
HAL Id: hal-01247942
https://inria.hal.science/hal-01247942

Submitted on 17 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic I/O scheduling algorithm selection for
parallel file systems

Francieli Zanon Boito, Rodrigo V. Kassick, Philippe Olivier Alexandre
Navaux, Yves Denneulin

To cite this version:
Francieli Zanon Boito, Rodrigo V. Kassick, Philippe Olivier Alexandre Navaux, Yves Denneulin.
Automatic I/O scheduling algorithm selection for parallel file systems. Concurrency and Computation:
Practice and Experience, 2016, �10.1002/cpe.3606�. �hal-01247942�

https://inria.hal.science/hal-01247942
https://hal.archives-ouvertes.fr

CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2015; 00:1–17
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Automatic I/O scheduling algorithm selection for parallel file
systems

Francieli Zanon Boito1,2∗, Rodrigo Virote Kassick1,2, Philippe O. A. Navaux1,
Yves Denneulin2

1Institute of Informatics – Federal University of Rio Grande do Sul (UFRGS) – Porto Alegre, Brazil
2LIG Laboratory – INRIA – University of Grenoble – Grenoble, France

SUMMARY

This article presents our approach to provide I/O scheduling with double adaptivity: to applications and
devices. In High Performance Computing (HPC) cluster environments, Parallel File Systems (PFS) provide
a shared storage infrastructure to applications. In the situation where multiple applications access this shared
infrastructure concurrently, their performance can be impaired because of interference. Our work focuses
on I/O scheduling as tool to improve performance by alleviating interference effects. The role of the I/O
scheduler is to decide the order in which applications’ requests must be processed by the parallel file
system’s servers, applying optimizations to adjust the resulting access pattern for improved performance.
Our approach to improve I/O scheduling results is based on using information from applications’ access
patterns and storage devices’ sensitivity to access sequentiality. We have applied machine learning to provide
the ability of automatically select the best scheduling algorithm for each situation. Our approach improves
performance by up to 75% over an approach that uses the same scheduling algorithm to all situations, without
adaptability. Moreover, our approach improves performance for up to 64% more of the tested scenarios, and
decreases performance for up to 89% less scenarios. Our results evidence that both aspects - applications and
storage devices - are essential to make good scheduling decisions. Furthermore, despite the fact that there is
no scheduling algorithm able to improve performance for all situations, we have shown that through double
adaptivity it is possible to apply I/O scheduling to improve performance, avoiding situations where it would
lead to performance impairment.

Received . . .

KEY WORDS: I/O Scheduling; Parallel File Systems; High Performance Computing

1. INTRODUCTION

High Performance Computing (HPC) applications that execute on cluster or MPP architectures
rely on Parallel File Systems (PFS) to achieve performance even when having to input and output
large amounts of data. Since data access speed has not increased in the same pace as processing
power, several approaches like collective I/O [1] were defined to provide scalable, high performance
I/O. These techniques usually explore the fact that performance observed when accessing a file
system is strongly affected by the manner accesses are performed. Therefore, they work to adjust
applications’ access patterns, improving characteristics such as spatial locality and avoiding well-
known situations detrimental to performance, such as issuing a large number of small, non-
contiguous requests [2].

Most assumptions about performance behavior that guide optimizations’ development come from
the use of Hard Disk Drives (HDDs). For years, magnetic disks have been the main non-volatile

∗Correspondence to: Instituto de Informática, Av. Bento Gonçalves, 9500 - Campus do Vale - Bloco IV, Bairro
Agronomia, cep 91509-900, Porto Alegre-RS, Brazil.

Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

2 F. Z. BOITO ET AL.

storage devices available. Multiple hard disks can be combined into a virtual unit as a RAID array
for performance and reliability purposes. Another recent and alternative technology uses flash-based
storage devices named Solid State Drives (SSDs). Their advantages over HDDs include: resistance
to falls and vibrations, size, noise generation, heat dissipation, and energy consumption [3].

Since both SSDs and RAID solutions are inherently different from HDDs, they should not be
simply treated as “faster disks”. Several assumptions about performance from HDDs do not hold
when using SSDs or RAID arrays, and different requirements arise. Regarding spatial locality,
HDDs are known for having better performance when accesses are done sequentially. On the other
hand, works that aim at characterizing SSDs’ performance behavior achieve different conclusions.
On some SSDs, there is no difference between sequential and random accesses, but on others this
difference achieves orders of magnitude [3]. The sequential to random throughput ratio on some
SSDs surpasses what is observed on some HDDs [4].

Therefore, we cannot simply classify optimizations by saying they are only suitable for HDDs or
SSDs. Approaches that aim at generating contiguous accesses (originally designed for HDDs) can
greatly improve performance when used on SSDs that are also sensitive to access sequentiality.
Furthermore, on any device, the performance improvement caused by the use of a specific
optimization may not compensate its overhead. Hence, these optimizations could be classified
according to the sequential to random throughput ratio that devices must present in order to benefit
from them. [5]

App. A

App. B

0 1 2 3

0 1 2 3

Server

Queue 0 1 2 3 0 1 2 3

Local Storage

File A File B

Figure 1. Interference on concurrent accesses to a PFS server.

These optimizations that work to improve performance by adjusting applications’ access patterns
usually do so in the context of one application. However, today’s HPC architectures usually deploy
a parallel file system on a set of dedicated machines and storage devices. This storage infrastructure
is shared by all applications. When multiple applications access the file system concurrently, their
performance will suffer from interference. This phenomenon is illustrated in Figure 1, where two
applications (“App. A” and “App. B”) concurrently access a server for the files named A and B.
Despite I/O optimizations that may have been employed by these applications, they will observe
poor performance because the access pattern at the server is not ideal. In this case, applications’
accesses interfered with each other. Nonetheless, it is also possible to observe interference between
processes of the same application.

Our work focuses on I/O scheduling as a tool to improve performance by alleviating interference
effects. We consider server-side schedulers, that work in the context of requests to parallel file
systems’ servers. Their functionality consists on deciding the order in which these requests must
be processed. Moreover, schedulers may apply optimizations, as requests aggregation, to adapt the
resulting access pattern for improved performance.

I/O scheduling algorithm’s success in improving performance depends on both applications’
and platforms’ characteristics. As previously discussed, the storage devices’ sensitivity to access
sequentiality limits the efficacy of optimizations that adjust access patterns. Moreover, access
patterns’ aspects such as request size and number of accessed files define the requests window the
scheduler will have to work on, affecting how much “room for improvement” there will be during
applications’ execution. Therefore, it is important for I/O schedulers to have double adaptivity: to
applications and to storage devices.

Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

AUTOMATIC I/O SCHEDULING ALGORITHM SELECTION FOR PARALLEL FILE SYSTEMS 3

This article presents our approach to provide I/O scheduling for parallel file systems with double
adaptivity. We use our I/O scheduling tool named AGIOS with an NFS-based parallel file system to
evaluate five I/O scheduling algorithms. Our results evidence that no scheduling algorithm is able
to improve performance for all situations, and the best fit depends on both applications and devices.
We have used machine learning to make AGIOS capable of making this selection automatically.
Our main contributions are threefold:

• We present AGIOS, an I/O scheduling tool generic, non-invasive and easy to use. It provides
five options of scheduling algorithm: aIOLi, MLF, SJF, TO, and TO-agg.

• We extensively evaluate the five scheduling algorithms under different access patterns and
over four clusters, representing different storage devices’ sensitivity to access sequentiality.

• We have used the results obtained from our evaluation to make AGIOS capable of
automatically select the best fit in scheduling algorithm for each situation. We discuss and
evaluate our approach.

The remaining of this article is organized as follows: Section 2 presents AGIOS and the five
studied scheduling algorithms. Section 3 evaluates these algorithms with different benchmarks and
platforms. Section 4 details how the performance evaluation’s results were used to build a decision
tree that is able to automatically select the best fit in scheduling algorithm for each situation.
Results obtained with this approach are presented in Section 5. Section 6 discusses related work,
and Section 7 brings final remarks and future work.

2. AGIOS: AN I/O SCHEDULING TOOL

I/O schedulers found in the literature are usually specific to a given file system. Moreover, most
of them impose specific file system configurations to work, such as a centralized metadata server.
These characteristics restrict their usability in new contexts and comparisons between them. For
these reasons, we developed an I/O scheduling tool named AGIOS. The main objectives for its
development were to make it generic, non-invasive, and easy to use.

Although this work focuses on parallel file systems, our tool could be used by any I/O service that
treats requests at a file level, such as a local file system or intermediate nodes in an I/O forwarding
scheme. These placement options are not exclusive, in the sense that we could have all of them
happening at the same time. In order to avoid creating a bottleneck, AGIOS instances (on different
PFS servers, or at different levels of the I/O stack) are independent and do not make global decisions.

Our previous work [6] described AGIOS’ interface with its users and one of its scheduling
algorithms - aIOLi [7]. Comparing to our previous paper, our tool now provides five options of
I/O scheduling algorithms: aIOLi, MLF, SJF, TO, and TO-agg. These algorithms were selected for
their variety, in order to represent different situations and complement each other’s characteristics.
The next sections describe them, and their performance will be evaluated in Section 3.

2.1. aIOLi

We have adapted the aIOLi scheduling algorithm from Lebre et al. A full explanation and discussion
about this algorithm’s characteristics can be found in the paper that describes it [7], but we can
summarize it as follows:

• Whenever new requests arrive to the scheduler, they are inserted in the appropriate queue
according to the file to be accessed. There are two queues for each file: one for reads, and
another for writes.

• New requests receive an initial quantum of 0 bytes.
• Each queue is traversed in offset order and aggregations of contiguous requests are made.

When an aggregation is performed, a virtual request is created, and this request will have a
quantum that is the sum of its parts’ quanta.

• All quanta (including the virtual requests’ ones) are increased by a value that depends on its
queue’s past quanta usage.

Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

4 F. Z. BOITO ET AL.

• In order to choose a request to be served, the algorithm uses an offset order inside each queue
and a FCFS criterion between different queues. Additionally, to be selected, the request’s
quantum must be large enough to allow its whole execution (it needs to match the request’s
size).

• The scheduler may decide to wait before processing some requests if a) a shift phenomenon
is suspected or b) better aggregations were recently achieved for this queue.

• After processing a request, if there is quantum left, other contiguous request from the same
queue can be processed - given that they fit the remaining quantum. After stopping for a
queue, its quanta usage ratio is updated. This scheduling algorithm works synchronously, in
the sense that it waits until a virtual request is processed before selecting other ones.

The implementation uses a hash table indexed by file identifier for accessing the requests queues.
At a given moment, the cost of including a new request to a queue can be represented as the sum of
the required time to find the right queue plus the time to find its place inside the queue (sorted by
offset order). The former is expected to be:

O((M/Shash) +Nqueue) (1)

where M is the number of files being concurrently accessed, Shash is the number of entries in
the hash table, and Nqueue is the number of requests in the largest queue. Selecting a request for
processing, on the other hand, involves going through all queues:

O(2×M) (2)

2.2. MLF

Under a workload where several files are being accessed at the same time, the cost of aIOLi’s
selection may become a significant part of requests’ lifetime in the server. This happens due to
the synchronous approach where the algorithm waits until the previous request was served before
selecting a new one. In order to have a scheduler capable of providing more throughput, we
developed a variation of aIOLi that we called MLF. We have chosen this name because our version
is closer to the traditional MLF task scheduling algorithm than aIOLi.

To reduce the algorithm’s overhead, we removed the synchronization between user and library
after processing requests. Therefore, the new algorithm works repeatedly, possibly overflowing its
user with requests.

Despite its possibly high scheduling overhead, one advantage of the synchronous approach is that
having some time before the next algorithm’s step gives chance for new requests to arrive and more
aggregations to be performed. Therefore, it is possible that this new algorithm will not be able to
perform as many aggregations as aIOLi.

Other difference between MLF and aIOLi is that MLF does not respect a FCFS order between
the different queues. Therefore, not all queues need to be considered before selecting a request,
improving the algorithm’s throughput. MLF’s cost for including new requests is the same as aIOLi’s,
but its cost for selection is O(1).

2.3. SJF

We have also developed for our study a variation of the Shortest Job First (SJF) scheduling
algorithm [8] that performs requests aggregation. Its implementation also uses two queues per file
and considers requests from each queue in offset order. The selection of the next request is done by
going through the queues and selecting requests from the smallest one (considering each queue’s
total size, i.e. the sum of all its requests’ sizes).

Therefore, the cost for including a new request and for selection are the same as aIOLi’s. However,
our SJF variation does not work synchronously.

2.4. TO and TO-agg

TO is a timeorder algorithm. It has a single queue, from where requests are extracted for processing
in arrival time order (FCFS). Both the costs of including and selecting requests are, therefore,

Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

AUTOMATIC I/O SCHEDULING ALGORITHM SELECTION FOR PARALLEL FILE SYSTEMS 5

constant. We have included TO in our analysis to cover situations where no scheduling algorithm is
able to improve performance.

We have also included a timeorder variation that performs aggregations: TO-agg. Since there is
a single queue for requests, aggregating a request possibly requires going through the whole queue
looking for a contiguous one. Therefore, this algorithm’s cost for including requests is:

O(N) (3)

where N is the number of requests currently on the scheduler. The time for selection is still constant.
TO-agg is included in this study mainly to show the impact of aggregations alone on performance,
without the impact of requests reordering.

3. I/O SCHEDULING ALGORITHMS EVALUATION

This section presents a performance evaluation of the five scheduling algorithms discussed in the
last section. This evaluation’s main objectives are to identify the situations where I/O scheduling is
able to improve performance and to understand what makes them suitable for this technique; and to
identify which of the implemented scheduling algorithms is the best fit for each scenario.

For proof-of-concept purposes, we present our library’s usage with dNFSp [9], an NFS-based
parallel file system composed of several metadata and data servers (also called “IODs”). The
distributed servers are transparent to the file system client, which accesses the remote file system
through a regular NFS client. We integrated AGIOS within the IOD code, so each IOD contains an
independent instance.

We executed tests on four clusters from Grid’5000 [10], described in Table I. These systems
were selected by their variety on storage devices: we tested with SSDs, HDDs and RAID arrays.
Moreover, these devices present diverse sequential to random throughput ratios, as shown in the
table’s last two columns for 8MB requests. This size is relevant because it is the transmission size
between clients and servers in our dNFSp deployment and hence all requests arriving at the servers
have size up to 8MB. A high ratio means that accessing files sequentially is several times faster than
accessing them randomly. On the other hand, a ratio smaller than 1 means that accessing randomly
is faster.

Table I. Platforms used in this work.

Cluster

Node Configuration

Processor RAM
Storage Device

Type Sequential to Random Ratio
Write Read

Pastel @ Toulouse
2× 2-core
AMD Opteron 8GB HDD 21.29 38.91

Graphene @ Nancy 4-core Intel
Xeon

16GB HDD 15.12 40.68

Suno @ Sophia 2× 4-core Intel
Xeon

32GB RAID-0 8.17 25.46

Edel @ Grenoble 2× 4-core Intel
Xeon

24GB SSD 0.66 2.37

In all platforms, we used four nodes as dNFSp’s data servers, one of them sharing its machine
with a metadata server. Up to 32 processing nodes were used as clients. All nodes have the Debian 6
operating system with kernel 2.6.32. Both dNFSp and AGIOS were compiled with gcc 4.4.5. Virtual
memory page size is 4MB.

Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

6 F. Z. BOITO ET AL.

We developed a set of tests using the MPI-IO Test benchmarking tool†. They explore the
following list of relevant access pattern aspects:

1. Spatial locality: if applications issue requests that are contiguous or non-contiguous. In our
tests, the non-contiguous case is represented by a 1-D strided access pattern. Contiguous
access patterns to a shared file mean that each process has an exclusive portion of this file, i.e.
there is no overlapping between different processes’ accessed data. Figure 2 illustrates this
situation with 4 clients.

2. Number of files: processes either share a file or have independent files (one per process). This
configuration is done at application level, thus if four applications execute concurrently with
a shared file access pattern, four files are currently being accessed in the file system.

3. Single or multi-application scenarios: we present results for single and multi-application
scenarios. The multi-application case is represented by executing four instances of the same
benchmark concurrently. Processing nodes are split evenly among the different instances.

4. Number of processes per application: how many processes perform I/O. We repeat our tests for
different application sizes: 8, 16, and 32. Since the amount of data accessed by each process
is constant, the total amount of data grows with the number of processes.

5. Size of requests: if requests are small (smaller than the file system’s stripe size) or large (larger
than the stripe size and large enough so all file system servers will have to be contacted in order
to process it). These definitions of small and large requests follow what is presented by Byna
et al. [11]. Table II summarizes the amounts of data accessed on different tests. The stripe size
used by dNFSp is 32KB.

Client

0

Client

1

Client

2

Client

3

Shared

File

(a) Contiguous (non-strided)

Client

0

Client

1

Client

2

Client

3

Shared

File

(b) Non-contiguous (1-D strided)

Figure 2. Spatial locality aspect with a shared file.

The benchmarking tool uses synchronous I/O operations, so requests from a process have to be
served before the next batch can be sent to the server. However, the transmission size is limited to
8KB. Therefore, application’s requests are divided in multiple actual requests: in small tests, each
process will issue 2 requests at once; in large tests, 32. We have chosen the synchronous approach
since it is more challenging to the scheduler, because its overhead has a higher impact, and little
delays on processing a request can lead to longer execution times.

From each application execution, we take the completion time of the slowest process, since it
defines this application’s execution time. We take the maximum between concurrent applications’
execution times because we are interested in reducing the makespan. We have chosen to use
makespan as the metric for our performance evaluation, since it represents the total time to process
the whole workload from the file system’s point of view. Our metric does not reflect fairness or
response time, as we are not focusing on these aspects, but on performance.

We use the POSIX API to generate applications’ requests because we want to evaluate
performance under the described access patterns. Using a higher level library such as MPI-IO [12]
would potentially affect these patterns, compromising our analysis.

Each set of tests (with a different scheduling algorithm) was executed in a random order to
minimize the chance of having some effect caused by a specific experiment order. Clients’ portions
and independent files were “shifted” after the write test so they would not read the same data

†http://institute.lanl.gov/data/software/mpi-io

Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://institute.lanl.gov/data/software/mpi-io

AUTOMATIC I/O SCHEDULING ALGORITHM SELECTION FOR PARALLEL FILE SYSTEMS 7

Table II. Amount of data accessed in our experiments.

Single Application Multi-application
Shared File N to N Shared File N to N

Small Large Small Large Small Large Small Large

Processes 8-32 32-128

Total data per
process 64MB 1GB 64MB 512MB

Accessed Files 1 8-32 4 32-128

Files’ size 512MB-2GB 1GB 512MB-2GB 512MB

Total amount 512MB-2GB 8GB-32GB 2GB-8GB 16GB-64GB

Requests per
process 4096 256 64K 4096 4096 256 32K 2048

Requests’ size 16KB 256KB 16KB 256KB 16KB 256KB 16KB 256KB

they wrote (avoiding clients’ caching effects). All results are the arithmetic mean of at least eight
executions, with 90% confidence and 10% maximum relative error.

The next sections discuss obtained results with AGIOS and dNFSp using all the presented
scheduling algorithms. Since the volume of tests is considerably large, showing all of them would
compromise this article’s readability. Therefore only a subset of them is shown to illustrate the
discussions. The whole set of results can be obtained from http://www.inf.ufrgs.br/

˜fzboito/all_agios_results.tgz.
Since dNFSp already has a timeorder scheduling algorithm, results with AGIOS’ TO (a simple

timeorder) only evidence the library’s overhead. Since TO has costs O(1) for both including and
selecting requests, this overhead is not expected to be important. In general, experiments where
processes from a single application share a file are more sensitive to the library’s overhead, since
these tests have the smallest execution times (especially read tests). In the following sections,
we focus on the remaining four scheduling algorithms, comparing them with times obtained with
dNFSp without AGIOS.

3.1. Performance results for single application with shared file

The experiments where a single application’s processes share a file represent the smallest workloads
(see Table II). For these tests, a strong impact on performance is expected due to the scheduler’s
overhead. Since during each test only one file is accessed, aIOLi, MLF, SJF, and TO-agg present
practically the same costs for including and selecting requests. This situation maximizes the number
of requests per queue for aIOLi, MLF, and SJF, as all requests belong in the same queue. Moreover,
the scheduling algorithms’ global criteria do not apply, since there is only one queue.

Experiments that issue large requests provide more aggregation opportunities, since large
applications’ requests will be split into several contiguous actual requests to the servers because of
the file system’s transmission size limit. Performing more aggregations, the scheduling algorithms’
effect on performance might be able to surpass their overheads. Additionally, because of the
striping process, in contiguous access patterns, requests from different clients are not contiguous
at the servers, hence strided tests provide more aggregation opportunities than contiguous ones.
Furthermore, read tests have smaller execution times and hence are more affected by scheduling
overhead.

Considering the clusters with HDDs (Pastel and Graphene), the scheduler was only able to
improve performance of write operations in the large requests access patterns. Figure 3 presents
the results obtained in the Graphene cluster with 8 processes, normalized by the time observed for

Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://www.inf.ufrgs.br/~fzboito/all_agios_results.tgz
http://www.inf.ufrgs.br/~fzboito/all_agios_results.tgz

8 F. Z. BOITO ET AL.

 0

 50

 100

 150

 200

 250

contig_small

contig_large

noncontig_small

noncontig_large

contig_small

contig_large

noncontig_small

noncontig_large

N
or

m
al

iz
ed

 ti
m

e
(%

)

Timeorder (no AGIOS) aIOLi MLF SJF TO-agg

ReadWrite

Figure 3. Results with a single application and the shared file approach in the Graphene cluster (tests with 8
processes).

the file system without AGIOS (timeorder algorithm). Pastel presented similar behaviors, as did
results for Graphene with 16 and 32 processes. The cluster with RAID-0 (Suno) also presented the
best results for large write requests. However, differently from the clusters with HDDs, all other
situations presented performance improvements in the tests with 32 processes (tests with 8 and 16
behaved similarly to the clusters with HDDs).

In the three platforms, the worst results were obtained with aIOLi and MLF for the tests
with contiguous small requests (the situation that provides less aggregation opportunities). These
algorithms provided performance improvements for large write requests tests of up to 25% in Pastel,
up to 59% in Graphene , and up to 31% in Suno. The best results for large write operations were
provided by the aIOLi algorithm.

Performance improvements obtained for Pastel are the smallest despite this platform’s storage
devices having the highest sequential to random throughput ratio for writes (see Table I). One
possible reason is that the Pastel cluster is approximately three years older than the other two and its
nodes have less memory and processing power. In this situation, scheduling algorithms’ costs may
become more important in the resulting performance. This also explains why large tests in Suno had
better results, since this cluster has the largest amount of memory per node and thus is expected to
be less affected by scheduling overhead.

In the experiments where there is only one queue being accessed, the main difference between
MLF’s and SJF’s executions is that SJF does not have waiting times. aIOLi’s and MLF’s waiting
times are expected to improve aggregations. SJF provided performance decreases of up to 23% in
Pastel, performance increases of up to 39% in Graphene (only in the situations where aIOLi and
MLF also improved performance) and performance increases of up to 32% in Suno. For access
patterns of small write requests and for read ones, SJF is the best choice in Graphene because
it provides only small performance differences (under 10%), and in Suno because it improves
performance for most cases.

In the cluster with SSDs (Edel), tests’ execution times were 2 to 4 times longer than what was
observed in the other three clusters. Therefore, in these tests scheduling overhead had less impact,
and some performance improvements were obtained even for read operations. aIOLi provided
the best results for large requests access patterns, increasing performance in up to 44%. On the
other hand, for tests that issue small requests, aIOLi’s effects on performance did not surpassed its
overhead, and it decreased performance in up to 171%. For small requests, SJF is the best choice,
improving performance by up to 19%.

Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

AUTOMATIC I/O SCHEDULING ALGORITHM SELECTION FOR PARALLEL FILE SYSTEMS 9

 0

 20

 40

 60

 80

 100

 120

contig_small

contig_large

contig_small

contig_large

N
or

m
al

iz
ed

 ti
m

e
(%

)

Timeorder (no AGIOS) aIOLi MLF SJF TO-agg

ReadWrite

Figure 4. Results with a single application and the file per process approach in Pastel with 32 processes

3.2. Performance results with multiple applications and the shared file approach

In this section, we will discuss results for the experiments where multiple (four) applications access
the file system concurrently, but each application’s processes share a file. In this situation, the
workload is larger, but so is the scheduling algorithms’ overhead, since more queues are used.

In Pastel, no scheduling algorithm was able to improve performance significantly. For this
platform, aIOLi provided only small improvements (under 10%). In Graphene, aIOLi decreased
performance for tests that issue contiguous small read requests in up to 54%, and presented only
negligible differences for all other tests. MLF also decreased performance for contiguous small read
requests access patterns, but increased performance by up to 17% for tests that issue non-contiguous
large read requests.

In Suno, the cluster with RAID-0, where results are expected to suffer less effects of scheduling
overhead, performance improvements were observed for most cases. Moreover, no algorithm
provided significant performance decreases. Improvements were of up to 17% for write operations
and up to 36% for reads. SJF outperformed the other algorithms for most cases, but there are no
significant difference between the four scheduling algorithm’s results. This indicates that gains in
performance in Suno are mainly the result of requests aggregation.

For the cluster with SSDs (Edel) TO-agg is able to improve performance of read operations in
some cases (mainly for 32 processes) by up to 22%. Nonetheless, it decreases performance for
some of the write tests by up to 40%. SJF resulted in negligible performance differences only. aIOLi
and MLF decreased performance for tests that issue non-contiguous small requests by up to 33%
and 63%, respectively. However, they improved performance of large read requests by up to 35%
(aIOLi) and up to 23% (MLF). aIOLi outperformed MLF in most cases.

3.3. Performance results for single application with the file per process approach

In the experiments where each process has an independent file, the scheduling algorithms’ global
criteria act to choose between the multiple queues being accessed concurrently. Moreover, aIOLi
and SJF have the largest costs for selecting requests, and TO-agg has the largest cost for including
requests. Although these tests are expected to suffer with larger scheduling overhead, they provide
workloads that are significantly larger than what was provided by tests with the shared file approach.
Since a large number of different files are accessed concurrently, results are expected to be more
affected by how sequential the scheduler can make the resulting access pattern at the server,
especially in clusters where the sequential to random throughput ratio is high.

The best performance improvements for these experiments were observed in the Pastel cluster: up
to 38% for write operations and up to 68% for reads with 32 processes. This situation is presented
in Figure 4. In general, the larger the number of processes, the more performance was increased. In

Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

10 F. Z. BOITO ET AL.

these tests, aIOLi performs slightly better than MLF, but there is no significant difference between
the four scheduling algorithms.

Among the experiments with large workloads, in many cases better results were obtained for
read tests than write ones. One reason for this is that all platforms’ sequential to random throughput
ratios are higher for reads than writes, as shown in Table I. Therefore, reordering requests to generate
sequential access patterns at the server has a larger impact for read operations.

In the Graphene cluster, performance improvements were obtained mainly for the access pattern
with large write requests. In this case, SJF outperformed aIOLi decreasing tests’ execution times by
up to 31%. All remaining results presented only small differences under 10%. One possible reason
for Pastel’s results being so much better than the results obtained for Graphene (although they have
close sequential to random throughput ratios) is that the tests’ execution times in Pastel were 1.5 to
6 times longer than in Graphene, especially for the read tests. Therefore, the scheduling algorithms
had more room to improve performance.

Results obtained in the Suno cluster are similar from what was observed in the Pastel cluster,
with no significant differences between AGIOS’ four tested scheduling algorithms, and all of them
providing performance improvements. SJF slightly outperformed the other algorithms for most
cases. The performance improvements were smaller in Suno than in Pastel: up to 24% for write
operations and up to 47% for reads.

The larger overhead caused by scheduling algorithms working to generate more sequential access
patterns resulted in only small performance improvements in the Edel cluster of up to 26%, mainly
for read operations. No significant performance decreases caused by the scheduler were observed
either. For several cases, TO-agg outperforms aIOLi, MLF, and SJF.

3.4. Performance results with multiple applications and the file per process approach

In the tests where multiple applications concurrently access the file system and each process
accesses an independent file, the workload has double the size of the one described in the last
section (single application with the file per process approach). On the other hand, it generates four
times more files, each file having half the size than before. Therefore, these tests are expected to
suffer with more scheduling overhead.

In Pastel and Graphene, for most cases all scheduling algorithms resulted in small negligible
differences. aIOLi improved performance in read operations with 8 processes per application by
16% in Pastel, and SJF improved by 16% with large read operations with 8 processes per application
in Graphene.

For the Suno cluster, the one expected to be less affected by scheduling overhead, results were
similar to what was obtained for the previous set of tests (in Section 3.3). Nonetheless,the observed
improvements were smaller: up to 14% for write operations and up to 33% for reads. aIOLi provided
slightly worse results than the others, and SJF obtained the best results (with only a small difference
over MLF and TO-agg).

In Edel, for write operations most cases resulted in only negligible differences. Nonetheless,
aIOLi decrease the performance by up to 19% (isolated cases only). In tests that generate read
requests, aIOLi provided performance improvements of up to 24%.

4. AUTOMATIC I/O SCHEDULING SELECTION

Table III summarizes the results discussed in the last section by presenting the best choice in
scheduling algorithm for all tested situations. We can see that all algorithms appear at least once,
indicating that the best fit in scheduling algorithm depends on both applications’ and storage
devices’ characteristics. In order to make AGIOS capable of selecting the adequate scheduling
algorithm automatically, we have decided to use machine learning to generate a decision tree based
on the obtained results.

We have used the Weka data mining tool [13], that provides multiple machine learning algorithms
and an interface to analyze data, apply algorithms and evaluate results. We have provided to Weka
an input set that consists of one entry per executed experiment. Each entry contains:

Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

AUTOMATIC I/O SCHEDULING ALGORITHM SELECTION FOR PARALLEL FILE SYSTEMS 11

Table III. Best choices in scheduling algorithms to all experiments.

Access Pattern Pastel Graphene Suno Edel

x1

N to 1

contig
small write no AGIOS SJFread

large write aIOLi
read

no AGIOS SJF

noncontig
small write

read

large write aIOLi
read no AGIOS

SJFN to N contig
small write

aIOLi

TO-aggread

large write
read

x4

N to 1

contig
small write MLF

read no AGIOS TO-agg

large write

MLF

read aIOLi

noncontig
small write

read TO-agg

large write
read aIOLi

N to N contig
small write

SJFread aIOLi

large write
read aIOLi

1. Operation (read or write);
2. Number of accessed files;
3. Amount of accessed data per file;
4. Spatiality of the access pattern (“contiguous” or “non-contiguous”);
5. Applications’ request size (“small” or “large”);
6. Sequential to random throughput ratio for the platform’s storage devices;
7. Scheduling algorithm that should be used in this situation.

Each pair (access pattern, cluster) generates two entries in the input set, one for each number of
processes (8 and 16). The number of processes is not included, since it is not obtainable at server
side. However, it affects the number of files (in the file per process approach) or their size (in the
shared file approach). The scheduling algorithm decisions from Table III were made in the context of
each access pattern separately, hence both entries appoint the same scheduling algorithm selection.

To represent platforms’ characteristics, we use information provided by our tool SeRRa‡,
proposed in a previous work of ours [5]. It provides the sequential to random throughput ratio for
read and write operations with different request sizes. The ratio used for the decision corresponds
to the operation and average request size at the server. This request size does not match the
applications’ one - which we classify in small or large - but the size of requests that arrive to each
server, which are a result of striping and the transmission size limit. In all our experiments, this size
is 8KB.

Although the access patterns used in our evaluation were defined by a list of aspects that include
number of processes and if applications’ processes share a file or not, we cannot use all these aspects
to build our decision tree. This happens because the server sees a stream of requests to files, and the

‡http://www.inf.ufrgs.br/˜fzboito/serra.html

Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://www.inf.ufrgs.br/~fzboito/serra.html

12 F. Z. BOITO ET AL.

rest of the information is lost through the I/O stack. For instance, from the servers’ point of view,
there is no difference between an access pattern where a single application accesses two files, and
another where two applications access one file each.

All information about applications’ access patterns - attributes 1-5 - is obtained from trace files
of previous executions. We have applied machine learning to build a classifier capable of detecting,
from a stream of requests, applications’ spatiality and requests size. This detection is out of this
article’s scope. The spatiality and requests size detection is made to each accessed file, and the
majority between all accessed files is taken to represent the access pattern. Aside from the amount
of accessed data per file, all other parameters could be obtained from the scheduler’s recent accesses.

Three different decision trees were generated using different subsets of the input attributes.
The first tree was generated using all listed parameters. The complete input set was provided
to Weka and all its available algorithms for decision trees generation were tested. Among them,
the J48 algorithm provided the best results. Using 10-fold cross-validation, its resulting decision
tree has a misclassification rate of 8.85%. This tree, called T1, has 53 nodes, 27 leaves, and all
provided attributes appear in the decision making. This indicates that none of them was redundant
or unnecessary.

The second tree, T2 was obtained with the original input set without the amount of data accessed
from files - attribute 3. Not having this attribute would make our approach less dependent on trace
files, since all other information on applications could be obtained from the scheduler’s recent
accesses. The resulting decision tree, computed with J48, has a misclassification rate of 8.33%,
53 nodes, 27 leaves, and also uses all provided parameters.

Finally, a third decision three, T3 was computed without the amount of data accessed from files
and the number of accessed files - attributes 2 and 3. Computed with J48, T3 has a misclassification
rate of 30.21%, 17 nodes, and 9 leaves. The next section presents an evaluation of these three
decision trees.

5. SCHEDULING ALGORITHM SELECTION TREES’ EVALUATION

This section describes performance results of the trees described in the last section: T1, T2, and
T3. To evaluate each decision tree, we go through all experiments’ situations - combinations of
cluster, number of applications, number of files per application, spatiality, requests’ size, number of
processes per application, and operation, total of 192 situations - and apply the decision tree to each
situation’s parameters. Then we take the results previously obtained with the selected algorithm for
this situation. Since the access pattern detection is out of this article’s scope, for this evaluation we
consider the access pattern is always correctly detected.

There are two main aspects to consider when evaluating scheduling algorithm selection trees: the
situations where they are able to select an algorithm that improves performance, and the situations
where the selected algorithm decreases performance. Ideally, a perfect decision tree would improve
performance for all cases. However, as evidenced by our results, for some scenarios no scheduling
algorithm was able to improve performance. For these scenarios, it is not possible for one of our
decision trees to improve performance.

We compare our selection trees with an “oracle” solution, which always gives the right answer
according to Table III. By doing that, the oracle only decreases performance - over not using AGIOS
- significantly, i.e., over 10%, in 4 cases (out of 192). From these cases, the worst degradation is 12%.
Performance is increased significantly (by over 10%) in 71 cases, ranging from 11% to 59%, 23%
on average. The remaining 117 cases where performance was not increased nor decreased represent
the situations where no scheduling algorithm was able to improve performance.

It is important to notice that even the oracle decreases performance in some situations because
the decisions on the best fit in scheduling algorithm were made to each access pattern with no
difference between tests with different numbers of processes per application. Therefore, we have
selected algorithms that lead to these small performance decreases for some tests because they are
good choices in others that were considered together.

Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

AUTOMATIC I/O SCHEDULING ALGORITHM SELECTION FOR PARALLEL FILE SYSTEMS 13

Additionally, we use two other solutions for comparison: one that always selects aIOLi, and
another that always selects SJF. We use these two algorithms because they are the ones selected for
the largest number of situations. The first, “aIOLi-only”, results in significant performance decreases
for 37 situations, by 72% on average (up to 278%). Performance is increased significantly for aIOLi-
only in 66 cases, by 23% on average (up to 59%), and not affected in the remaining 89 cases.

The SJF-only solution results in significant performance decreases for 21 situations, by 14% on
average (up to 23%). This solution provided performance increases for 42 scenarios by 21% on
average (up to 45%) and did not affect performance of 129 cases.

Table IV presents the number of correct selections performed by the different solutions - the three
decision trees, aIOLi-only, and SJF-only - compared with the oracle’s selections. We can see that
T1 and T2 are able to achieve the best result possible.

Table IV. Correct selection rate of all solutions compared with the oracle.

aIOLi-only SJF-only T1 T2 T3

Correct
selections

60 (31%) 92 (48%) 192 (100%) 192 (100%) 142 (73%)

Figure 5 compares the results obtained for the different scheduling algorithm solutions. Figure 5a
presents the median performance increases and decreases. The first group of bars (performance
increase) considers only the results with performance increases over 10%, while the second group
represents results with performance decreases over 10%. We can see that using aIOLi-only provided
the worst performance decreases.

-30
-20
-10

 0
 10
 20
 30

Increase Decrease

M
ed

ia
n

(%
)

Performance

Oracle
aIOLi-only

SJF-only

T_1
T_2
T_3

(a) Median performance differences

 0

 10

 20

 30

 40

 50

 60

 70

 80

Increase Decrease

N
um

be
r o

f s
ce

na
ri

os

Performance

(b) Situations with performance differences

Figure 5. Performance results for the tested scheduling algorithm selection trees.

Moreover, from Figure 5b, which presents the number of situations where performance was
significantly increased or decreased, we can see that using only one scheduling algorithm improves
performance in less situations and decreases in more.

T1 and T2 provide the same results as the oracle, as previously indicated. This happens despite the
fact that T2 uses less information than T1. T3 - the tree with the smallest number of input attributes
- decreases performance more (by 25% over 11% of the other trees) and for more situations (10
against 4 of other trees). However, we can still say that our simplest tree - T3 is better than using
aIOLi-only or SJF-only, since T3 increases performance for more situations.

In order to see how these trees perform when evaluated with entries that were not included in their
input sets, we generated two new versions of each tree: one using only the entries obtained with 8

Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

14 F. Z. BOITO ET AL.

processes per application, and another with the entries for 16 processes per application. We used
each of these input sets to evaluate the tree generated with the other, i.e., the input set containing
only entries with 8 processes per application was used to evaluate the tree generated with the input
set containing entries with 16 processes only, and vice versa.

Table V presents the misclassification rates observed in this evaluation step. For T2 and T3 the
exact same decision tree was generated with both input sets. This happens for T3 because both
input sets are the same, since they do not use attributes that depend on the number of processes per
application (number of files and amount of accessed data per client). In this situation, where the
same input set is used for generating and evaluating the decision tree, results indicates how well its
rules represent the input set. Therefore, we can see that the attributes provided to T3 are not enough
to make a scheduling algorithm selection tree that gives the best answer in more than 75% of the
times.

Table V. Misclassification rates for each decision tree’s two versions, using one to evaluate the other.

T1 T2 T3

Tree generated with 8 clients 18.75% 5.21% 26.04%
Tree generated with 16 clients 5.21% 5.21% 26.04%

For T2, which uses the number of accessed files, all comparisons with this attribute from both
versions are with 1 (the number of accessed files in the shared file approach with a single application)
or 4 (shared file with multiple applications), and hence not affected by the number of processes per
application.

For the T1 versions generated in this evaluation step, we observed lower misclassification rate for
the tree generated with the 16 processes per application input set, which is the same tree as both
T2 versions. The J48 algorithm decided not to use the amount of accessed data per file attribute
in this case, although it was available. Table VI shows this attribute for all our experiments. In the
input set with 16 processes, knowing the amount of accessed data per file is only useful to identify
the situation with multiple applications where each process has an independent file. Looking again
at Table III, we can see that this information has a limited usefulness. On the other hand, the T1

version generated with entries for 8 processes per application uses the amount of accessed data per
file attribute to identify the situation with single application and file per process approach. Using
this tree on the 16 processes per application entries, all shared file approach situations are wrongly
interpreted, leading to this tree’s poor results.

Table VI. Sizes of the files generated at the servers.

Single application Multiple applications
Shared file File per process Shared file File per process

8 processes 128MB 256MB 128MB 128MB
16 processes 256MB 256MB 256MB 128MB

These results indicate that the attribute that gives the amount of accessed data per file may
contribute to generate decision trees that are overfitted to the input set. Furthermore, not including
this attribute (in T2) did not affect the trees’ results. On the other hand, not including the number
of files attribute significantly affect results, since sequentiality and requests size are not enough to
represent all tested access patterns.

Although we evaluated the scheduling algorithm selection trees by comparing them with an oracle
solution, the real alternative to them is using only one scheduling algorithm for all situations, without
double adaptivity. In this sense, our approach provides performance improvements of up to 75%
over aIOLi and of up to 38% over SJF. Moreover, in general, the decision trees are able to improve
performance (over the base timeorder scheduler, without using AGIOS) for more situations, and
decrease performance for less. Table VII summarizes these results.

Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

AUTOMATIC I/O SCHEDULING ALGORITHM SELECTION FOR PARALLEL FILE SYSTEMS 15

Table VII. Improvements provided by the scheduling algorithm decision trees over other solutions.

T1 T2 T3

Improvement over aIOLi (up to) 74.9% 74.9% 74.9%
Situations with performance increase 5% more 5% more 1% more
Situations with performance decrease 89% less 89% less 74% less

Improvement over SJF (up to) 38% 38% 38%
Situations with performance increase 64% more 64% more 58% more
Situations with performance decrease 80% less 80% less 54% less

6. RELATED WORK

This section discusses related work on I/O scheduling. I/O scheduling techniques are applied to
alleviate interference effects by coordinating requests processing. This coordination can take place
on client-side or server-side. However, client-side I/O coordination mechanisms [14, 15] are still
prone to interference caused by concurrent accesses from other nodes to the shared file system.
Therefore, server-side I/O scheduling is more usual than the client-side approach.

Chen and Majumdar [16] proposed an algorithm called Lowest Destination Degree First (LDDF)
that represents processes and servers as nodes of a graph, with edges meaning that I/O requests from
a process can be treated by a server. Servers are then given degrees depending on how many requests
they can process, and requests are assigned by following the non-increasing degree ordered servers
list. This LDDF algorithm counts on data replication, so each request have multiple options of
servers for processing. Moreover, it assumes a centralized control over all processes and all servers.
In a large-scale environment, such a centralized control would impose a bottleneck and compromise
scalability.

In their paper, they also evaluated algorithms to be used locally at the servers, after the first
assignment done by the LDDF algorithm. The best performance was observed when using Shortest
Job First (SJF) for local scheduling - over First Come First Served (FCFS). In their implementation,
jobs’ size is given by their total amount of requested data. Therefore, authors argue that better
scheduling is achieved when considering information about applications. Their results motivated
us to include SJF in our study. Additionally, another reason to include it was because a similar
algorithm - Shortest Wait Time First (SWTF) - was reported to present good results as a disk
scheduler for SSDs [4].

An approach named IOrchestrator was proposed by Zhang et al. [17] to the PVFS2 parallel file
system. Their idea is to synchronize all data servers to serve only one application during a given
period of time. This decision is made through a model considering the cost of this synchronization
and the benefits of this dedicated service. In addition to modifications in the file system, their
approach also requires modifications in MPI-IO in order to make it possible for the scheduler to
know which files each application accesses.

The same approach was adapted to provide QoS support for end users by the same authors
[18]. Through a QoS performance interface, requirements can be defined in terms of execution
time (deadline). Applications need a profiling execution, where their mechanism obtains its access
pattern. This access pattern considers time portion used for I/O, average requests size, and average
distance between requests inside each time slice (called “epoch”). A machine learning technique is
used to translate the provided deadline to requirements in bandwidth from the file system, using the
profiled access pattern. Their approach is similar to ours in the sense that it uses information from
previous executions to detect applications’ access patterns. Nonetheless, we use a more detailed
access pattern classification, considering more aspects such as number of files and operation, and
also considering storage devices’ characteristics as a factor that affects the resulting performance.
Furthermore, our approach is not deadline-oriented, as our work does not aim at providing QoS.

Both approaches - IOrchestrator and its QoS support version - are limited to situations with a
centralized meta-data server which, in this case, is responsible for the synchronization and global

Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

16 F. Z. BOITO ET AL.

decision making. This centralized architecture can present scalability issues at large scale. Our
approach sacrifices the ability of making global decisions in order to avoid this centralization point.

Song et al. [19] proposed a scheme for I/O scheduling through server coordination that also aims
at serving one application at a time. For this purpose, they implemented a window-wide coordination
strategy by modifying PVFS2 and MPI-IO. Requests from clients carry a global application ID and
a timestamp. At the server, they are separated in time windows, where the different windows must
be processed in arrival time order to avoid starvation. Inside each window, requests are ordered
by application ID. They do not use global synchronization, and argue that all servers decide for the
same order since they use the same method. We cannot give the same guarantees about our approach,
because we do not use global applications identifiers and timestamps. To obtain this information
would require modifications in the file system and I/O libraries, compromising portability and
making the approach less generic

Another difference between their approach and ours is that theirs do not seek at generating
contiguous access patterns. They decided not to focus on hard-disks, aiming at a more generic
solution. Although SSDs usage has been increasing, HDDs are still the solution available in most
HPC architectures. This holds especially at the file system infrastructure, where storage capacity is
a limiting factor. Additionally, as evidenced by our results, access sequentiality is not a desirable
characteristic only for HDDs, and performance can also be improved by requests aggregation.

Lebre et al. [7] proposed the aIOLi scheduling algorithm, used in this work. The algorithm was
proposed in the context of an I/O scheduling framework (also called “aIOLi”). Their framework
aims at being generic, non-invasive and easy to use. The development of our AGIOS tool was vastly
inspired by their work. The main differences between both tools is that aIOLi is a Linux kernel
module, while AGIOS also offers an user-level library, since today’s most parallel file systems’
servers work at user-level. Moreover, aIOLi was only used with a centralized file system (NFS),
while our work with AGIOS focused on parallel file systems. In scheduling algorithm choices, aIOLi
offered its aIOLi algorithm and a simple timeorder. Our study included five scheduling algorithms.

Qian et al. [20] used the aIOLi algorithm for the creation of a Network Request Scheduler (NRS)
for the Lustre parallel file system. Instead of working in a centralized file system, like aIOLi, each
instance of NRS works in the context of a Lustre’s data server. There is no global coordination of
accesses. Their successful use of the aIOLi scheduling algorithm in the context of a parallel file
system’s data servers motivated the inclusion of this algorithm in our study.

7. CONCLUSIONS AND FUTURE WORK

This article focused on I/O scheduling as a tool to improve performance by alleviating interference
effects. Our work aimed at providing I/O scheduling for parallel file systems with double adaptivity:
to applications and storage devices.

We have presented AGIOS, our I/O scheduling tool, and its five scheduling algorithms: aIOLi,
MLF, SJF, TO, and TO-agg. Through an extensive performance evaluation over four clusters under
different access patterns, we have shown that both applications’ access patterns and storage devices’
sensitivity to access sequentiality affect I/O scheduling efficacy. We have used machine learning to
build decision trees able to select the best fit in scheduling algorithm for different situations.

Multiple decision trees were generated using different input parameters. All of them provided
better overall results than approaches where the same scheduling algorithm is always used.
Comparing with situations where aIOLi or SJF are always used, our approach represents a
performance improvement of up to 75%, increasing performance for up to 64% more situations and
decreasing performance for up to 89% less situations. We have shown that it is possible, through
machine learning, to select the best fit in scheduling algorithm to each situation automatically.
Moreover, our results indicate that both applications’ and platforms’ characteristics are essential
for correctly selecting the best I/O scheduling algorithm in a given situation.

Our tool, with its I/O scheduling algorithms and the ability to automatically select between them
through the discussed T2 decision tree, is freely available at http://www.inf.ufrgs.br/
˜fzboito/agios.html.

Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://www.inf.ufrgs.br/~fzboito/agios.html
http://www.inf.ufrgs.br/~fzboito/agios.html

AUTOMATIC I/O SCHEDULING ALGORITHM SELECTION FOR PARALLEL FILE SYSTEMS 17

All tested scenarios provided homogeneous access patterns: all applications have the same access
pattern, and all files are accessed in the same way. As future work, we intend to expand this study
by investigating the impact of heterogeneous access patterns on I/O scheduling results.

ACKNOWLEDGEMENTS

This research has been partially supported by CNPq and CAPES-BRAZIL under the grants 5847/11-7
and Stic-Amsud 6132-13-8. The experiments presented in this article were carried out on the Grid’5000
experimental test bed, being developed under the INRIA ALADDIN development action with support
from CNRS, RENATER and several Universities as well as other funding bodies (see https://www.
grid5000.fr). This research was accomplished in the context of the International Joint Laboratory
LICIA and of the HPC-GA project.

REFERENCES

1. Thakur R, Gropp W, Lusk E. Data sieving and collective i/o in romio. frontiers 1999; :182.
2. Boito FZ, Kassick RV, Navaux POA. The impact of applications’ i/o strategies on the performance of the lustre

parallel file system. International Journal of High Performance Systems Architecture 2011; 3(2):122–136.
3. Chen F, Koufaty DA, Zhang X. Understanding intrinsic characteristics and system implications of flash memory

based solid state drives. Proceedings of the eleventh international joint conference on Measurement and modeling
of computer systems, 2009; 181–192.

4. Rajimwale A, Prabhakaran V, Davis JD. Block management in solid-state devices. Proceedings of the USENIX
Annual Technical Conference, 2009; 279–284.

5. Boito FZ, Kassick RV, Navaux PO, Denneulin Y. Towards fast profiling of storage devices regarding access
sequentiality. Applied Computing (SAC), 2015 ACM Symposium on, 2015 (to appear).

6. Boito FZ, Kassick RV, Navaux PO, Denneulin Y. Agios: Application-guided i/o scheduling for parallel file systems.
Parallel and Distributed Systems (ICPADS), 2013 International Conference on, 2013; 43–50.

7. Lebre A, Denneulin Y, Huard G, Sowa P. I/o scheduling service for multi-application clusters. Proceedings of IEEE
Cluster 2006, conference on cluster computing, 2006.

8. Silberschatz A, Galvin PB, Gagne G. Operating system concepts, vol. 8. Wiley, 2013.
9. Avila RB, Navaux POA, Lombard P, Lebre A, Denneulin Y. Performance evaluation of a prototype distributed

nfs server. 16th Symposium on Computer Architecture and High Performance Computing, 2004; 100–105, doi:
10.1109/SBAC-PAD.2004.33.

10. Bolze R, Cappello F, Caron E, Dayde M, Desprez F, Jeannot E, Jegou Y, Lanteri S, Leduc J, Melab N,
et al.. Grid5000: A large scale and highly reconfigurable experimental grid testbed. International Journal of
High Performance Computing Applications 2006; 20(4):481–494, doi:10.1177/1094342006070078. URL http:
//hpc.sagepub.com/cgi/content/abstract/20/4/481.

11. Byna S, Chen Y, Sun XH, Thakur R, Gropp W. Parallel i/o prefetching using mpi file caching and i/o signatures.
Proceedings of the 2008 ACM/IEEE conference on Supercomputing, 2008; 44.

12. Corbett P, Feitelson D, Fineberg S, Hsu Y, Nitzberg B, Prost JP, Snir M, Traversat B, Wong P. Overview of the mpi-
io parallel i/o interface. KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE
1996; :127–146.

13. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The weka data mining software: an update.
ACM SIGKDD explorations newsletter 2009; 11(1):10–18.

14. Ohta K, Matsuba H, Ishikawa Y. Improving parallel write by node-level request scheduling. Proceedings of the
2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid-Volume 00, IEEE Computer
Society, 2009; 196–203.

15. Dorier M, Antoniu G, Cappello F, Snir M, Orf L. Damaris: How to efficiently leverage multicore parallelism to
achieve scalable, jitter-free i/o. Cluster Computing (CLUSTER), 2012 IEEE International Conference on, 2012;
155–163, doi:10.1109/CLUSTER.2012.26.

16. Chen F, Majumdar S. Performance of parallel i/o scheduling strategies on a network of workstations. Parallel and
Distributed Systems, International Conference on 2001; 0:0157, doi:http://doi.ieeecomputersociety.org/10.1109/
ICPADS.2001.934814.

17. Zhang X, Davis K, Jiang S. Iorchestrator: Improving the performance of multi-node i/o systems via inter-server
coordination. Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’10, IEEE Computer Society: Washington, DC, USA, 2010; 1–11, doi:
http://dx.doi.org/10.1109/SC.2010.30. URL http://dx.doi.org/10.1109/SC.2010.30.

18. Zhang X, Davis K, Jiang S. Qos support for end users of i/o-intensive applications using shared storage
systems. Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’11, ACM: New York, NY, USA, 2011; 18–1, doi:10.1145/2063384.2063408. URL http:
//doi.acm.org/10.1145/2063384.2063408.

19. Song H, Yin Y, Sun XH, Thakur R, Lang S. Server-side i/o coordination for parallel file systems. Proceedings
of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’11,
ACM: New York, NY, USA, 2011; 17–1, doi:10.1145/2063384.2063407. URL http://doi.acm.org/10.
1145/2063384.2063407.

20. Qian Y, Barton E, Wang T, Puntambekar N, Dilger A. A novel network request scheduler for a large scale storage
system. Computer Science-Research and Development 2009; 23(3):143–148.

Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

https://www.grid5000.fr
https://www.grid5000.fr
http://hpc.sagepub.com/cgi/content/abstract/20/4/481
http://hpc.sagepub.com/cgi/content/abstract/20/4/481
http://dx.doi.org/10.1109/SC.2010.30
http://doi.acm.org/10.1145/2063384.2063408
http://doi.acm.org/10.1145/2063384.2063408
http://doi.acm.org/10.1145/2063384.2063407
http://doi.acm.org/10.1145/2063384.2063407

	1 Introduction
	2 AGIOS: an I/O scheduling tool
	2.1 aIOLi
	2.2 MLF
	2.3 SJF
	2.4 TO and TO-agg

	3 I/O scheduling algorithms evaluation
	3.1 Performance results for single application with shared file
	3.2 Performance results with multiple applications and the shared file approach
	3.3 Performance results for single application with the file per process approach
	3.4 Performance results with multiple applications and the file per process approach

	4 Automatic I/O Scheduling Selection
	5 Scheduling algorithm selection trees' evaluation
	6 Related Work
	7 Conclusions and Future Work

