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Abstract
With the emergence of social networks and improvements in com-
putational photography, billions of JPEG images are shared and
viewed on a daily basis. Desktops, tablets and smartphones con-
stitute the vast majority of hardware platforms used for displaying
JPEG images. Despite the fact that these platforms are heteroge-
neous multicores, no approach exists yet that is capable of joining
forces of a system’s CPU and GPU for JPEG decoding.

In this paper we introduce a novel JPEG decoding scheme for
heterogeneous architectures consisting of a CPU and an OpenCL-
programmable GPU. We employ an offline profiling step to deter-
mine the performance of a system’s CPU and GPU with respect to
JPEG decoding. For a given JPEG image, our performance model
uses (1) the CPU and GPU performance characteristics, (2) the im-
age entropy and (3) the width and height of the image to balance
the JPEG decoding workload on the underlying hardware. Our run-
time partitioning and scheduling scheme exploits task, data and
pipeline parallelism by scheduling the non-parallelizable entropy
decoding task on the CPU, whereas inverse cosine transformations
(IDCTs), color conversions and upsampling are conducted on both
the CPU and the GPU. Our kernels have been optimized for GPU
memory hierarchies.

We have implemented the proposed method in the context of the
libjpeg-turbo library, which is an industrial-strength JPEG encod-
ing and decoding engine. Libjpeg-turbo’s hand-optimized SIMD
routines for ARM and x86 constitute a competitive yardstick for
the comparison to the proposed approach. Retro-fitting our method
with libjpeg-turbo provides insights on the software-engineering
aspects of re-engineering legacy code for heterogeneous multi-
cores.

We have evaluated our approach for a total of 7194 JPEG im-
ages across three high- and middle-end CPU–GPU combinations.
We achieve speedups of up to 4.2x over the SIMD-version of
libjpeg-turbo, and speedups of up to 8.5x over its sequential code.
Taking into account the non-parallelizable JPEG entropy decoding
part, our approach achieves up to 95% of the theoretically attain-
able maximal speedup, with an average of 88%.

Categories and Subject Descriptors C.1.2 [Parallel architec-
tures]: Parallel architectures; K.6.5 [Image compression]: Image
compression

General Terms Performance, Algorithms, Design

Keywords JPEG decoding, GPU, Parallel Programming Patterns,
Pipeline-Parallelism, Data-Parallelism

∗ The definitive version of this work was published in the proceedings
of PMAM’14: Programming Models and Applications for Multicores and
Manycores, under DOI 10.1145/2560683.2560684. The paper is available
at dl.acm.org

1. Introduction
The JPEG format is the de facto compression standard for digital
images in a wide range of fields from medical imaging to personal
digital cameras. By our own observation, 463 out of the 500 most
popular websites [2] use JPEG images (including Google, Face-
book, Youtube and Baidu). With the emergence of social networks
and innovations in computational photography, billions of JPEG
images are shared and viewed on a daily basis: Facebook reported
in 2010 already to store over 65 billion photos [3], and the In-
stagram photo-sharing service claims to have 45 million daily up-
loads [10]. Similar numbers can be assumed for other photo hosting
and sharing services such as Flickr and Photobucket.

Desktops, tablets and smartphones constitute the vast majority
of hardware platforms used for viewing JPEG images. Although
these platforms are nowadays equipped with a CPU and GPU,
to the best of our knowledge no approach is available yet that is
capable of incorporating both the CPU and the GPU for JPEG
decoding.

Libjpeg [14] is a sequential JPEG reference implementation
by the Independent JPEG Group. To accelerate image processing,
the libjpeg-turbo [15] re-implementation applies SIMD instructions
with a single thread of execution on x86 and ARM platforms.
We have observed that the SIMD-version of libjpeg-turbo decodes
an image twice as fast as the sequential version on an Intel i7.
Libjpeg-turbo is widely used, e.g., with the Google Chrome and
Firefox web-browsers, WebKit [22], and the Ubuntu, Fedora and
openSUSE Linux distributions. Neither libjpeg nor libjpeg-turbo
are capable of utilizing a GPU.

JPEG decoding is computationally expensive, consisting of
Huffman decompression, dequantization, IDCT, image upsampling
and YCbCr to RGB color space conversion. Among all stages,
Huffman decompression is strictly sequential, because code-words
have variable lengths and the start of a codeword in the encoded
bitstream is only known once the previous codeword has been de-
coded. A sub-class of Huffman codes that provide the so-called
self-synchronization property [4] are suitable for decoding mul-
tiple chunks of the encoded bitstream in parallel, as proposed
in [12]. However, the JPEG standard does not enforce the self-
synchronization property [23]. In our implementation, Huffman
decoding is therefore executed sequentially on the CPU. The re-
maining stages have repetitive computations and low data de-
pendencies, which makes them suitable to exploit data, task and
pipeline-parallelism.

A desktop GPU has several hundreds of scalar processors, of-
fering more parallelism than what is provided by nowaday’s SIMD
CPU instruction set architectures. GPUs offer a higher memory
bandwidth than CPUs. However, a GPU core lacks complex con-
trol units and operates at a much lower clock frequency. The PCI
bus that connects the GPU to the CPU represents a bandwidth-
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bottleneck that incurs significant overhead to computations on the
GPU. JPEG decoding on a GPU is thus not necessity faster than
the SIMD-version of libjpeg-turbo on a CPU. Nevertheless, utiliz-
ing both CPU and GPU has the potential to achieve the highest
overall performance, regardless of the computational power of the
CPU and GPU.

Consequently, this paper makes the following contributions:

• we propose a performance model based on off-line profiling
that characterizes all JPEG decoding steps for a given CPU-
GPU combination from multivariate polynomial regression. We
identified image entropy and the image dimensions as the only
required parameters for our performance model,

• we propose a dynamic partitioning scheme that automatically
distributes the workload across CPU and GPU at run-time ac-
cording to our performance model,

• we optimize JPEG decoding on GPUs by employing data vec-
torization, intermediate local memory and coalesced memory
accesses,

• we boost parallelism by utilizing a pipelined execution model
that overlaps sequential Huffman decoding with GPU compu-
tations,

• we report on the software engineering aspects of refactoring the
libjpeg-turbo legacy code for heterogeneous multicores, and

• we present experimental results on three representative high-
and mid-end CPU-GPU architectures for the applicability and
efficiency of our approach. We achieve speedups up to 4.2x
over the SIMD-version of libjpeg-turbo, and up to 8.5x over
its sequential code. We achieve up to 95% of the theoretically
attainable speedup, with 88% on average.

The remainder of this paper is organized as follows: Section 2
presents background information on JPEG decoding; libjpeg-turbo
re-engineering is discussed in Section 3. Our OpenCL JPEG de-
coding kernels for GPUs are presented in Section 4. Section 5 de-
scribes the performance model and dynamic partitioning scheme
for a system consisting of a CPU and a GPU. Section 6 contains
the experiential results. We discuss the related work in Section 7
and draw our conclusions in Section 8.

2. Background: JPEG Decoding
Figure 1 describes the decoding steps to produce an uncompressed
bitmap from a JPEG image. A JPEG file is structured as a sequence
of segments, including image dimensions, component subsam-
pling, Huffman and quantization tables and entropy-coded data.
Entropy-coded data is the largest part of a JPEG file, and thus, has
the highest contribution to the file size. Color in JPEG-encoded
images is represented by luminance (Y), blue chrominance (Cb)
and red chrominance (Cr) component values. Because the human
eye is more sensitive to changes in luminance than changes in
chrominance, the spatial resolution of chrominance components
are commonly compressed. This process is called downsampling.
In 4:2:2 subsampling, the Y component is sampled at each pixel
while Cb and Cr components are sampled every two pixels in hor-
izontal direction. 4:4:4 sampling has the same sample rate across
all components and downsampling is not required [20].

An image is divided into blocks of 8x8 pixels. JPEG decom-
pression operates in units of minimum coded units (MCUs), which
are minimum sets of blocks from each color component. The MCU
size for 4:4:4 subsampling is 8x8 pixels in libjpeg-turbo. In 4:2:2
subsampling, one chrominance block is upsampled to two blocks
horizontally. Thus, an MCU has a size of 16x8 pixels. The de-
coder first decodes entropy data, then de-quantizes it according to
an image-specific quantization table. IDCT transforms MCUs from

Entropy
Decoding
(Huffman)

De-quantization Inverse DCT

UpsamplingColor
Conversion

Figure 1. JPEG decoder path.

the frequency domain back to the spatial domain. The libjpeg and
libjpeg-turbo libraries apply a series of 1D IDCTs based on the
AAN algorithm [19, 26]. If the image subsampling is not 4:4:4,
it must be upsampled to restore the spatial resolution of chromi-
nance components to the original size. Color conversion converts
the Y, Cr and Cb samples of each pixel to the RGB color space.
Apart from Huffman decoding, all JPEG decoding steps contain
few data dependencies and a large amount of data-parallelism. In
fact, libjpeg-turbo utilizes SIMD instructions for all stages except
Huffman decoding.

3. Re-engineering the Libjpeg-turbo Software
Architecture for Heterogeneous Multicores

Libjpeg-turbo has been designed with a consideration of memory
resources. Both encoder and decoder operate in units of MCU rows.
The software architecture of libjpeg-turbo is illustrated in Figure 2.
The decoder uses a 2-tier controller and buffer hierarchy to control
decoding and storage of a single MCU row in various stages.

Main Control Buffer

Coefficient
Control Buffer

Post-
processing

Control
Buffer

Dequantize
and inverse

DCT

Entropy
decoding

Upsampling

Color space
Conversion

Color
quantization

Color
precision
reduction

Figure 2. Libjpeg-turbo software architecture.

We identified two shortcomings which hamper parallelizing the
library for heterogeneous multicores. First, because decoding is
done in units of MCU rows, additional, unnecessary dependencies
between subsequent MCU rows are introduced. These dependen-
cies limit the possible achievable parallelism in three ways:

1. A single MCU row of an image may not contain enough data
to utilize a GPU. Most of the computationally intensive oper-
ations, i.e., IDCT, upsampling and color conversion, are data-
parallel tasks where more data means more parallelism. Equally
worse, pipeline-parallelism between decoding steps is impossi-
ble because of those dependencies.

2. Transferring row after row of image data from CPU to GPU is
inefficient, because initiating a transfer induces constant over-
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head. Transferring a large amount of data in one transfer is thus
more efficient than using several smaller transfers.

3. For each MCU row, a kernel invocation on the GPU is required.

Second, for modularity reasons, the libjpeg-turbo library has been
designed in two major parts: coefficient control and postprocessing
control. A 2-tier buffer hierarchy abstracts away the actual decod-
ing work, and function pointers are used to encapsulate decoding
functionality (e.g., integer vs. float IDCT). The segmented software
architecture makes it very hard to re-use JPEG decoder compo-
nents, because the buffer hierarchy permeates all components.

We re-engineered the libjpeg-turbo library under two objectives:
(1) to be minimally invasive to the legacy code, and (2) to support
massively parallel architectures. To prevent expensive CPU-GPU
data transfers, we introduced an additional input and output buffer
below the existing buffer hierarchy. These buffers are large enough
to keep an image as a whole in memory. (Note that this fits in natu-
rally with JPEG decoding, e.g., a web-browser will initiate decod-
ing once the whole image or a large part of it is available in main
memory.) The new whole-image buffers allowed us to transfer suf-
ficiently large chunks of the image between CPU and GPU, while
providing the legacy-code on the CPU with its “accustomed” row-
by-row access, thereby keeping the changes to the existing library
code to a minimum. The kernel codes for the GPU were imple-
mented in OpenCL. The existing library code served as the starting
point for the GPU code, with all GPU-specific optimizations ex-
plained in Section 4.

4. JPEG Decoding on the GPU
After entropy (Huffman) decoding, the CPU transfers a buffer
of decoded data to the GPU. The IDCT, upsampling and color
conversion kernels are invoked subsequently. Our chosen buffer
layout has Y blocks followed by Cb blocks followed by Cr blocks.
The upsampling kernel does not have to read the Y-space. This
buffer layout avoids interleaving block access, and thus, improves
coalesced memory access. At the end of color conversion, the
output image in RGB color is transferred to a designated memory
location of the whole-image output buffer (see Section 3) on the
CPU.

4.1 Inverse Discrete Cosine Transformation (IDCT)
The entropy-decoded data in the frequency domain is transformed
back to the spatial domain using a 2D IDCT. We implemented the
2D IDCT algorithm by applying a 1D IDCT to eight columns of a
block (column pass) and then to eight rows of the result (row pass),
as shown in Equation (1) and Equation (2) respectively.

f(u, y) =

N−1∑
v=0

CvF (u, v) · cos
(
(2y + 1)vπ

2N

)
, (1)

f(x, y) =

N−1∑
u=0

Cuf(u, y) · cos
(
(2x+ 1)uπ

2N

)
, (2)

where

0 ≤ x, y ≤ N − 1 : spatial coordinates,
0 ≤ u, v ≤ N − 1 : frequency coordinates,

Cu, Cv =
1√
2

for u, v = 0, otherwise 1.

We employ eight OpenCL work-items per block. The input data
is de-quantized after being loaded from global memory. Each work-
item performs the column pass followed by the row pass. A work-
item stores an eight-pixel column directly to its registers such that
no communication is required among work-items. The intermediate

Algorithm 1: Upsampling for 4:2:2 subsampling.

1 Out[0] = In[0]
2 Out[1] = (In[0] * 3 + In[1] + 2) / 4
3 Out[2] = (In[1] * 3 + In[0] + 1) / 4
4 Out[3] = (In[1] * 3 + In[2] + 2) / 4
5 Out[4] = (In[2] * 3 + In[1] + 1) / 4
6 Out[5] = (In[2] * 3 + In[3] + 2) / 4
7 Out[6] = (In[3] * 3 + In[2] + 1) / 4
8 Out[7] = (In[3] * 3 + In[4] + 2) / 4
9 Out[8] = (In[4] * 3 + In[3] + 1) / 4

10 Out[9] = (In[4] * 3 + In[5] + 2) / 4
11 Out[10] = (In[5] * 3 + In[4] + 1) / 4
12 Out[11] = (In[5] * 3 + In[6] + 2) / 4
13 Out[12] = (In[6] * 3 + In[5] + 1) / 4
14 Out[13] = (In[6] * 3 + In[7] + 2) / 4
15 Out[14] = (In[7] * 3 + In[6] + 1) / 4
16 Out[15] = In[7]

results from the column pass are shared among work-items within
a group to process the row pass. Thus, local memory is the suitable
choice.

Each work-item holds eight elements of 8-bit color representa-
tion at the end of the row pass. Copying eight times would generate
an excessive overhead. Hence, we vectorize the elements to reduce
global memory access requests.

Instructions are issued per group of work-items called a warp in
NVIDIA’s terminology. The warp size is typically 32. Therefore, a
work-group performs IDCT on a multiple of four blocks to ensure
that the number of work-items per group is a multiple of 32. The
optimal work-group size is hardware-specific and is determined
during profiling (see Section 5).

4.2 Upsampling
The chrominance color space with 4:2:2 subsampling is downsam-
pled to half of the luminance space during JPEG encoding. The
sample rates of these color spaces must be upsampled to the orig-
inal size. Algorithm 1 describes an upsampling process that takes
an 8-pixel row as an input to generate a 16-pixel row.

We utilize 16 OpenCL work-items to perform upsampling on
one block. Two work-items process one row of the block. The
work-item with the even ID reads In[0] to In[4] to produce an eight-
pixel row from Out[0] to Out[7], and the work-item with the odd
ID reads In[4] to In[7] to produce the successive eight-pixel row
Out[8] to Out[15].

The output equations have fixed patterns for odd indices and
even indices. It should be noted that all but the end pixels depend
on the neighbouring pixels of a block. The computations of Out[0]
and Out[8] happen concurrently, and the same situation occurs with
Out[7] and Out[15]. The computational pattern of the end pixels
is different from the other pixels. Consequently, an if-statement is
required to determine the correct equation for a specific work-item.
An if-statement causes branch divergence if less than half of a warp
take the same branch. We chose the work-group size such that 16
work-items take the same branch. This access pattern was designed
to favour a merged upsampling-color conversion kernel, which is
explained in Section 4.4.

4.3 Color Conversion
The final stage of the JPEG decoder converts the YCbCr color
space to the RGB color space according to Algorithm 2. A work-
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item accesses global memory three times for its Y, Cb and Cr values
to calculate R, G and B values for one pixel. The computations for
each pixel are independent of other pixels.

Algorithm 2: Cb/Cr to RGB color space conversion.
Input : Pixel information in YCbCr color space
Output: Pixel information in RGB color space

1 R = Y + 1.402 (Cr - 128)
2 G = Y - 0.34414 (Cb - 128) - 0.71414 (Cr - 128)
3 B = Y + 1.772 (Cb - 128)

The buffers for IDCT and upsampling are arranged as a se-
quence of blocks, shown in Figure 3(a). However, the output buffer
of color conversion is arranged as a sequence of pixels starting
from the top-left pixel of the image then traverses row-wise to the
bottom-right pixel of the image as shown in Figure 3(b). We de-
vised an indexing function that calculates the index of the next pixel
in vertical direction to be one image-width apart.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

(a) Block-based pattern

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

(b) Pixel-based pattern

Figure 3. Buffer layouts of an 16x8 image (a) before color con-
version and (b) after color conversion. The blue line indicates the
access pattern.

The final output of the image is represented in interleaved RGB
color space. Each R, G and B value is represented as an unsigned
character. Similar to IDCT, vectorization in groups of four elements
can be applied. In NVIDIA’s device compute capability 2.x or
higher, global memory write instructions support 1, 2, 4, 8 or 16
bytes [17]. However, a pixel consists of three bytes. Therefore, a
work-item should perform color conversion on a multiple of four
pixels. An eight-pixel row has 24 elements. We group for pixels to
six vectors of four elements as shown in Figure 4. The number of
transfers is thereby reduced by a factor of four.

4.4 GPU Kernel Merging
Previously stored data in local memory is no longer accessible
on the next kernel invocation. Intermediate results must be stored
back to global memory at the end of each kernel invocation, which
generates unnecessary memory traffic. Because the computation
of color conversion has no data dependency among pixels, it can
be merged with the preceding kernel to reduce global memory
accesses.

R G B

pixel 0

R G B

pixel 1

R G B

pixel 2

R G B

pixel 3

R G B

pixel 4

R G B

pixel 5

R G B

pixel 6

R G B

pixel 7

R G B R G B R G B R G B R G B R G B R G B R G B
vector 0 vector 1 vector 2 vector 3 vector 4 vector 5

vectorize

Figure 4. Vectorization of interleaving RGB performed by one
work-item in order to reduce global memory writes.

An image with 4:4:4 subsampling does not require upsam-
pling. The color conversion kernel is merged with the IDCT ker-
nel. Color conversion requires information from all color spaces.
Therefore, the IDCT kernel repeats the computation three times for
the three color spaces. At the end of IDCT, a work-item holds Y,
Cb and Cr rows in its registers. The work-item immediately per-
forms color conversion on the row without additional communi-
cation with other work-items. Although a single work-item now
performs three times more IDCT computations, the storing of in-
termediate results in global memory between the IDCT and color
conversion kernel invocations are avoided.

With 4:2:2 subsampling, the color conversion and upsampling
kernels are combined. We use two OpenCL work-items to perform
upsampling on a Cb and Cr row such that at the end of upsampling,
chrominance information of one row is stored in the registers of
each work-item. Only a row of Y space of the corresponding pixels
is loaded from global memory before starting color conversion.
Our work-group in the merged kernel, consisting of 128 work-
items, processes two groups of four blocks. Sixteen work-items are
allocated per block, and 64 work-items compute upsampling on the
same index of different eight-pixel row segments to avoid branch-
divergence. At the end of upsampling, this work-group produces
sixteen image blocks.

We considered merging IDCT, upsampling and color conver-
sion into one kernel. Nevertheless, combining all kernels is not
favourable because the number of available registers constrains the
number of active work-groups per multiprocessor.

4.5 Pipelined Kernel Execution
We observed that Huffman decoding consumed around half of the
overall execution time with the SIMD-version of libjpeg-turbo.
Huffman decoding is sequential and thus performed exclusively
on the CPU. Subsequent decoding steps, i.e., IDCT, upsampling
and color conversions are highly data-parallel and thus allocated
to the GPU. In the following, we refer to those steps as the paral-
lel part of JPEG decoding. In the execution model explained so far,
GPU computations are delayed until decoded entropy data becomes
available, as shown in Figure 5(a). Because the GPU is un-utilized
during Huffman decoding, potential speedup is lost. Using the fact
that entropy data is decoded in order, GPU computations can start
after sufficient image rows have been decoded. Hence, Huffman
decoding and GPU kernel execution can be executed in a pipelined
fashion, where the first pipeline stage, i.e., Huffman decoding, is
executed on the CPU, and the second pipeline stage, i.e., the paral-
lel part, is executed on the GPU. Figure 5(b) shows the timeline of
our pipelined execution mode.

An image is sliced horizontally into several chunks. As soon
as the first chunk is entropy decoded, the CPU transfers the data
to the GPU. All OpenCL commands are executed asynchronously.
Hence, the CPU can resume Huffman decoding immediately for
the second chunk. The execution time of the GPU kernel may
not match the Huffman decoding time, because Huffman decoding
varies greatly with the image details contained in a chunk. If the
GPU is faster than the CPU, GPU computations are hidden behind
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Huffman-decoding on the CPU. The overall execution time then
consists of the Huffman decoding time of the entire image plus the
kernel invocation for the last portion of the image.

The most efficient chunk size is determined through static pro-
filing on large images. Chunk sizes are varied from the full height
down to an eight pixel stripe. The decoding speed tends to be faster
as the number of chunks increases. However, as chunks become
too small, GPU utilization becomes low. The best sizes from each
image are selected. The final partition size is chosen as the largest
size on the best list to prevent from choosing a size that is too small
wrt. GPU utilization.

CPU GPU

Huffman

Dispatch

GPU

Write

(a) Normal GPU execution

CPU GPU

Huffman 1
(to GPU)

Huffman 2
(to GPU)

Huffman 3
(to GPU)

Dispatch

Dispatch

Dispatch

GPU
(Huffman 1)

GPU
(Huffman 2)

GPU
(Huffman 3)

Write

Write

Write

(b) Pipeline execution

Figure 5. JPEG decompression timelines: (a) GPU execution of
the parallel part after Huffman decoding and (b) pipelined execu-
tion of Huffman decoding and GPU computations. The CPU reads
back the results at the end of each kernel invocation. The read ar-
rows have been omitted for clarity.

5. Heterogeneous JPEG Decoding
Low-end GPUs may be incapable of out-performing high-end
CPUs. For such CPU-GPU combinations, distributing the entire
workload between GPU and CPU is required. We propose a perfor-
mance model and partitioning scheme that dynamically balances
the workload on a CPU-GPU system. We model execution time
based on an off-line profiling step. This profiling is required only
once for a given CPU-GPU combination. For profiling, we exe-
cute an instrumented version of the JPEG decoder to determine
the execution times of each decoding step for a training set of
images. Multivariate polynomial regression analysis is applied to
derive closed forms that characterize the performance of a given
CPU-GPU combination. We identified image entropy and the im-
age dimensions as the sole parameters for our performance model.
At run-time, the closed forms are evaluated for a given image to
estimate execution times and load-balance the decoding workload
between the CPU and the GPU.

5.1 Performance Model
Our training set consists of twelve images from an online image
benchmark [9] and seven self-taken images. Polynomial regression
poorly estimates performance for images with the dimensions out-
side of the training set range. Thus, the training-set baseline im-
ages are cropped to create combinations of width and height up to

25 megapixels. The total number of images in the training set is
4449.

We categorize JPEG decoding stages into two phases: a sequen-
tial phase (Huffman decoding) and a parallel phase (dequantization,
IDCT, upsampling and color conversion). The sequential phase is
executed exclusively on CPU while the parallel phase can be exe-
cuted on either the CPU or the GPU. Execution times are collected
for four decoding modes: sequential, SIMD, GPU and pipelined
GPU. Execution time is measured using CPU timestamp counter
registers and the OpenCL event profiler.
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Figure 6. Execution time of SIMD and GPU of the parallel phase
on GTX 560 scales linearly as image size increased. The other
tested platforms showed a similar trend.

Figure 6 indicates that the parallel phase scales linearly with
respect to image size. Thus, we perform polynomial fits on the
parallel phase, PCPU and PGPU , as a function of image width and
height. Huffman decoding does not show a linear relationship with
image dimension. We have observed that it varies on the complexity
of the chrominance and luminance of an image, which reflects
on entropy size. Figure 7 suggests a linear relationship between
Huffman decoding time per pixel and entropy density. Because the
encoded bitstream occupies the largest portion of a JPEG file, the
density of entropy coded data can be approximated from image file
size and image dimensions as

d =
ImageFileSize

w ∗ h , (3)

where w is the image width, h is the image height and d is the
image’s entropy density per pixel. We model the Huffman decoding
rate, THuffmanPerPixel , using polynomial regression as a function of
entropy density. The Huffman decoding time of the entire image,
THuff , is approximated as follows.

THuff (w, h, d) = THuffmanPerPixel(d) ∗ w ∗ h (4)

This equation assumes that entropy data is evenly distributed across
an image, which we found to be a workable approximation.

The variables to our performance model are image width, height
and entropy data size. We model each phase using polynomial re-
gression up to a degree of seven. The best fit model is selected by
comparing Akaike information criteria [1]. Modelling with higher
degrees is computationally possible. However, we have observed
that higher degrees do not imply a more precise model, and per-
formance may suffer from the higher prediction time required to
evaluate polynomials of higher degrees.

Evaluating polynomials of high degrees at run-time showed a
noticeable negative impact on the performance of the JPEG de-
coder. We rearranged all polynomials in Horner form [8] to reduce
the number of multiplications required for polynomial evaluations.
With this optimization the prediction overhead became negligible
compared to the overall execution time for decoding.
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Figure 7. Huffman decoding rate on GTX 560 with respect to the
density of entropy in bytes per pixel along with best-fit lines.

The overall execution time on a CPU can be expressed as a
summation of the sequential phase and the parallel phase:

Ttotal = THuff (w, h, d) + PCPU (w, h), (5)

When we profile execution times on the GPU, OpenCL work-
group sizes are alternated from 4 MCUs to 32 MCUs to find the
best work-group size for a specific platform. Similar to the CPU
model, the total execution time for the GPU mode is expressed a
summation of Huffman decoding time and GPU execution time.

Ttotal = THuff (w, h, d) + PGPU (w, h) (6)

Data transfers between CPU and GPU device generate significant
overhead [7]. The time collected for the GPU includes data transfer
overhead and the GPU kernel computation,

PGPU (w, h) = Ow(w, h) + Tkernel(w, h) +Or(w, h), (7)

where Ow and Or are data transfer costs from the CPU to the GPU
and vice versa. The input and output buffers are pinned, to achieve
faster transfers [17].

5.2 Partitioning Schemes
For reasons introduced in Section 1, Huffman decoding constitutes
the non-parallelizable part of JPEG decoding, which is thus entirely
executed on the CPU. Subsequent decoding steps, i.e., IDCT, up-
sampling and color conversion constitute the parallelizable part for
which we utilize both the CPU and the GPU. For the parallelizable
part, our partitioning scheme splits images horizontally such that
the initial x rows of the image are assigned to the GPU, and the
remaining h− x rows are assigned to the CPU. The value for vari-
able x is chosen such that the overall execution times for the CPU
and GPU are equal, i.e., the load is equally balanced. Variable x
is rounded to the nearest value evenly divisible by the number of
rows in an MCU. This requirement is due to libjpeg-turbo’s con-
vention to decode images in units of MCUs. The input parameters
to our partitioning schemes are the image dimensions and the im-
age entropy, approximated by bytes/pixel derived from the image
data size and the image dimensions.

5.2.1 Simple Partitioning Scheme (SPS):
The simplest approach is to parallelize the computations after Huff-
man decoding. CPU and GPU perform the parallel phase concur-
rently. Figure 8(a) illustrates the SPS partitioning scheme. The CPU
first performs entropy decoding of the entire image, then partitions
the resulting image data in two parts. The first part is processed by

the GPU and the second part by the CPU. Data transfer commands
between CPU and GPU and kernel launching commands are asyn-
chronous calls. Hence, the CPU is allowed to continue execution af-
ter dispatching commands to the GPU. The overall execution time
can be modelled as the maximum time of the two architectures.

Ttotal = max(TCPU , TGPU ) (8)

With the SPS model, the CPU execution time, TCPU , and the GPU
execution time, TGPU , are expressed as
TCPU (w, h) = THuff (w, h, d)+, Tdisp(w, h− x) + PCPU (w, x), and

(9a)

TGPU (w, h) = THuff (w, h, d) + PGPU (w, h− x), (9b)

where x is the number of rows assigned to the CPU, and Tdisp is the
amount of time the CPU spends on the OpenCL kernel invocation.
PGPU includes kernel execution time and data transfer overhead.
The workload is considered well-balanced when the parallel parts
on both architectures achieve the same execution time.

f(x) = Tdisp(w, h− x) + PCPU (w, x)− PGPU (w, h− x) (10)

The only unknown variable is the number of rows assigned to
the CPU, i.e., x. When f(x) become zero, the execution time is
balanced. This problem is equivalent to the root solving problem.
At run-time, the root can be estimated using Newton’s method,

xn+1 = xn −
f(xn)

f ′(xn)
, (11)

where xn is the initial partitioning height to the CPU, xn+1 is the
new height approximation, f(xn) is given as Equation (10), and
f ′(xn) is the first derivation. Newton’s method is performed recur-
sively until no better partition can be found. The GPU computes
the parallel phase on the sub-image of size w by h − x, while the
CPU computes the remaining x image rows.

5.2.2 Pipelined Partitioning Scheme (PPS):
The GPU is underutilized during the Huffman decoding stage in
SPS. We have demonstrated in Section 4.5 that sequential Huffman
decoding can be parallelized with GPU kernel execution. Entropy
data for the CPU can be decoded simultaneously with GPU com-
putations as illustrated in Figure 8(b). The concurrent execution
happens after the Huffman decoding part for the GPU. The total
execution time on each architecture can be modelled as follows.

TCPU = THuff (w, h, d) + PCPU (w, x) + Tdisp(w, h− x) (12a)

TGPU = THuff (w, h− x, d) + PGPU (w, h− x) (12b)

This partitioning scheme balances GPU execution with the sum of
OpenCL dispatching time, entropy decoding time for the CPU part
and the computation time of the parallel part on the CPU.

f(x) =Tdisp(w, h− x) + THuff (w, h, d) + PCPU (w, x)

− PGPU (w, h− x)
(13)

Similar to SPS, we use Newton’s method to approximate variable x
at run-time.

Further parallelism can be achieved by pipelining the GPU
kernel executions with this partitioning scheme. Figure 8(c) shows
an execution timeline of PPS. The parallel part for the first image
chunk (Huffman 1) is started on the GPU immediately after it has
been transferred from the CPU.

TCPU = THuff (w, h, d) + PCPU (w, x) + Tdisp(w, h− x) (14a)

TGPU = THuff (w, c, d) + PGPU (w, h− x) (14b)

In the above equation, c is the number of image rows per chunk
decoded on the GPU. The chunk size has been determined through
profiling as explained in Section 4.5. The number of rows per chunk
can be calculated by chunk size divided by image width. Therefore,
the partitioning equation becomes

f(x) =THuff (w, h− c, d) + PCPU (w, x) + Tdisp(w, h− x)

− PGPU (w, h− x),
(15)
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Figure 8. Heterogeneous JPEG decoding timelines of three execution models: (a) SPS, (b) overlapped Huffman decoding and GPU
execution, and (c) PPS. Partitioning schemes are depicted proportionally; PPS achieves the highest overlap of GPU kernel execution with the
sequential Huffman decoding on the CPU. Note that the last GPU invocation is shorter because the work is shared with the CPU (SIMD).

where h− c denotes the remaining rows in an image after the first
chunk.

Our Huffman decoding time estimation model assumes a uni-
form entropy distribution across an image. However, the density of
entropy data is unlikely to be evenly distributed in practice. Using
the Huffman decoding time model to estimate the time for a certain
chunk is often imprecise because the average density and the ac-
tual density of the chunk are mismatched. We compensate the error
by re-partitioning. Throughout the computation, we keep records
of the actual Huffman decoding times. Before entropy decoding of
the last GPU chunk, workload distribution is re-calculated. At this
point, one GPU chunk and the CPU partition remain unprocessed.
Thus, a modification of Equation (13) can be used,

f(x) =Tdisp(w, h′ − x′) + THuff (w, h′, d′) + PCPU (w, x′)

− PGPU (w, h− x)− PprevGPU ,
(16)

where h′ is the unprocessed height, x′ is the new height allocated
to the GPU, and d′ is the new density rate. The previous kernel ex-
ecution may not complete by the time of re-partitioning. TprevGPU

is an estimated remaining time from the previous GPU kernel in-
vocation that potentially influences the new partitioning scheme.
The remaining height, h′, is known at run-time. The only unknown
variable to be solved at run-time, is x′.

We estimate the total Huffman decoding time using Equa-
tion (4), and the actual Huffman decoding time of previous chunks
are known at run-time. Figure 7 implies a linear proportional re-
lationship between an image dimension and Huffman decoding
time. The new density is calculated using the ratio of the remaining
Huffman time and the image height.

d′ =
HuffmanDecodingTimeRatio

ImageHeightRatio
∗ d, (17)

Above, HuffmanDecodingT imeRatio is the ratio of the re-
maining decoding time to the estimated total decoding time, and
ImageHeightRatio is the ratio of unprocessed height to the to-
tal image height. When the ratio of the remaining Huffman time is
greater than the height ratio, the remaining part of an image con-
sists of more detail. It indicates that the entropy data rate becomes
denser and more workload should be allocated to the GPU. Other-
wise, the entropy data rate becomes less dense, and more workload
should be allocated to the CPU.

Even though Figure 8(c) shows a small gain compared to Fig-
ure 5(b), this approach actually yields large improvements on a
hardware configuration where the CPU is more powerful than the
GPU.

6. Experimental Results
We conducted an extensive experimental evaluation on six versions
of the JPEG decoder, namely the sequential version, SIMD, GPU,
pipelined GPU, SPS and PPS, on three representative platforms
specified in Table 1. All file I/O instructions were disabled to min-
imize time variations that do not reflect the actual performance of
the algorithm. To demonstrate the effectiveness of our implementa-
tion, we used two chroma subsamplings, i.e., 4:2:2 and 4:4:4. The
other subsamplings are decoded in a similar manner as 4:2:2 im-
ages. For the performance evaluation we used a new set of images
that does not share any images with the training set. Our image
test-set consists of fourteen images from CorpusNielsFrohling and
three self-taken images. These images are cropped to various sizes
summing up to the total of 3597 images for each subsampling.

Machine name GT 430 GTX 560 GTX 680
CPU model Intel i7-2600k Intel i7-2600k Intel i7-3770k
CPU frequency 3.4 GHz 3.4 GHz 3.5 GHz
No. of CPU cores 4 4 4

GPU model NVIDIA
GT 430

NVIDIA
GTX 560Ti

NVIDIA
GTX 680

GPU core frequency 700 MHz 822MHz 1006MHz
No. of GPU cores 96 384 1536
GPU memory size 1024 MB 1024 MB 2048 MB
Compute Capability 2.1 2.1 3.0
Ubuntu version 11.04 12.04 11.04
Linux Kernel 2.6.38 3.5.0 2.6.38
GCC version 4.5.2 4.6.3 4.5.2

Table 1. Hardware Specifications.

6.1 OpenCL Kernel Execution
Figure 9 depicts a break-down of execution times for the sequen-
tial CPU, SIMD and GPU modes. The y-axis is normalized with
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respect to SIMD execution times. Our GPU computations on all
tested architectures surpass the sequential CPU execution. For this
specific image size, the GPU computation was able to reduce 35.5%
and 40.8% of the overall execution time on GTX 560 and GTX 680
respectively. The kernel execution from IDCT to color conversion
was 10x faster than the SIMD execution on the GTX 560 and 13.7x
faster on the GTX 680. However, taking data transfer overhead into
account, the performance improvements were reduced to 2.6x and
4.3x.
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Figure 9. Decoding time normalized with respect to JPEG de-
compression in SIMD mode. The decoded image’s dimension is
2048x2048 with 4:2:2 subsampling. Shown are the execution time
break-downs of libjpeg-turbo’s sequential JPEG decoder on the
CPU, SIMD execution on a CPU with libjpeg-turbo, and our GPU
execution.

It follows from Fig. 9 that performance improvements are
not guaranteed by migrating computations exclusively to a GPU.
GT 430, consisting of 96 cores, is the weakest GPU among the three
representative machines. The experimental result on the 2048x2048
image showed a 23% slow-down compared to SIMD execution on
an Intel i7. The kernel execution shows a 27% slower data transfer
between CPU and GPU.

6.2 Heterogeneous JPEG Decoding Performance
We evaluated our heterogeneous JPEG decompression models with
respect to the SIMD-version of libjpeg-turbo. Figure 10 shows
the average speedups with standard deviation bars as image size
increased. Due to space limitations, we only provide the results
for 4:4:4 subsampling. A similar trend was observed for 4:2:2
subsampling. Table 2 and Table 3 summarize the performances of
4:2:2 and 4:4:4 subsampling respectively.

Mode GT 430 GTX 560 GTX 680
GPU 0.72± 5.35% 1.59± 7.50% 1.94± 12.94%
Pipeline 0.92± 13.67% 2.19± 20.21% 2.33± 20.75%
SPS 1.31± 9.54% 1.81± 10.13% 2.04± 15.15%
PPS 1.54± 10.93% 2.34± 15.19% 2.52± 17.08%

Table 2. Average speedup and coefficient of variation over SIMD
execution when decoding 4:2:2 subsampled images.

PPS achieves the highest performance on all machines. It attains
average speedups of 1.5x, 2.3x and 2.5x over SIMD mode and 3.1x,
4.8x and 5.2x over sequential execution on GTX 430, GTX 560 and
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Figure 10. Average speedups over libjpeg-turbo’s SIMD execution
with respect to image size in pixels on the three representative
machines. The error bar represents standard deviation.

Mode GT 430 GTX 560 GTX 680
GPU 0.66± 5.82% 1.49± 5.87% 1.81± 10.84%
Pipeline 0.83± 13.48% 2.14± 19.97% 2.26± 19.48%
SSP 1.27± 8.62% 1.76± 8.12% 1.94± 12.55%
PPS 1.50± 10.46% 2.34± 14.33% 2.45± 15.02%

Table 3. Average speedup and coefficient of variation over SIMD
execution when decoding 4:4:4 subsampled images.

GTX 680 respectively. The highest-recorded speedups were 4.2x
faster than SIMD and 8.5x faster than sequential execution on GTX
680. PPS does not show a signification improvement over pipelined
GPU execution on GTX 560 and GTX 680 because most GPU
kernel executions were sufficiently fast to hide within the Huffman
decompression time. Therefore, only a small amount of workload
was allocated to the CPU, and a small improvement was achieved.

On GT 430, the GPU mode and the pipelined GPU execu-
tion mode failed to surpass SIMD. As a result, both of our par-
titioning schemes distributed the larger partition to the CPU. De-
spite the slow GPU, the cooperative CPU-GPU executions achieved
speedups over libjpeg-turbo’s SIMD mode.

The pipelined execution is always faster than a single large
GPU kernel invocation because entropy is decoded simultaneously
with a GPU computation to reduce the hardware idle time. When
the decoded image has a size smaller than the pre-determined
chunk size, the image is executed as one GPU kernel invocation.
Therefore, no improvement is shown over the normal GPU mode.

It should be noted that the GTX 680 has larger coefficients of
variation than the other machines. This fluctuation reflected the
contribution of Huffman decoding time to the speedup calculation.
An image with larger entropy data takes longer time to decode. As
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a result, the overall speedup becomes smaller than an image with
sparser entropy. The faster GPU is more sensitive to the change.
Therefore, GTX 680 suffered the highest impact from a small
change in Huffman decoding time compared to the other tested
machines.
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Figure 11. Speedup Comparison of PPS execution to the maxi-
mum achievable speedup on GTX 680. The points represent the
mean percent achieved along with standard deviation bars.

According to Amdahl’s law, the maximum attainable speedup is
restricted by the sequential portion of the program. Equation (18)
states the theoretical speedup assuming an infinite number of pro-
cessors.

Speedup =
Ttotal

Ttotal ∗ (1− P )
(18)

P is the fraction of the parallelizable portion of the program, and
1−P is the serial portion, which in this case, is entropy (Huffman)
decoding. Thus, the maximum achievable speedup over libjpeg-
turbo’s SIMD-version can be written as

Speedup =
Ttotal

THuff
, (19)

where Ttotal is the decoding time of the SIMD-version. We com-
pared the speedup of our approach to the theoretically attainable
speedup in Figure 11. PPS stabilizes at an average speedup of 88%
and attains its peak at 95% of the theoretically attainable speedup.
For small images, the speedup was slightly higher than half of
the maximum attainable speedup because these images were par-
titioned into few chunks for pipeline execution.

Consequently, less work was executed in parallel with entropy
decoding. Increasing the number of chunks would result in a lack
of data for GPU computation. As image size increases, an image
is split into more chunks, and thus, less work of the parallelizable
phase is visible to the user.

Figure 12 shows execution times of the CPU and the GPU dur-
ing the parallel execution. In the simple heterogeneous execution,
the entropy decoding time was omitted from CPU time as it is se-
quentially executed on the GPU. Similarly, the entropy decoding of
the first image chunk of the pipelined execution was omitted. GPU
and CPU shared similar execution times indicating well-balanced
loads. The main contribution to the variation in the pipelined het-
erogeneous mode is Huffman decoding time.

7. Related Work
DCT and IDCT algorithms are computationally intensive, but ex-
hibit a high potential for parallelism. Various image processing al-
gorithms, including DCT and IDCT, have been implemented for a
GPU architecture by Yang et al. [25]. The authors utilized CUDA
and applied CUFFT [18], a CUDA fast Fourier transform (FFT) li-
brary, to perform DCT and IDCT. However, extracting DCT from
FFT introduces extra computational overhead. The NVIDIA GPU
Computing SDK provides DCT and IDCT sample code to demon-
strate GPU programming. The kernel’s input and output data type

SPS PPS

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●
●●●●●●

●●
●●

●●

●
●

●
●

●●●●●●●●●●●●●●●●●●
●●●

●●
●●●●●

●●●●
●●●●

●●
●●

●
● ●●

●●●●●●●●●●●
●●●●●●●●●●●●

●
●●

●●
●●

●●

●

●
●●

●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●
●

●
●●●

●
●

●

●●
●

●●●●●●●●●●●
●

●●●●●●●
●●●●●

●●
●●●

●●
●

●

●
●●

●
●

●
●●

●

●●●●●●●●●●●●
●●●●●●●

●●●●●
●●●●●

●●
●

●

●
●●

●●
●

●●

●

0

25

50

75

100

0

20

40

0

10

20

30

40

G
T

 430
G

T
X

 560
G

T
X

 680

0e+00 1e+07 2e+07 0e+00 1e+07 2e+07

Pixels

E
xe

cu
tio

n 
tim

e 
(m

s)

● ●CPU Time GPU Time

Figure 12. The average CPU and GPU execution time with stan-
dard deviation during parallel executions are balanced indicating
balance workload between architectures.

are float. In contrast to our implementation, the input buffer to our
kernel is an array of short and the output buffer is an array of
unsigned character. These data types are vectorized to minimize
global memory transfer overhead. Moreover, we combine dequan-
tization, IDCT and color conversion in a single kernel to reduce
data communication.

A task-parallel implementation of JPEG decoding using libjpeg-
turbo has been explored by Hong et al. [11]. Fork/join parallelism
is applied to decode an image on CPU cores simultaneously. GPU-
JPEG [6] is an open source JPEG image compression and decom-
pression library for NVIDIA designed for real-time video. Tasks
for image decoding are divided between a CPU and GPUs where
the CPU performs file I/O operations and Huffman decoding while
the GPUs compute IDCT and color conversion. The GPU kernel is,
yet, optimized. Although the computationally intensive tasks are
parallelized on the GPUs, the entire process is done serially. On
the contrary, we minimize hardware idle time by utilizing software
pipelines and distributing workload across CPU and GPU.

Research on heterogeneous computing is receiving attention in
high performance computing. Shee et al. [21] conducted a case
study on JPEG encoders on Application Specific Instruction-set
Processors (ASIPs). They evaluated two parallel programming
patterns: master-slave and pipeline. The master-slave model uti-
lized task management and data-parallelism. In the pipelined
model, different ASIP processors were responsible for different
stages of JPEG encoding. L. Chen et al. [5] proposed a simi-
lar idea for MapReduce applications. The authors developed two
scheduling schemes, namely master-slave and pipeline model,
on integrated CPU-GPU systems. Data-parallelism and pipeline-
parallelism were utilized separately. The Qilin framework [16]
and CHC framework [13] showed possibilities of a cooperative
CPU-GPU computation of a CUDA application. Both frameworks
dynamically partitioned the workloads using their profiling based
partitioning models. Qilin used an empirical approach recording
new execution to a database while CHC applied a heuristic ap-
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proach. The partitioning schemes were designed for CUDA ap-
plications and only supported data-parallelism. The CAP sched-
uler [24] supports dynamic workload scheduling on CPU-GPU
systems. Profiling and workload partitioning are performed at run-
time. CAP profiles a small portion of the workload, verifies the
accuracy of the ratio and then uses the ratio for the remaining of
workload. Although it can effectively partition workload, it only
supports data-parallelism. Our proposed partitioning scheme, in
comparison, is designed specifically for JPEG decoder. The work-
load is partitioned without user intervention, and the CPU and the
GPU jointly perform the decoding tasks cooperating data-, task-
and pipeline-parallelism.

8. Conclusions
We have introduced a novel JPEG decoding scheme for het-
erogeneous architectures consisting of a CPU and an OpenCL-
programmable GPU. Our method employs an offline profiling step
to determine the performance of a system’s CPU and GPU with
respect to JPEG decoding. We apply multivariate polynomial re-
gression analysis to derive closed forms that characterize the per-
formance of a given CPU-GPU combination. Image entropy and
the image dimensions are the sole parameters for our performance
model. At run-time, closed forms are evaluated for a given image to
estimate execution times and load-balance the decoding workload
between the CPU and the GPU. Our run-time partitioning scheme
exploits task, data and pipeline parallelism by scheduling the non-
parallelizable entropy decoding task on the CPU, whereas IDCT,
color conversion and upsampling are conducted on both the CPU
and the GPU. Our kernels have been optimized for GPU memory
hierarchies.

We have implemented the proposed method in the context of the
libjpeg-turbo library, which is an industrial-strength JPEG encod-
ing and decoding engine. Irrespective of the GPU’s computational
power, our heterogeneous partitioning scheme always achieves an
improvement over the SIMD-version of libjpeg-turbo. The results
show speedups up to 8.5x over the sequential version and up to 4.2x
over the SIMD version of libjpeg-turbo. We have shown that our ap-
proach achieves up to 95% of the theoretically attainable speedup,
with an average of 88%. With the availability of GPU accelera-
tors on desktops and embedded devices such as tablets and smart-
phones, heterogeneous JPEG image decompression will enhance
image viewing experiences ranging from personal photos to very
large image applications in medical imaging and astronomy.
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