the current solutions are extremely costly and not precise
enough for helping runtime and application designers (see Section 2). Instead, we claim that a top-down
modeling approach should be used.

In this article, we show how we crafted a coarse-grain hybrid simulation/emulation of StarPU [1] (see
Section 3), a dynamic runtime system for heterogeneous multi-core architectures, on top of SimGrid [6], a
simulation toolkit specifically designed for distributed system simulation. Although our work is based on
the StarPU runtime system, it could be applied to other runtimes.

For dense linear algebra applications that are studied in this paper, the computational power of GPUs is
much higher than the one of CPUs. Figure 1 illustrates such statement by providing the GFlop/s rate for the
Cholesky application with StarPU when varying the size of the matrix from 1MB to several GB. All three
experimental campaigns were performed on the same machine but used different computation resource sets:
8 cores on the left plot, 3 GPUs on the middle plot, and both CPUs and GPUs on the one on the right. As
expected, the hybrid solution provides the best performance and manages to take advantage of both resource
types. Nevertheless, since GPUs provide the major fraction of the processing power, we mostly concentrate
on executions that use only GPUs for processing. The second part of this article is devoted to explaining
how our approach can be extended to fully hybrid setups.

Our contribution are the following:

• we present in detail models that are essential to obtain good performance prediction and quantify their
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impact on overall prediction (Sections 5, 6, and 7);

• we validate our models by systematically comparing traces acquired in simulation with those from
native executions in a wide variety of settings;

• we show that our approach allows to obtain predictions accurate within a few percents for both Cholesky
and LU factorizations on six different NVIDIA GPUs, within a few seconds on a commodity laptop
(Section 8 and 8.2);

• we illustrate how it allows to conduct easily preliminary exploratory studies (Section 8.4);

• we demonstrate current limitations of our approach regarding large NUMA machines(Section 8.3);

This article extends the work we previously published in the Euro-Par 2014 conference [7] and which
focused on the modeling of GPUs. In this article, we additionally present new results for two additional
machines with GPUs, new results on the evaluation of hybrid setups relying on both CPUs and GPUs, and
a presentation of the current limitations of our approach to handle NUMA machines comprising a large
number of cores.

2 Related Work

In most scientific fields, simulation is used to evaluate complex phenomena and to address all the difficulties
raised by the conduction of real experiments such as cost, reproducibility, and extrapolation capability.
As a result, many detailed micro-architecture level simulators of GPUs have been developed in the last
years. For example GPGPU-Sim [8], one of the most commonly used cycle-accurate GPU simulator, runs
directly NVIDIA’s parallel thread execution (PTX) virtual instruction set and simulates every detail of the
GPU. It is thus very useful for obtaining insights into architectural design problems for GPUs. However,
no comparison to an actual GPU is provided in [8] and although the trends predicted by GPGPU-Sim are
certainly interesting, it is not clear that it can be used to perform accurate performance prediction of a
real hardware. A few other GPU-specific simulators have therefore been developed (e.g., Barra [9] for the
NVIDIA G80 or Multi2Sim [10] for the AMD Evergreen GPU). Such specialization allows Multi2sim to report
predictions within 5 to 30% of native execution for several OpenCL benchmarks. While this prediction is
quite impressive, it comes at the price of a very long simulation time as every detail of the GPU is simulated.
The average slowdown of simulations versus native execution is reported to be 44, 000× while the one of
GPGPU-Sim on a similar scenario is about 90, 000×[10].

In the context of tuning HPC runtimes, expectations in term of simulation accuracy are extremely high.
It is thus difficult to rely on a simulator that may provide the right trends but with a 50% over/under
estimation. Choosing the right level of granularity or the correct scheduling heuristic can not be done
without precise and quantitative predictions. Such inaccuracies come from an inadequate level of details
and can be avoided. Integration of coarse-grain and fine-grain simulations are currently investigated for
example within SST [11]. A similar approach is used with TaskSim [12] that has recently been coupled with
the NANOS++ runtime system (, on which OmpSs [2] is based) to provide predictions built from multiple
levels of abstraction. However, to the best of our knowledge, these approaches address so far only multi-core
machines, without GPUs.

Instead, we propose to use a top-down modeling approach such as promoted by the SimGrid project [6],
which provides a versatile simulation toolkit to study the behavior of large-scale distributed systems like
grids, clouds, or peer-to-peer systems. SimGrid builds on fluid network models that have been proven to
be a reasonable alternative to both simple analytic models and expensive, difficult-to-instantiate packet-
level simulations [13] and has recently been extended to simulate accurately MPI applications on Ethernet
networks [14]. In a fluid model, communications, represented by flows, are simulated as single entities rather
than as sets of individual packets and the bandwidth allocated to flows is constrained by the network resource
capacity. While such models ignore all transient phases between two steady-state operation points, they are
very flexible and allow to easily account for network topology and heterogeneity as well as many non-trivial
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phenomena (e.g., RTT-unfairness of TCP or cross-traffic interferences) [13] at a very low simulation cost.
In the next sections, we explain how StarPU has been ported on top of SimGrid and how heterogeneous
architectures have been modeled within SimGrid.

3 Porting StarPU over SimGrid

StarPU relies on a task-based abstraction with a clear semantic, which eases the modeling. A StarPU
execution consists in scheduling a graph of tasks with data dependencies (i.e., a Directed Acyclic Graph)
on the different computing resources, while taking care about data localization. Hence, from the modeling
perspective, there are three main components to take into account: StarPU scheduling, computation on the
different computing resources, and communication between the computing resources.

Since the StarPU scheduling is dynamic and opportunistic, it is not deterministic and replaying an
execution trace, as for example done in BigSim [15] or Dimemas [16] for MPI applications whose control-flow
is mostly deterministic, is thus not an option. The most natural approach is thus to execute the StarPU
code related to scheduling decisions and to replace actual task execution with SimGrid calls. Yet, to make
sure that simulation is carried out in a reproducible and controlled way, SimGrid exports a specific thread
API (similar to the POSIX one) that allows the SimGrid kernel to control the scheduling of all application
threads. In simulation, such threads run in mutual exclusion and are scheduled upon completion of simulated
data transfers and simulated computations. Therefore, any direct regular call to the POSIX threads has to
be abstracted as well (e.g., calling xbt_mutex_acquire() instead of pthread_mutex_lock()). Likewise, in
simulation mode, any memory allocation on CPUs or GPUs has to be faked as no actual data processing is
done and no actual GPU is necessarily available on simulation machines. They have thus to be replaced by a
call to MSG_process_sleep() to simulate their overhead. Last, since schedulers may use runtime statistics to
take scheduling decisions, time has to be abstracted as well to make sure that simulation time (as returned by
MSG_get_clock()) is used instead of the system time (as returned by gettimeofday()). When running on
top of SimGrid, StarPU applications and runtime are thus emulated since the actual code is executed, but any
operation related to thread synchronization, actual computations of CPU-intensive kernels, or data transfer
is in fact simulated. More precisely, the control part of StarPU is executed to dynamically inject computation
and communication tasks in the simulator. That is the key point that previous emulation attempts from the
ICL of the University of Tennessee Knoxville were missing, resulting in ample inaccuracies due to improper
synchronization between runtime threads and simulated time.

For simplicity reasons, each core and GPU is represented as a SimGrid host with specific characteristics
and it comprises one or several threads which manage synchronization and signaling to StarPU, whenever
transfer or computation kernels end. The characteristics of the processing units and of the communication
interconnect are measured beforehand on the target machine and expressed in term of processing power,
bandwidth, and latency. As a result, such approach is very different from the classical ones described in
Section 2 where architecture is modeled in detail and coarse-grain performances are derived from fine-grain
simulation of the internals.

Since we fully control the thread execution and timings are solely handled by the simulation, we can
decide to include the overhead of the runtime (e.g., the time needed to take scheduling decisions, to manage
synchronizations or to manage internal queues) in the simulation or not. In the settings we considered,
the runtime overhead is known to be negligible and accounting for it would only make the simulation non-
deterministic anymore. Therefore, we decided to ignore it and to only account for the parts related to the
application execution. As we will see in the rest of the article, such kind of emulation coupled with a simple
modeling of computation and communications may be enough for some applications on some platforms
but can lead to gross inaccuracies in others. Showing merely a few examples where simulation and native
execution match would hence not be a validation. Instead, we tried to (in)validate our model by conducting
as much experiments as possible in a large variety of settings until we find a situation where our simulation
fails producing a good prediction. These critical experiments were generally very instructive as they allowed
us to understand how to improve our modeling.

In the rest of the article, we present the different sources of errors we identified and the kind of prediction
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Table 1: Machines used for the experiments.
Name Processor Number of Cores Frequency Memory GPUs
hannibal Intel Xeon X5550 2× 4 2.67GHz 2× 24GB 3×QuadroFX5800
attila Intel Xeon X5650 2× 6 2.67GHz 2× 24GB 3×TeslaC2050
mirage Intel Xeon X5650 2× 6 2.67GHz 2× 18GB 3×TeslaM2070
conan Intel Xeon E5-2650 2× 8 2.0GHz 2× 32GB 3×TeslaM2075
frogkepler Intel Xeon E5-2670 2× 8 2.6GHz 2× 16GB 2×K20
pilipili2 Intel Xeon E5-2630 2× 6 2.6GHz 2× 32GB 2×K40
idchire Intel Xeon E5-4640 24× 8 2.4GHz 24× 31GB /

that can be done once they are fixed.

4 Experimental Setting

We conducted series of experiments to (in)validate our modeling approach. All conclusions were drawn from
analyzing and comparing GFlop/s rate, makespans and traces of StarPU on one hand (called Native in the
following), and StarPU on top of SimGrid (called SimGrid in the following) on the other.

Before running applications, StarPU needs to obtain a calibration of the platform, which consists in mea-
suring bandwidths and latencies for communication between each processing unit, together with evaluating
timings of computation kernels [17]. Such information is used to guide StarPU schedulers’ decisions when
delegating tasks to available workers. StarPU has thus been extended to generate at the same time a (XML)
SimGrid description of the platform, which can later be used for simulation purposes. It is important to
understand that only the calibration, which is meant to be run once and for all on the target system before
conducting any performance investigation, is used in the SimGrid simulation and that it is not linked to the
application being studied. The only condition is of course that the application can use only computation
kernels that have been measured. Such a clear separation allowed all the simulations presented in this pa-
per to be performed on personal commodity laptops. This separation also allows to simulate machines we
don’t have access to, knowing merely their characteristics (i.e., computation kernel runtimes and memory
bandwidth).

To study the validity of our models, we used the systems described in Table 1. All six NVIDIA GPUs
have distinct characteristics and span three different generations, which intends to demonstrate the validity
of our approach on a range of diverse machines. Additionally, we have experimented on a large NUMA
machine without GPUs, but with 24 nodes each having 8 cores.

Regarding applications, we decided to focus on two common dense linear algebra kernels: Cholesky and
LU factorization.

Concerning task granularity, for the executions running on GPUs we fixed a relatively large block size
(960×960) as it is representative of what is typically used to achieve good performances. In the first series of
experiments we present, CPUs were only controlling the execution and scheduling of tasks while GPUs had
the roles of workers, meaning that the whole computation was done entirely on multiple GPUs. We focused
on this kind of scenario as GPUs have stable performance and provide a significant fraction of computational
power in dense linear algebra. However, in Section 8.3 we report experiments conducted on a NUMA machine
with a large number of cores with no GPUs and for which we thus used a smaller block size (320× 320) that
is much better suited to CPU resources. Finally, we also investigated situations involving both CPUs and
GPUs at the same time.

This whole work was done in the spirit of open science and reproducible research. Both StarPU and
SimGrid software are free software available online. All the source code and experiment results presented in
this paper are publicly available1. Supplementary data, which is not presented in this paper due to space
limitation, are also available at the same location along with all the scripts, raw data files and traces which

1http://starpu-simgrid.gforge.inria.fr/
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Table 2: Typical duration of runtime operations.
Transfer queue GPU memory GPU memory Pinned RAM

Operation management allocation deallocation allocation
(cudaMalloc) (cudaFree) (cudaHostAlloc)

Time 10µs 175µs 125µs 650µs/MB

allow to regenerate this document. The methodology used during the whole project is a good example of
conducting an exhaustive, coherent and comprehensible research, and is explained in more detail in [18].

Finally, assessing the impact of our various modeling attempts is quite difficult. Some of them are
specifically linked to the modeling of the StarPU runtime, while others are more linked to the modeling of
communications or to the computation variability. Obtaining a good predictive power is the combination of a
series of improvements. Hence, comparing different runtime modeling options with a native execution while
having a poor modeling of communications and computations would not be very meaningful. So instead,
we evaluate our different runtime modeling options while using the best options for communication and
computation modeling. Likewise, when we evaluate various communication modeling options, we always use
the best modeling option of runtime and computations, which allows us to evaluate how much accuracy we
may lose by overlooking this particular aspect.

5 Modeling runtime system

Since StarPU is dynamic, inaccurate emulation of the control part would produce different scheduling deci-
sions and would damage prediction of the overall execution time. We show how, in some cases and if not
treated correctly, this can produce misleading results, and present how these issues were eliminated.

As we already mentioned, process synchronizations, memory allocations of CPU or GPU, submission of
data transfer requests are all faked in simulation mode, whereas such operations in native execution do take
time and have an impact on the overall performance. Several delays were included in the simulation to account
for their overhead (Table 2 depicts typical duration of such operations). It is interesting to note that pinned
RAM allocation is linear with memory size since it has to pin each physical page of the allocation, while
other allocations have more standard, constant costs. Another (probably the most) influential parameter
for accurate modeling of runtime proved to be the size of GPU memory. Such hardware limits force the
scheduler to swap data back and forth between the CPUs, main memory and GPUs. These data movements
saturate the PCI bus, producing a tremendous impact on overall performance. It is thus critical to keep
track of the amount of memory allocated by StarPU during the simulation to make sure the scheduler will
behave in the same way for both real native executions and simulations.

Figure 2 illustrates the importance of taking into account the runtime parameters described above. Each
curve depicts GFlop/s rate of experiments for 72 different matrix dimensions (the matrix dimension 80,000
corresponds to ≈25GB). The Native solid line shows the execution of StarPU on the native machine, while
the other two are the results of the simulation: naive for execution without any runtime adjustments and
smart with all of them included. The left plot depicts a situation where all these optimizations have very
little influence as both naive and smart lines are almost overlapping with the Native line. On the other
hand, for some other combinations of machines and applications (right plot), having a precise modeling of
runtime is critical as otherwise, simulation may highly overestimate the performance for large matrix sizes.
Nonetheless, we remind that the excellent predictions achieved in these examples are also the result of the
careful modeling of communications and computations, which we will present in the next sections.

6 Modeling communication in hybrid systems

Due to the relatively low bandwidth of the PCI bus, applications running on hybrid platforms often spend
a significant fraction of the total time transferring data back and forth between the main RAM and the
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Figure 2: Illustrating the influence of modeling runtime. Careless modeling of runtime may be perfectly
harmless in some cases, it turns out to be misleading in others.
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Figure 3: Communication and topology modeling alternatives. In the crude modeling, a single link is used
and communications do not interfere with each others. The more elaborated modeling allows to account for
both the heterogeneity of communications and the global bandwidth limitation imposed by the PCI bus.

GPUs. Modeling communication between computing resources is thus of primary importance. As a first
approximation (see Figure 3(a)), the transfer time between resources could be modeled as a single link
with a latency and a transfer rate corresponding to typical characteristics of the PCI bus. However, such
modeling does not account for many architectural aspects. First, the bandwidth between CPU and GPU is
asymmetrical. Second, communication characteristics are not uniform among all pairs of CPUs and GPUs,
as it depends on the chipset architecture. We decided to account for it by using a dedicated uplink and
a downlink with different characteristics for each pair of resources (see Figure 3(b)). Furthermore, any
communication between two resources has to go through a common shared link (in bold), which represents
the maximum capacity of the PCI bus. Modeling contention in such a way greatly improves on the previous
approach but ignores that depending on resources involved in a communication, data transfers may be
serialized or not. For example, although most CUDA transfers are serialized whenever they involve the same
resource, on some systems it is possible to transfer both from GPU0 to GPU1 and from GPU1 to GPU0 at
the same time. Such serializations have thus also to be measured in the calibration phase.

Additionally, to move chunks of matrices between resources, StarPU relies on the cudaMemcpy2D function.
The performance of this function is not exactly the same as the one of cudaMemcpy, which was used in the
original calibration process. More important, it turns out that the pitch (i.e., the stride of the original
matrices) can have a significant impact on transfer time on some GPUs (see Figure 4) whereas it can be
relatively safely ignored on others. Therefore, communication time is modeled as a piece-wise linear function
of data payload whose slope and intercept depend on the pitch of the matrix.
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Figure 5: Performance of the LU application on Han-
nibal (QuadroFX5800 GPUs) using different modeling
assumptions.

Again, for a given application and a given target architecture, it may not be necessary to take care of all
such details to obtain a good prediction. For example, as illustrated on Figure 5, a naive network modeling
such as the one on Figure 3(a) proved excellent predictions when matrix dimension is smaller than 40,000.
Beyond such size, a more precise modeling of the network (as in Figure 3(b)) is necessary. Beyond 66,240, the
behavior of cudaMemcpy2D changes drastically and has to be correctly modeled to obtain a good prediction
of the performances.

A possible way to improve further might be to use more elaborate performance models for CPU-GPU
data transfers that work with arbitrary data size [19]. However, in the applications we used so far, matrices
are split in equal blocks (e.g., 960×960) and every communication is just an array of transfers of such blocks.
Since the size of the block does not change during the execution, simulation requires precise models only
for that block size. The main difficulty when simulating these applications is thus more related to correctly
modeling PCI bus contention that many single transfers will produce and this is one of the strongest points
of SimGrid.

7 Modeling computation

When running a simulation, the actual result of the application is of no interest. Hence the execution of each
kernel is replaced by a virtual delay accounting for its duration. For dense linear algebra applications such
as the ones considered in this article, the parameters of computation kernels is fixed by the task granularity
throughout the whole execution of the application. Therefore, kernel duration on a given computation
resource is well modeled by a fixed probability distribution. In our initial approach, we used the mean
duration of each computation kernel, which was benchmarked by StarPU during the calibration phase. In
such context, modeling kernels with a single constant is accurate enough for the intended purposes and the
mean value proved to be a good representative in our experiments. However, using a fixed value leads to a
deterministic schedule in simulation, which may bias the simulation and does not allow to verify the ability
of the scheduling algorithms to handle resource variability.

Therefore, we modified StarPU to capture the timing of every computation during a native execution.
Such collection of data can then be used to analyze the computation time distribution which can be ap-
proximated using irregular histograms [20]. Regular ones (with uniform bin-width) revealed very inefficient
at representing details of distributions where a small but non-negligible fraction of values are an order of
magnitude larger than the vast majority of measurements. Such approximation can then be used in the
simulation by generating pseudo-random variables from the histograms.

Although this technique allows to obtain different simulated schedules by changing the seed of the simu-
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lation, no significant gain in term of accuracy could be observed for the applications and machines we used
so far. The makespan is always very similar in both cases (mean duration vs. random duration following
an approximation of the original distribution). Nonetheless, we strongly believe that in some more complex
use cases, e.g., sparse linear algebra algorithms, using fine models like histograms may provide more precise
predictions. Taking into account the dependence on kernel parameters (as done for example in [21]) that
will vary throughout the application execution will then also be critical.

8 Prediction Accuracy in a Wide Range of Settings

As we explained in the previous sections, a careless modeling of any aspect of runtime, communications or
computations, can lead to gross inaccuracies for particular combinations of machines and applications. We
show in this section that we managed to cover the most important issues, which enables us to obtain excellent
prediction of performances. First we display results on the machines with the wide variety of GPUs, which
are the scenarios we mostly focused on during this research. Second, we show how our methods could be
equally applied to the executions that are using both CPUs and GPUs for doing computation. Then, we
exhibit current limits of our work regarding large NUMA machines, for which we still do not have sound
models. Finally, we demonstrate a typical use case with different scheduling algorithms, where StarPU users
already benefit from our solution since simulations can be run on their personal machines instead of having
to conduct native experiments on remote clusters, which saves a lot of time and computing resources.

8.1 Accurate Performance Predictions for Hybrid Machines

Figure 6 depicts the performance as a function of the size of the matrix for the two applications LU and
Cholesky and for the six different hybrid systems we described in Table 1 (the last Idchire machine does
not have GPUs). For all combinations, the prediction obtained with SimGrid is very accurate. There are
a couple of scenarios for which the error is larger than a few percents but such discrepancies are actually
due to the fact that the prototype experimental machines are sometimes perturbed by other users, OS, etc.
Regardless of that, these errors stay always lower than 6%, which is still very precise. Additionally, the trend
is perfectly predicted as well as the size beyond which performance drops.

A closer look at traces allows to see that this approach does not only provide a good estimation of the
total runtime but also offers an accurate simulation of the scheduling details. In Figure 7, we compare traces
from Native execution with SimGrid simulation, focusing only on the most important states. DriverCopy
corresponds to the CPU managing a data transfer to the GPU, while POTRF, TRSM and GEMM are
the three kernels that compose of the Cholesky application. One can observe that GPUs perform all the
computations, while CPUs provide them with data. Additionally, CPU0 is responsible for doing all the
scheduling. Since even with the same parameters, native traces differ from one execution to another, a
point-to-point comparison with a simulation trace would not make sense. However, we can check that both
the Native and the SimGrid traces are extremely close, which allows to study and understand the potential
weaknesses of a scheduler.

8.2 Using both CPUs and GPUs for Computation

It was illustrated in the introduction (see Figure 1) that CPUs do not have such a major influence on the
performance of the dense linear algebra kernels used in this paper. However, this may be different for other
kind of applications with less optimized kernels. Therefore, we also investigated the situation where both
CPUs and GPUs are used as computation resources. The resulting prediction are depicted in Figure 8, which
shows once again how our SimGrid predictions compare favorably with real experiments in hybrid setups.

Again, to illustrate the fact that not only the makespan is accurately predicted but that the whole
scheduling is correctly modeled, we compare two execution traces in Figure 9. These traces correspond to an
experiment performed on the Mirage machine that has 3 GPUs and 12 cores. 8 of them where used for doing
computations while 3 for were dedicated to GPU transfer management and 1 was dedicated to scheduling,
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Figure 6: Checking predictive capability of our simulator in a wide range of settings.
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Figure 7: Comparing execution traces (native execution on top vs. simulated execution at the bottom) of
the Cholesky application with a 72, 000×72, 000 matrix on the Conan machine but using only GPU resources
for processing the application.
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Figure 8: Illustrating simulation accuracy for Cholesky application using different resources of the Mirage
machine.

Figure 9: Comparing execution traces (native execution on top vs. simulated execution at the bottom) of
the Cholesky application with a 72, 000×72, 000 matrix on the Mirage machine using 8 cores and 3 GPUs as
workers. Adding 8 cores, improved the performance by approximatelly 20% compared to the performances
obtained in Figure 7.
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transfers and control. These traces can be compared to the ones of Figure 7, since in both cases, the same
application and matrix size are used. Only the GPU slightly differs. The conclusion is that adding 8 CPUs
improved the performance by approximately 20% and such conclusion can be drawn solely on simulations.

To convince the readers even further, we provide another trace comparison in Figure 10, again based on
the same experimental setup (the Mirage machine using 8 cores for computations, 3 for GPU transfers and 1
for scheduling) and application (Cholesky) only using a different matrix size and a different implementation
of the kernels. In this execution we did not use the Intel Math Kernel Library (MKL) but simple non-over
optimized ones and thus executing kernels on CPUs was 10 times slower than in all other results from CPUs
presented in this article. Although such results are not necessarily interesting in term of performance, we
still think that it is important to show that we manage to obtain accurate performance prediction in such
context as well since not all users may have access to the proprietary Intel libraries.

The general shape of the schedule of Figure 10 is the same in both Native and SimGrid traces and one
can observe several characteristics of the scheduling algorithm:

• The shortest kernel (POTRF ) was executed mostly on CPU0, except in the very beginning and at the
end where it was executed on GPUs. This is due to the fact that although the execution of POTRF
is faster on the GPUs, GPUs are relatively more efficient for GEMM operations than CPU resources.
The GPU resources should thus not be "wasted" for such kernels when the application reaches steady-
state. However, using the GPUs for such kernels at the beginning and at the end of the schedule makes
sense, since it allows to release available tasks as soon as possible in the beginning and to improve the
execution of the critical ones in the end.

• The TRSM kernels are executed on every CPU worker in the first part of the execution, while they
are performed regularly and much faster on the GPUs in the rest of the execution.

All these phenomena are also present in the SimGrid trace. As expected, scheduling is not identical, since
StarPU is dynamic and with two native executions with the same parameters, traces would not be exactly
the same. For example, there is a slight difference in the distribution (the number of times) of TRSM kernels’
allocation between CPUs and GPUs. It can be explained by the fact that the execution time variability of
this kernel was not accounted for in this simulation. There was thus interest for the scheduler to execute
9 series of such kernels on the CPUs in simulation although only 7 of them were done on the CPUs in the
native execution. Note that this number varies from one native run to the other and that the simulation is
thus only slightly idealizing the real conditions in a deterministic way. However, all the trends of the real
execution are correctly accounted by the simulation.

8.3 NUMA machine

A potential shortcoming of our model could be NUMA architectures. When executing an application using
only CPU resources, there is no explicit data transfers, as the workers use shared memory to exchange
data. Yet, the time to access the shared data depends on the used memory banks. Additionally, effective
memory bandwidth depends on efficient utilization and it is particularly sensitive to suboptimal block size and
memory strides. Such aspects are extremely difficult to model and are currently ignored in our simulations.
Although this is not too harmful for systems with relatively few cores (like the ones we used in the previous
experiments), it can be much more annoying with larger architectures.

In the following, we present a set of experiments that illustrates the impact of the NUMA effect on
the realism of our predictions. On Figure 11, we present two different experimentation setups on the same
Mirage machine, which has 12 cores that are distributed on two NUMA nodes (6+6). In these experiments,
we used only 8 cores, since the other 4 are normally in hybrid executions dedicated to GPU transfers and
scheduling as it is generally how the best performances are obtained in practice. The plot on the left use an
improper balancing of computing threads as 6 threads are pinned to one node and only 2 on second node.
On the other hand, the plot on the right is well balanced (4+4). Since the simulation does not currently take
the NUMA topology into account, the SimGrid prediction is identical in both the left and the right plot. As
one could however expect, resources are more efficiently used in the second case and thus the performance
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Figure 10: Comparing execution traces (native execution on top vs. simulated execution at the bottom) of
the Cholesky application with a 48, 000× 48, 000 matrix on the Mirage machine using 8 cores and 3 GPUs
as workers. Executing kernels on CPUs is much longer since Intel MKL libraries were not used, however
simulation predictions are still very precise.
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Figure 11: Illustrating the impact of deployment when using 8 cores on two NUMA nodes on the Mirage
machine.
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Figure 12: Simulation predictions of Cholesky application with a 32, 000 × 32, 000 matrix (block size
320 × 320) on large NUMA Idchire machine are precise for a small number of cores, but scale badly. The
reason is that the memory is shared, while models are not taking into account various NUMA effects.

of Native executions are better in the second scenario and match the SimGrid predictions. In such small
platforms, our approach can thus provide a sound estimation of the performance that one should expect but
cannot account for the performance loss due to a bad deployment. In more extreme setups, our predictions
are however likely to be too optimistic.

To illustrate even further such difficulty, we conducted a similar experiment on Idchire that has 24 NUMA
nodes each with 8 cores. On Figure 12, one can once again observe that there is a significant difference in
terms of performance between a good and a bad balancing of the cores for the native executions. On such
platforms, our SimGrid results provide decent predictions only for execution with a very small number of
cores, while for the other setups it greatly overestimates the capabilities of the system. This is explained by
our current inability to account for the performance degradation of interfering memory-bound kernels, the
NUMA effects and inter-node traffic.

These are known limits of our approach that may be overcome by keeping track of data localization
and trying to model data movement more precisely. However, although the performance loss incurred by
interfering kernels that contend on the memory hierarchy can be measured, it is quite difficult to model. We
are thus still investigating how to account for such situation.

8.4 Typical Use Case: Scheduling Studies

One of the main challenges that StarPU developers encounter is how to efficiently exploit all the available
heterogeneous resources. To do so, they develop different scheduling techniques, that may be specifically
tailored for a given type of machine architectures.

For example, the reason for the performance drop observed on Figure 6 and which is more and more
critical with newer GPUs can be explained by the need to move data back and forth between the GPUs
and the main memory whenever matrix size exceeds the memory size of the GPUs. The scheduler we used
in Figure 6 is the DMDA (Deque Model Data Aware) scheduler. Although it schedules tasks where their
termination time (including data transfer time) will be minimal, it does not take care of the number of
available data buffers on each GPU. Such greedy strategy may be harmful as one GPU may be overloaded
with work and forced to evict some data, as it cannot handle the whole matrix. Two other strategies DMDAR
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Figure 13: Cholesky on Attila: studying the impact of different schedulers.

and DMDAS were designed to execute in priority tasks whose data is already on the GPU, before tasks whose
data is not yet available.

Therefore, we decided to check whether these two other schedulers could stabilize performances at the
peak or not. To this end, we first ran the corresponding simulations and obtained a positive answer (Fig-
ure 13). Later, when the target system became accessible again, we confirmed these results by running the
same experiments and as can be seen on Figure 13, our simulations were again perfectly accurate.

Researchers studying different scheduling algorithms on the StarPU implementation of
MAGMA/MORSE2 applications also benefit from this simulation approach. They have started to
use extensively SimGrid simulations for screening experiments [22]. Indeed a major advantage of doing
simulations rather than running the real experiments, is that simulations are fast, reproducible (, which
simplifies the analysis) and do not require an access to the remote experimental cluster. Since our
simulations provides reliable predictions, it is possible to screen a wide range of parameters and quickly see
whether a given approach seems effective or not. Such screening thus helps refining the set of configurations
that are worth being tested in real environments.

8.5 Time to Simulate

It is important to mention that the time to run each simulation typically takes few seconds compared to
sometimes several minutes for a real experiment. Compared to architecture-level simulators (see Section 2)
whose average slowdown of simulations versus native execution is of the order of magnitude of several dozens
of thousands, our coarse-grain simulation allows to obtain a speedup of ten to a hundred depending on the
workload and on the speed of the machine. Furthermore, since the target system is not required anymore,
it is easy to run series of simulations in parallel.

9 Conclusion and Future work

In this article, we have explained how to model and simulate using SimGrid a task-based runtime system
on a hybrid multi-core architecture comprising several GPUs. Unlike fine-grain GPU simulators that have
been proposed in the past and which focus on architectural details of GPUs, our coarse-grain approach
allows to accurately predict the actual running time and to perform extremely quickly extensive simulation
campaigns to study various alternatives. We demonstrated the precision of our simulations using the critical
method, i.e., by testing our models and by conducting as much experiments as possible in a large variety of
settings (two standard dense linear algebra applications, six different generations of GPUs, several scheduling

2http://icl.cs.utk.edu/projectsdev/morse/
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algorithms) until we find a situation where our simulation fails at producing a good prediction, in which
case we fixed our modeling. Such a tool is extremely interesting for both StarPU developers and users as it
allows (i) to easily and accurately evaluate the impact of various parameters or scheduling alternatives (ii)
to tune and debug applications on a commodity laptop (instead of requiring a dedicated access to a high-end
machine) in a reproducible way (iii) to obtain reliable comparison of performance estimations that may allow
to detect problems with some real experiments (perturbation, configuration issue, etc.).

Now that we have proven the efficiency of this approach on dense linear algebra kernels, we intend to
continue with this work in two directions. First, StarPU was recently extended to exploit clusters of hybrid
machines by relying on MPI [23]. Since SimGrid’s ability to accurately simulate MPI applications has
already been demonstrated [14], combining both works should allow to obtain good performances predictions
of complex applications on large-scale high-end HPC infrastructures. Such approach may also provide a
solution for the NUMA architectures since it will make data transfers explicit at a negligible cost if well
implemented. Second, many numerical applications have been recently ported on top of StarPU, including
sparse linear algebra (QR-MUMPS [24]) and FMM methods. Such applications are less regular and are thus
likely to be more challenging to model. However, a reliable performance evaluation methodology would bring
considerable insights to the developers.

Acknowledgements

This work is partially supported by the SONGS ANR project (11-ANR-INFRA-13). We warmly thank
Paul Renaud-Goud for his help with the initial investigation of validity, Emmanuel Agullo for motivating
this study and providing insights on its usefulness, and finally Augustin Degomme for helping to deal with
numerous technical challenges. Some of the experiments presented in this paper were carried out using
the PLAFRIM experimental testbed, being developed under the Inria PlaFRIM development action with
support from LABRI and IMB and other entities: Conseil Régional d’Aquitaine, Université de Bordeaux
and CNRS.

REFERENCES

[1] Augonnet C, Thibault S, Namyst R, Wacrenier PA. StarPU: A Unified Platform for Task Scheduling on
Heterogeneous Multicore Architectures. Concurrency and Computation: Practice and Experience Feb
2011; 23:187–198.

[2] Ayguadé E, Badia RM, Igual FD, Labarta J, Mayo R, Quintana-Ortí ES. An Extension of the StarSs
Programming Model for Platforms with Multiple GPUs. Proceedings of the 15th Euro-Par Conference,
2009.

[3] Bosilca G, Bouteiller A, Danalis A, Herault T, Lemarinier P, Dongarra J. DAGuE: A Generic Dis-
tributed DAG Engine for High Performance Computing. IEEE International Symposium on Parallel
and Distributed Processing, IEEE Computer Society, 2011; 1151–1158.

[4] Pérache M, Jourdren H, Namyst R. MPC: A unified parallel runtime for clusters of NUMA machines.
Euro-Par 2008 – Parallel Processing, Lecture Notes in Computer Science, vol. 5168, Luque E, Margalef
T, Benítez D (eds.). Springer Berlin Heidelberg, 2008; 78–88.

[5] Broquedis F, Furmento N, Goglin B, Namyst R, Wacrenier PA. Dynamic task and data placement
over NUMA architectures: An openMP runtime perspective. Evolving OpenMP in an Age of Extreme
Parallelism, Lecture Notes in Computer Science, vol. 5568, Müller M, de Supinski B, Chapman B (eds.).
Springer Berlin Heidelberg, 2009; 79–92.

[6] Casanova H, Giersch A, Legrand A, Quinson M, Suter F. Versatile, Scalable, and Accurate Simulation
of Distributed Applications and Platforms. Journal of Parallel and Distributed Computing Jun 2014;
74(10):2899–2917.

16



[7] Stanisic L, Thibault S, Legrand A, Videau B, Méhaut JF. Modeling and Simulation of a Dynamic
Task-Based Runtime System for Heterogeneous Multi-core Architectures. Euro-Par, 2014; 50–62.

[8] Bakhoda A, Yuan GL, Fung WWL, Wong H, Aamodt TM. Analyzing CUDA workloads using a detailed
GPU simulator. ISPASS, 2009; 163–174.

[9] Collange S, Daumas M, Defour D, Parello D. Barra: A Parallel Functional Simulator for GPGPU.
IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer and Telecom-
munication, 2010; 351–360.

[10] Ubal R, Jang B, Mistry P, Schaa D, Kaeli D. Multi2Sim: A Simulation Framework for CPU-GPU
Computing. Proceedings of the 21st International Conference on Parallel Architectures and Compilation
Techniques, PACT ’12, ACM: New York, NY, USA, 2012; 335–344.

[11] Rodrigues AF, Hemmert KS, Barrett BW, Kersey C, Oldfield R, Weston M, Risen R, Cook J, Rosenfeld
P, CooperBalls E, et al.. The structural simulation toolkit. SIGMETRICS Perform. Eval. Rev.Mar 2011;
38(4):37–42.

[12] Rico A, Cabarcas F, Villavieja C, Pavlovic M, Vega A, Etsion Y, Ramírez A, Valero M. On the simulation
of large-scale architectures using multiple application abstraction levels. TACO 2012; 8(4):36.

[13] Velho P, Schnorr L, Casanova H, Legrand A. On the Validity of Flow-level TCP Network Models for Grid
and Cloud Simulations. ACM Transactions on Modeling and Computer Simulation Oct 2013; 23(3).

[14] Bedaride P, Degomme A, Genaud S, Legrand A, Markomanolis G, Quinson M, Stillwell, Lee M, Suter F,
Videau B. Toward Better Simulation of MPI Applications on Ethernet/TCP Networks. 4th International
Workshop on Performance Modeling, Benchmarking and Simulation of HPC Systems (PMBS), 2013.

[15] Zheng G, Kakulapati G, Kalé L. BigSim: A Parallel Simulator for Performance Prediction of Extremely
Large Parallel Machines. Proc. of the 18th International Parallel and Distributed Processing Symposium
(IPDPS), 2004.

[16] Badia RM, Labarta J, Giménez J, Escalé F. Dimemas: Predicting MPI Applications Behaviour in Grid
Environments. Proc. of the Workshop on Grid Applications and Programming Tools, 2003.

[17] Augonnet C, Thibault S, Namyst R. Automatic Calibration of Performance Models on Heterogeneous
Multicore Architectures. 3rd Workshop on Highly Parallel Processing on a Chip (HPPC), 2009.

[18] Stanisic L, Legrand A, Danjean V. An Effective Git And Org-Mode Based Workflow For Reproducible
Research. ACM SIGOPS Operating Systems Review 2015; 49:61–70.

[19] van Werkhoven B, Maassen J, Seinstra FJ, Bal HE. Performance models for CPU-GPU data transfers.
2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Chicago, IL,
USA, May 26-29, 2014, 2014; 11–20.

[20] Denby L, Mallows C. Variations on the Histogram. Journal of Computational and Graphical Statistics
2009; 18(1):21–31.

[21] Clarke D, Zhong Z, Rychkov V, Lastovetsky A. Fupermod: a software tool for the optimization of data-
parallel applications on heterogeneous platforms. The Journal of Supercomputing 2014; 69(1):61–69.

[22] Agullo E, Beaumont O, Eyraud-Dubois L, Herrmann J, Kumar S, Marchal L, Thibault S. Bridging the
gap between performance and bounds of cholesky factorization on heterogeneous platforms. Proceedings
of the 24th International Heterogeneity in Computing Workshop (HCW’15), 2015.

[23] Augonnet C, Aumage O, Furmento N, Namyst R, Thibault S. StarPU-MPI: Task Programming over
Clusters of Machines Enhanced with Accelerators. Proceedings of the 19th European Conference on
Recent Advances in the Message Passing Interface (EuroMPI), Springer-Verlag, 2012; 298–299.

17



[24] Buttari A. Fine granularity sparse QR factorization for multicore based systems. Applied Parallel and
Scientific Computing, Lecture Notes in Computer Science, vol. 7134, Jónasson K (ed.). Springer Berlin
Heidelberg, 2012; 226–236.

18


	Introduction
	Related Work
	Porting StarPU over SimGrid
	Experimental Setting
	Modeling runtime system
	Modeling communication in hybrid systems
	Modeling computation
	Prediction Accuracy in a Wide Range of Settings
	Accurate Performance Predictions for Hybrid Machines
	Using both CPUs and GPUs for Computation
	NUMA machine
	Typical Use Case: Scheduling Studies
	Time to Simulate

	Conclusion and Future work

