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SUMMARY

The more large-scale data centers’ infrastructure costs increase, the more simulation-based evaluations are
needed to understand better the trade-off between energy and performance, and support the development of
new energy-aware resource allocation policies. Specifically in the cloud computing field, various simulators
are able to predict and measure the behavior of applications on different architectures using different resource
allocation policies. Yet, only a few of them have the ability to simulate energy-saving strategies, and none of
them support the complete Advanced Configuration and Power Interface (ACPI) specification. ACPI defines
a terminology for all possible power states of a machine and their associated power rate. The hardware
industry has relied on ACPI to provide up-to-date standard interfaces for hardware discovery, configuration,
power management and monitoring, enabling a better understanding of the energy consumption level of
different hardware states, referred to as ACPI G-states, S-states and P-states. In this paper we improve
the modeling and simulation of the ACPI G/S-states and show not only that these states offer different
energy-saving levels, but also that state transitions consume energy. In addition, we model the latency to
transit between two states and the effects on the turnaround time when the transitions are not performed
conservatively. Furthermore, the equations provide essential information to quantify the trade-off between
energy consumption and performance, and assist in the analysis/decision on which strategy fits better in the
environment and how it could be refined. Our expanded energy model was implemented in CloudSim and
validated with simulation-based experiments with a very high level of accuracy, with a standard deviation of
at most 6%.
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1. INTRODUCTION

Cloud computing delivers infrastructure, platform and software as a service under the pay-as-you-
go model on an unprecedented scale [1]. Companies and developers do not need to make large
investments in hardware and maintenance services, allowing them to focus more on innovation
and improving business enterprises. These new opportunities increased the popularity of cloud
computing, due to its reliability, security, availability, fault tolerance, scalability, and sustainability.

Although there is already a variety of cloud computing systems, there is still no standard for
evaluating these environments. An appropriate alternative is the use of simulation tools through
which systems not physically available can be characterized. Simulation is a useful technique for

∗Correspondence to: Miguel Xavier, Faculty of Informatics, Pontifical Catholic University of Rio Grande do Sul, Ipiranga
avenue 6681, 90619-900 Porto Alegre, RS, Brazil.
†E-mail: miguel.xavier@acad.pucrs.br

Copyright c© 2016 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

This article is protected by copyright. All rights reserved.

This is the author manuscript accepted for publication and has undergone full peer review but has
not been through the copyediting, typesetting, pagination and proofreading process, which may
lead to differences between this version and the Version of Record. Please cite this article as doi:
10.1002/cpe.3839

http://dx.doi.org/10.1002/cpe.3839
http://dx.doi.org/10.1002/cpe.3839


2 XAVIER, ROSSI, DE ROSE, CALHEIROS, GOMES

computer system analysis to reproduce tests, evaluate hypotheses, and compare several scenarios.
Therefore, simulation-based experiments may be preferred over real experiments because they allow
the alternatives to be compared under a wider variety of workloads and environments. Furthermore,
it helps to detect bottlenecks and trade-offs before the deployment of the solution on a physical
infrastructure†

Identification of the impact of energy on performance in large-scale cloud data centers is one of
the today’s most studied topics on energy-efficient cloud computing [2, 3, 4]. The green IT-related
key issues involve reducing carbon emissions, which implies efficient management of energy usage,
with the reduction of equipment and rethinking business practices that cause the least impact to the
environment. In recent years, the U.S. data centers consumed an estimated 91 billion kilowatt-hours
(kWh) of electricity, which is equivalent to the annual output of 34 large (500-megawatt) coal-
fired power plants [5]. Currently, this scenario has become worse, and the numbers are even higher,
especially at the end of the year when cloud services have a high demand for resources (retail has
large demand spikes around Christmas).

This worrying scenario has stimulated many studies proposing strategies for energy conservation,
aiming at reducing the impact on the environment. Niyato et al. [6] proposed an ideal power
management based on a Markov model to adjust the number of active servers for maximum energy-
savings. Beloglazov and Buyya [7] presented a heuristic for virtual machines allocation in a cloud
with the goal of saving energy. Duy et al. [8] presented the design, implementation and evaluation of
a scheduling algorithm integrated with a predictor that uses neural networks to optimize the energy
consumption of servers in a cloud. Alvarruiz et al. [9] proposed a management system for clusters
and clouds that saves energy by turning off idle nodes across the network. Isci et al. [10] showed
that there is an opportunity for energy-saving strategies in these environments using the concept of
sleep states.

Such strategies are based on the fact that not all physical hosts are overutilized all the time (the
hosts’ usage rate differs substantially in a large-scale data center), leading to energy-savings policies,
such as:

• Reduce the processors’ frequencies: processor frequencies might be scaled up/down on
demand based on their utilization rate. This capability provides a high degree of energy
conservation while putting the processors to operate at the lowest frequency. This is the
most straightforward and usual policy, since it is set once and remain unchanged during the
operating system (OS) run-time;

• Put idle hosts to sleep (sleep states): consolidation of virtual machines in cloud data centers
is arguably a well-established approach to reduce costs and make better use of the resources.
The higher the number of consolidated virtual machines, the greater the number of idle
physical hosts consuming energy needlessly. Based on this, it is possible to put idle hosts
into a lower-power state by turning off its internal hardware components.

Many strategies have adopted such policies to increase energy efficiency, but they are not feasible
if the underlying hardware does not provide standard interfaces for power management of its internal
components. To this end, the hardware industry has implemented such standard interfaces, enabling
robust OS-directed motherboard device configuration and power management of both devices and
entire systems. These standard interfaces have been defined since 1996 in the specification referred
to as Advanced Configuration and Power Interface (ACPI) [11]. In broad terms, the specification
defines, among many other things, a terminology for all possible power states of a machine and their
associated energy consumption levels. These definitions in ACPI are implicitly cited when talking
about processor power states (P-states) and machine power states (G/S-states) in any energy-saving
strategy. With the continuous evolution of standards in its collections, the ACPI has become a de
facto standard in the industry and has been widely supported by companies such as Hewlett-Packard,
Intel, Microsoft, Phoenix, and Toshiba [11].

†Cloud computing environments composed of physical resources, such as servers, switches, routers, etc.
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Put ACPI-compliant machines into a G-/S-state contributes significantly to energy-savings, but
imposes an additional latency to enter or leave a state. This latency might delay resource availability
and affect the scheduling performance (job turnaround time). There have been many studies
focusing on identifying the trade-off between energy consumption and performance to sidestep this
disruptive effect. Our proposal is complementary, we focus on the modeling and simulation of the
ACPI G/S-states, considering the trade-off to switch a host from one state to another. We correlate
power rate and latency to identify the trade-off (Section 4). We validate our model in CloudSim,
allowing it to simulate a handful of energy-saving strategies previously impossible on a robust and
well-validated platform (Sections 5 and 6). As we shall see, the cost to switch a host between two
states plays an important role in our model, since the transitions imply different power rates and
latencies to return a host to the G0 state (a state in which the host might be used for virtual machine
provisioning) (Section 7).

2. BACKGROUND AND STATE OF THE ART

This section presents a background on the terms used in energy-saving solutions and the state-of-
the-art concepts that are relevant for energy-aware studies. In order to drive the reader with the
concepts intrinsic to the work, we would like to distinguish them as follows:

• Power model: Is a real-world scenario description using mathematical terms and languages
for this purpose. In the context of energy consumption, power models might be understood as
being an equation or a set of equations that describe the power rate of a system, in which the
effects of its components, as well as, the predictions of its behavior are explained. The energy
consumption is obtained through the integral of the power model equations.

• Energy-saving strategy [12]: Represents actions performed by a given entity upon a system
with the sole purpose of reducing the overall energy consumption. Strategies normally benefit
from power models to reach their goals;

• Energy-saving policy [12]: Denotes the behavior of a system when an energy-saving strategy
acts on it.

The challenge to be tackled in simulation methods is how to develop a model that most closely
represents a real environment. Hence, models should be implemented/validated in simulators and
accuracy is achieved when the simulated results are close to real results. Otherwise, the simulation
produces no useful or misleading results. The first part of this section covers work that present
power models for cloud computing environments. Then, we summarize studies that implement
power modules in simulators to evaluate strategies with policies involving scheduling, placement,
consolidation, scaling of processors’ frequencies (P-states) and shutdown hardware components
(G/S-states).

2.1. Energy-Aware Modeling

Some recent work in energy-efficient cloud computing benefits from virtualization capabilities, such
as load balancing, resource allocation and virtual machine scheduling, to make the environment
more sustainable [13]. Another study proposes power models to quantify the energy consumption
of different workloads [14]. Beloglazov and Buyya [15] balance the Service-level agreement (SLA)
metrics and energy constraints, describing the energy consumption through a linear model.

Bohra and Chaudhary [16] proposed a model that considers the utilization of CPU, RAM, cache,
and disk. The model consists of a four-dimensional linear regression, allowing a computational
resource usage prediction with 82% accuracy. This model can be seen below, where PCPU , Pcache,
PDRAM , and Pdisk are the explanatory variables that denote computational resources, and C0, C1,
C2, C3, C4 are weights calculated the workflow.

Ptotal = C0 + C1PCPU + C2Pcache + C3PDRAM + C4Pdisk (1)
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This model predicts the power rate of a single core host, but can not determine the individual
consumption of each virtual machine. Thus, it was decomposed into a linear system for this purpose,
as follows:

Ptotal = P(baseline) +

N∑
k=0

P(domain(k)) (2)

Where P(domain(k)) corresponds to the power rate implied by an active domain (a domain is one
of the virtual machines that run on the system), and N is the number of active domains including
domain0. Domain0 is the first domain started by the Xen hypervisor at boot time. Based on this
model, Chen et al. [17] proposed a new model that uses only two of the most power consuming
components: processor and disk. C0 is replaced by Pidle as follows.

Ptotal = Pidle + C1PCPU + C2PHDD (3)

The new model (equation 3) aims to infer the power rate based on just these two components,
since cache and RAM are not significant enough to disrupt the results. The management of cloud
computing environments is a complex task due to their layered structure and the heterogeneity of
their resources.

Bruneo et al. [18] present several characteristics of these environments that can hinder
management, such as allocating, migrating and consolidating resources, in addition to managing
when, how and where to instantiate new virtual machines. To this end, they present a stochastic
model (stochastic reward nets) that investigates the best strategy to manage cloud environments,
focused on reducing energy consumption.

Salehi et al. [19] present a power module for Haizea [20] serving as a scheduler for cloud
computing platforms such as OpenNebula. The simulation traces from a supercomputing center
in San Diego were used, and showed a reduction in energy consumption of 18% within 30 days.

Although current models are quite accurate regarding power rate of individual components, they
do not take into account the trade-off to put a machine in a power state. The model proposed in this
work overcomes this limitation, allowing for a more realistic cost-benefit analysis of energy-saving
strategies based on ACPI states.

2.2. Energy-Aware Simulation

This section presents implementations of power models in simulators to support energy-saving
strategy evaluations.

CloudSim [21] consists of a general system and extensive simulator, enabling modeling,
simulation and testing infrastructure in the emerging cloud computing applications and services.
Some advantages can be identified, such as requiring less effort for test implementation,
while allowing large-scale environment simulation. Also, it allows flexibility in the choice and
implementation of new policies for using resources and services. The power module has been
introduced in CloudSim in a partial implementation of ACPI focused on DVFS (Dynamic Voltage
and Frequency Scaling) [22] by Guérout et al. [23].

The GreenCloud simulator [24] extends the functionalities of the NS-2 network simulator
[25] to measure the power rate of communication components and packet-level patterns for data
centers. Also, it includes specific functionalities of virtualized data centers, such as virtual machine
migration. All topologies supported by NS-2 can be used, allowing power measurement in several
TCP operations, routing, and protocols.

ICanCloud simulator [26] is focused on Amazon’s cloud environment, allowing flexibility in the
choice of the hypervisor, and providing large-scale simulation. The aim of this simulator is to predict
the trade-offs between energy consumption and performance of applications running on a specific
hardware. To this end, the simulated scenarios allow for the use of various data center components,
such as disk, network, memory, and file system environments, including their behavior.

The MDCSim [27] presents a power module based on the workload execution time and CPU
usage rate. MDCSim represents a typical 3-tier environment (application, web server, and database).

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

This article is protected by copyright. All rights reserved.



MODELING AND SIMULATION OF ACPI ENERGY-EFFICIENT STATES IN CLOUD ENVIRONMENTS 5

The simulator allows multiple scenario configurations are varying the network latency, cluster
size, and workload. Based on this information, the user can scale the cloud environment to suit
performance metrics, such as response time or number of transactions per minute. The power
module implemented in MDCSim uses a linear function based on three components: a fixed CPU’s
frequency, the energy consumption of the hosts, and the application throughput.

There have been many cloud computing simulators that support energy-saving strategy
evaluations, but none of them implements the complete ACPI specification. Moreover, recent studies
lack a proper understanding of the trade-off between energy consumption and performance when
dealing with the simulation of the ACPI states.

3. ADVANCED CONFIGURATION AND POWER INTERFACE

ACPI is a specification that provides an open standard for operating system (OS) power
management. It was designed to allow OSs to configure and control each hardware component,
replacing both the predecessors Plug and Play (PnP) Energy Management and the Advanced Power
Management (APM). In modern hosts, the firmware-level ACPI is implemented in the ACPI BIOS
code, which provides tables containing information on hardware access methods. OSs use this
information for tasks like assigning interrupts or (de)activating hardware components. As this
management is performed by the OS, there is greater flexibility regarding energy-saving modes for
CPU and several other devices present in the hardware. This section outlines how ACPI is organized
and how its components relate to each other.

3.1. ACPI Architecture

The ACPI architecture can be seen in Figure 1, where the upper part represents user-mode
applications and threads dispatched by OS. The communication between OS and hardware platform
is performed by a device driver. Likewise, power management is done by the ACPI driver through a
communication between OS and the hardware platform.

Hardware BIOS

ACPI

Tables

ACPI

Registers
ACPI

BIOS

Device

Driver

ACPI

Driver

Kernel

Application

Operating System

Figure 1. The ACPI Architecture [11]

The ACPI driver manages three different components: ACPI Tables, ACPI Registers, and ACPI
BIOS. ACPI Tables contain hardware descriptions managed through ACPI, including machine-
independent byte-code used to perform hardware management operations. ACPI Registers provide
low-level hardware management operations. Finally, during the hardware designing, additional
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registers are implemented to be accessed through the byte-code stored in the device-specific part
of the ACPI tables, referred to as ACPI BIOS.

In computers that support ACPI, before the OS is loaded, the ACPI BIOS puts the ACPI Tables in
memory. Thus, when the OS is started, it searches for a small data structure with the valid signature
within the BIOS and uses a pointer to the ACPI Tables to find the definition of the hardware blocks.
The ACPI Registers store changes that are made in the ACPI Tables. By ACPI, the OS has the ability
to put devices in and out of low-power states. Devices that are in use can be turned off. Similarly, it
uses information from applications and user settings to put the system as a whole into a low-power
state.

Although ACPI is a standard used in today’s computers, several legacy architectures remain
in use in data centers. Most of these architectures have their resources managed directly by
the firmware. The main firmware-based approach is the System Management Mode (SMM). As
computer architectures evolved, conflicts started to be observed between information obtained via
SMM and OS [28]. Since in SMM the processor’s states are stored in the System Management RAM
(SMRAM), ACPI can read these legacy states and translate them to supported ACPI states.

3.2. ACPI States Overview

From a user-visible level, the system can be thought of as being in one of the power states presented
in Figure 2. Moreover, the arrow indicates the depth of energy savings provided by each state.
ACPI specifies different power state levels, which are: Global states, Sleep states, device states, and
processor states. Some of these levels comprehend IT resources, such as computers, hard disks,
graphic cards, in addition to other peripherals, such as the processor chip.

Global

states

(a)

G0

G1

G2

G3

Global

sleep state

(b)

S1

S2

S3

S4

Device

states

(c)
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C0

C1
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Processor
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(e)
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Power

Min

Power

.

.

.

Figure 2. ACPI states based on [11]

The Global states (Figure 2 (a)) denote the entire system and are visible only to the user. Sleep
states (Figure 2 (b)) are power states derived from the G1 state and are visible only to the system.
When the user has pressed the power button, for example. The power states of a particular device
(Figure 2 (c)) are usually not visible to the user. For instance, devices may be turned off while the
system keeps working. Finally, Processor states (Figure 2 (d)) are power states within the G0 state
(working state). It means the Processor states may vary if the computer is processing something.
Besides those mentioned states, Dynamic Voltage and Frequency Scaling (DVFS) [22] is the name
given by the industry to P-states (Figure 2 (e)). Each level denotes one of all available modern CPU’s
frequencies which in conjunction with the ACPI-based firmware allows on-the-fly adjustment based
on the CPU load. Table I shows the depth levels of the mentioned states, as well as their descriptions.
The deeper the state, the lower the power rate and the higher the latency for returning to the working
state.

3.3. Synthesis and Discussion

The first most widely used power state in energy-saving strategies is called standby (S1), which
turns off the screen, hard drives and fans. Because all open programs are kept stored in RAM, the
memory remains active, requiring little power for maintaining user data until some external event
occurs and turn the subsystems back on. The advantage of this state is the short time required for the
computer to be on again. This is fundamental in situations where the computer must be awakened
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Table I. Description of the ACPI states

Global States

G0 the system and user threads are running (working)

G1 the system consumes a small amount of power, user mode threads are not running, the
system appears as if turned off, and the system context is saved (sleeping)

G2 the system consumes a minimal amount of power, user mode threads and system
processes are not running, and the system context is not saved (Soft Off)

G3 the system is turned off (Mechanical Off)

Sleep States

S1 no system context is lost

S2 CPU and system cache context are lost

S3 CPU, system cache, and chip set context are lost

S4 powered off all devices

Device States

D0 device is turned on and running

D1 low-power state when the device context may or may not be lost

D2 low-power state when the device context may or may not be lost, and the power supply
of the bus is reduced

D3 device is turned off and not running

Processor States

C0 CPU is on

C1 CPU is not executing instructions

C2 CPU main internal clocks are stopped

C3 deep sleep

Processor Operational States

P0 maximum processor performance capability and may consume maximum power

P1 the processor performance capability is limited below its maximum and consumes less
than maximum power

Pn the processor performance capability is at its minimum level and consumes minimal
power while remaining in an active state

to all possible events or do so very quickly. As the context of the OS is stored in a volatile memory
that requires power to keep up the data, there is a disadvantage when instabilities occur in the power
grid.

Another lower-power state adopted in a variety of energy-saving strategies is called hibernate
(S3). In this state, the computer is completely turned off, and the application execution context is
stored as a file into the hard disk. When an external event interrupts hibernation, the computer is
turned on, and the original state is loaded from the hard drive into memory. Computers consume
less power in this state because most of the hardware components are turned off. The drawback is
that the computers in this state incur a higher latency for getting ready due to the cost of moving the
context from disk to memory.
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Besides these two power states, another way to save energy is by turning computers off without
worrying about the OS state, application contexts or user data. This behavior refers to the global state
G2 in ACPI. The difference of this state compared to hibernation is that it does not keep settings in
memory.

These states can be controlled locally by ACPI commands, but in some systems the ACPI might
also be remotely managed using Wake-on-LAN (WoL) [29]. WoL consists of a standard developed
by AMD for computers connected to a network to manage energy information. For this, the network
card and the motherboard must support WoL.

4. MODELING THE ACPI STATES

While most previous studies are related to at least one ACPI state, none of them explore the cost to
go from one state to another. For example, if a given computer goes into the G2 state; that is, it is
turned off to meet an energy-saving strategy, how long does it take to turn back on? And how much
energy is spent during reboot?

Figure 3 depicts power-agnostic states in a computer and their transitions from a holistic view of
a data center, where the requested computers are busy and unused computers are idle. Under these
constraints, it is possible to infer several polices to decide on conditions to enter or leave ACPI states
to save energy. However, the trade-off concerning energy consumption and performance to change
power states is not considered in current simulators, even though they are fundamental to answer
the above optimization questions.

S − state P − state
leaving

idle
entering

busy

Figure 3. power-agnostic states of a computer.

From the ACPI’s point of view, when a computer becomes busy, its CPU might be put into one of
the load-driven power states (P-states). On the other hand, the computer might enter into a S-state
when it becomes idle, reducing the energy consumed by hardware components in both states. This
is a very common scenario in laptops and mobile devices to conserve energy. In a more generic
sense, the set of ACPI G-/S-states can be correlated as shown in Figure 4.

G0

S3S4

G2

l, pl, p

l, p

l, p

l, p

l, p

l, p

l, p

l, p

l, p

Figure 4. Correlation of ACPI S-/G-states. Edges represent reachability between states and weights the
latency and power rate to switch between them.

It is worth noting that all states at some point converge at the G0 state, when the computer is busy
in processing a workload. It occurs because any transition must pass through G0, as per the ACPI
specification. The weights l and p denote, respectively, the latency (seconds) and power rate (watts)
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required for a state to be reached. Moreover, the power rate while the computer remains in each
state is represented as a transition to the state itself.

Although transitions between states can be measured at discrete time intervals and are
represented by different reachable states, they do not present a probabilistic behavior.
State transitions are deterministic based on well-defined and controlled events within
a limited set of states. This deterministic behavior of ACPI’s state transitions makes
them unsuitable to be modeled via stochastic processes, such as Markov Chains.
Therefore, according to graph theory we express this behavior as G = (V,A), where
V = {νi, ..., νn} is the vertix-set, and A = {εi, ..., εm} ⊆ {(x, y), {x, x} | x, y ∈ V } is
the edge-set. From the ACPI standpoint, we define: V = {G0, G2, S3, S4} and A =
{(G0, G2), (G2, G0), (G0, S3), (S3, G0), (G0, S4), (S4, G0), {G0, G0}, {G2, G2}, {S3, S3}, {S4,
S4}}. Power (p) and latency (l) are the weights of each ε ∈ A such that F (ε) = ((x, y), {x, x}).

In order to discuss our claims, we conducted a set of preliminary tests in a physical computer
to identify relationships between state transitions under different load conditions. We assessed the
power rate while the computer was changing from/to G0, G2, S3, and S4 states. In the case of
(G0,G0), in which the computer is busy and the CPUs might enter in a load-driven P-state, we
scaled them up to the maximum frequency for peek energy consumption. The testbed consists of
a computer equipped with two 2.27GHz Intel Xeon E5520 processors (with 8 cores each), 8M
of L3 cache per core, 16GB of RAM and one NetXtreme II BCM5709 Gigabit Ethernet adapter.
The instantaneous power rates were measured via a digital power meter connected directly to the
computer’s power supply and the latency was obtained by inspecting power fluctuation during
transitions. The measurements for each state and its transitions are shown in Table II.

Table II. Assessments of the power states and their transitions in a computer. N/A means the computer does
not process any load in sleep mode. The symbol ∞ means the computer may stay indefinitely in a state.

Latency and Power are represented in seconds and watts, respectively.

ε l(ε) p(ε) σl σp

(G0,G2) 59 108 1.1 0.7
(G2,G0) 81 69 2.1 0.4
(G0,S3) 25 51 1.1 0.5
(S3,G0) 5 91 0.6 0.5
(G0,S4) 101 86 4.9 0.2
(S4,G0) 79 79 1.3 0.9
{G0,G0} ∞ 190 N/A N/A
{G2,G2} ∞ 6 N/A N/A
{S3,S3} ∞ 9 N/A N/A
{S4,S4} ∞ 11 N/A N/A

Latencies and power rates may vary during state transitions. Computers with a large amount
of data loaded in memory will probably take more time to be powered off than idle computers.
To reflect this, several measurements of latency and power were performed while the computer
was under different load conditions in terms of memory and CPU usage, and the measurements
were based on the average with their respective standard deviations σ. The total amount of memory
allocated was from 10% to 100% and the CPU load was increased in a core basis, starting from 1 to
16 using the Linpack benchmark [30]. The highest standard deviation was observed in (G0, S4). All
data were moved from the memory to disk before entering the S4 state. This caused the latency to
vary unpredictably because of the amount of data in memory. We believe this is not an issue because
energy-saving strategies in most cases do not change computer’s power states until it is unallocated,
so that memory content is cleaned up and space is returned to the OS before any policy is triggered.

Based on our observations, the energy consumed by a computer during a given state transition ε
is calculated by the integral of the power rate using the first instant time t0 and the amount of time
the computer is changing to a state tl(ε) as limits:
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Eε =

∫ tl(ε)

t0

p(ε)Dt (4)

Given that a computer may have its power state changed many times governed by an energy-
saving strategy, then we need a discrete equation to sum the energy consumed by a set of executed
transitions. Thus, let S : S ⊆ E be a subset of transitions executed for a period. The total energy
consumed by transitions in S is given by:

ET =
∑

Eε,∀ε ∈ S ⊆ {(x, y), {x, x} | x, y ∈ V } (5)

Additionally, we also considered the consumption while the computer is in the G0 state; that is,
executing some task. The CPU’s frequencies may vary dynamically to conserve power in the G0
state by entering into a P-state. Thus, we added to our definition the well-known linear power model
proposed by Chen et al. [17] which considers CPU usage (α) as input to predict power in P-states:

E{G0,G0} =

U∑
i=1

.

∫ tl

t0

[
(1− α)PFreqIdlei + αPFreqFulli

]
Dt (6)

Where the CPU power rate while it is idle and full utilization are denoted by PFreqIdle and
PFreqFull, respectively. The integral limits represent the amount of time the computer remained in
G0, and U is the total amount of processing units. Finally, the total energy consumed by transitions
in S including the {G0, G0} transitions, is denoted by:

E = ET + E{G0,G0} (7)

It should be noted that a transition occurs whenever a request arrives and a given computer
must return to G0 to serve it. Thus, let W :W ⊆ S be a subset of transitions performed over this
condition, w the user’s workload and t its execution time. The equation that represents the total
workload execution time when the requested computer is not in G0 and the user must wait for a
transition ε before having its workload placed on that computer is as below:

ET = t(w) + l(ε), ε ∈W (8)

Finally, the latency-related performance degradation incurred by transitions in W is given by:

LT =
∑

l(ε),∀ε ∈W (9)

It is remarkable that there is a trade-off between the total energy consumption and performance.
The impact of this relationship on real-world scenarios now becomes much clearer. An in-depth
study reveals that current energy-saving strategies do not consider this trade-off and that there are
environments where these transitions would have a huge influence on energy consumption and user’s
SLA, such as those that the turnaround time is critical and should never be exceeded. We claim that
these influences would be better comprehended through simulation-based evaluations that enable an
analysis without any disturbance of the environment.

5. MODEL SIMULATION

Evaluation by simulation allows researchers to evaluate different ACPI states efficiently without
being affected by the environment. To this end, we expanded the current CloudSim’s power
engine to enable more generic energy-saving strategy simulations of cloud computing environments
considering host’s power states and their transitions. CloudSim’s DVFS package provides part of
the ACPI architecture (e.g. P-states), which can be expanded to encompass other power states, such
as S-states, G-states, etc. We did not see opportunities to implement D-states support, as CloudSim
does not implement devices in its physical substrate. Also, the energy consumed by devices such as
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hard drives, CD-ROM, LCD display, etc, is not a concern in cloud computing environments, and the
energy-saving strategies usually do not consider this layer of physical components. Nevertheless,
equation 5 could be easily adapted for all types of devices.

5.1. Model Implementation in CloudSim

The proposed energy model was added to CloudSim’s DVFS package developed by Guérout et al.
[23]. The package already implements and offers part of the ACPI architecture (e.g. P-states), which
allowed us to expand from a well-validated power engine. The DVFS package provides a framework
to simulate strategies involving only processor features. With the new capabilities it is possible to
simulate a wider set of strategies. Therefore, we now have the ability to simulate not only processor
states, but also strategies involving sleep and global states. In fact, we included subsidies that allow
simulation of ACPI G/S-states, as presented in the specification document and described in Section
3.2.

Actually, CloudSim’s power engine core is comprised of the following entities and
objects: PowerDataCenterBroker, PowerDataCenter, PowerHost, PowerModel,VirtualMachine and
Cloudlet. The class PowerDataCenterBroker models the broker, which is responsible for mediating
between users and service providers. PowerDataCenter models the core infrastructure level services
(hardware, software) offered by resource providers in a cloud computing environment. Moreover,
PowerHost models physical hosts. PowerModel measures power based on the CPU load. Also,
VirtualMachine models a virtual machine instance. Lastly, Cloudlet is the cloud-based application
services (workload). The relationship between the power engine and the new modeled entities and
objects can be observed in the diagram in Figure 5.

Figure 5. ACPI implementation in CloudSim’s power engine. The new designed entities are highlighted in
grey.

Regarding object classes, the class ACPIStateDatas was modeled to represent the ACPI state data
structure. The power entering and time entering attributes refer respectively to the power rate and
latency for entering into a state. The power leaving and time leaving attributes refer respectively to
the latency and power rate to leave a state. Finally, the latency and the power rate while the host
remains in a state are stored in the power remaining and time remaining attributes.
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For simulating the incurred latency to go from one state to another and to change
the internal power state of the hosts, we designed the PowerDatacenterACPI entities. The
entity PowerDatacenterACPI contains concrete methods conceived to provide ACPI capabilities
and abstract methods to be overridden by a derived class, as is the case of the class
PowerDatacenterEnergySavingStrategy, which in turn implements the desired energy-saving
strategy on the PowerHosts.

A straightforward strategy would change the host’s power state when it becomes idle or busy. The
processChangeHostACPIState method is responsible for the state transitions; thereby it is called
whenever the states of hosts change. For instance, if a state of a host changes from G0 to G2, then
the method is called, and the latency associated with the state is used as the delay for creation or
destruction of a virtual machine.

User mistakes are controlled by the ACPITranstionException class. State transitions are validated
per host and users are notified when a state is unreachable. For instance, a host can not change
between G2 and S3 or should be in the G0 state before entering into a P-state. These requirements
are defined in the ACPI specification and were also exhibited previously in Figure 2.

On this platform, it is possible to implement and simulate a wider variety of strategies involving
not only those at the processor level (e.g. P0, P1, etc.), but also at host levels, such as G1, G2 and
G3.

5.2. Simulation Configuration

After implementing the strategy using the designed classes, the user must rely on calibration steps
to make the simulator as close as possible to the real environment—the environment that is being
simulated. In fact, three steps are essentials to do so, which are:

1. Identify the set of frequencies the hosts’ CPU supports, and the power rate (p) for each
frequency. The DVFS’s userspace governor might be used to scale manually the frequencies
while power is measured. Then, power rates given by the hosts at 0% and 100% of CPU
utilization, called FreqIdle and FreqFull for each frequency, should be measured. These
results are inputs for the P-states’ power model, as defined in Section 4, equation 6;

2. Measure the power rate (p) to switch from one power state to another. For example, if the
strategy considers hosts that enter into the G2 state, then the power rate while the host is
shutting down and starting up should be measured. As discussed in Section 3.3, ACPI states
can be controlled remotely by WoL, so that the power rate can be measured by a power meter
while the transitions are triggered remotely. This calibration is quite important, otherwise the
simulation might not express reliable and precise results;

3. Measure the latency (l) of each transition identified in item 2. For example, if the strategy
considers hosts that enter into the G2 state, the hosts’ boot time must be measured. A simple
way to do it is by analyzing power rate fluctuations during transitions. When the host reaches
the G0 state, the power rate tends to stabilize and latency can be measured by analyzing the
time while the power rate varied. Another way is by using ICMP packets to identify the exact
time that the network subsystem starts to reply with ICMP messages. However, this approach
does not apply to all ACPI states, since not all of them turn off the network subsystem. Finally,
the user can measure latency through a handmade script installed into the system through
which the system’s uptime is collected as soon as it becomes available. This calibration is
quite essential, since the state changes take some time to complete, as shown in Section 4.

The ACPIConfigPARSE method was created in SimulationXMLPARSE class to load calibration
values from a XML file and make the simulator easier of programming. It prevents the user from
designing codes in CloudSim core aiming at not breaking the build.
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6. MODEL VALIDATION

Energy-saving strategies employ policies to switch host’s power states in different ways. Most large-
scale data centers are governed by policies which put hosts into the most common ACPI states: S3,
S4 and G2. In this section, the calibration phase necessary to simulate these states is presented.
Next, the accuracy of the model incorporated to CloudSim is validated on a single host.

6.1. Setup Configuration

All experiments were conducted on the machines presented in Table III. They are equipped with
heterogeneous processor architectures and different resource capacities. All machines are inter-
connected by a Gigabit Ethernet switch. The ACPI and WoL capabilities were enabled in the
machines’ BIOS. WoL is the technique necessary to remotely manage the machine’s power states
during the experiments.

Table III. Configuration of the machines in our Cloud testbed.

Host Processor Cores Clock Cache RAM

1 Intel dual core E5200 2 2.5 Ghz 2 Mb 4 Gb
2 Intel dual core E5200 2 2,5 Ghz 2 Mb 4 Gb
3 Intel core 2 duo E8400 2 3,1 Ghz 6 Mb 2 Gb
4 Intel core 2 duo E8400 2 3,1 Ghz 6 Mb 2 Gb
5 Intel Xeon E5520 16 2.7 Ghz 8 Mb 16 Gb
6 Intel core i7 3770 8 3,4 Ghz 8 Mb 16 Gb
7 Intel core i5 2400 4 3,1 Ghz 6 Mb 8 Gb
8 Intel core i5 2400 4 3,1 Ghz 6 Mb 8 Gb
9 Intel core i5 2400 4 3,1 Ghz 6 Mb 8 Gb
10 Intel core i5 2400 4 3,1 Ghz 6 Mb 8 Gb

We deployed the OpenStack [31] (Havana release) platform on the 10 machines. OpenStack is an
open-source cloud platform that has been largely adopted by the industry and has been continuously
developed by a strong user community [32]. The simulated resources in CloudSim were analogous
to the configurations described in Table III.

6.2. Simulation Calibration

Among all of the hosts shown in Table III, there are five distinct architectures that vary in power
rates, as can be seen in Figure 6. The trade-off formerly noted during the modeling steps now
becomes more noticeable. The deeper the power state, the higher the latency to return from the
state. In contrast, the deeper the power state, the lower the energy consumed in the state.

Based on this analysis, we must configure the simulated testbed in CloudSim to obtain more
reliable, realistic and accurate results compared to the real testbed. Therefore, in order to calibrate
the simulator with the power rates p (in watts) and latency l (in seconds) values, we measured the
ACPI states and their transitions in each architecture. The assessments collected from the hosts in
each state are shown in Table IV, and the assessments from the transitions can be seen in Table V.

In addition to the energy consumption, Table IV also shows the power rate in G0 when the
hosts’ CPU becomes idle or goes up to a full load. The consumption while idle is essential to
reproduce/simulate strategies in which the host is unallocated and does not enter to a deeper power
state immediately. On the other hand, the consumption while in the full load enables simulation of
high-load host allocations. Decisions about energy-saving policies that lead to scenarios like these
are influenced essentially by the trade-off we have presented. Furthermore, the latency values were
suppressed just because a host can remain indefinitely in a state.
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Figure 6. Energy consumption during ACPI state transitions on different architectures.

Table IV. Measurements of the energy consumption in each state for the five distinct hosts

Power (W)

(G0,G0) (S4,S4) (S3,S3) (G2,G2)

host Idle Full p p p

1 32 70 12 15 5
3 36 82 8 11 5
5 110 190 24 12 5,5
6 32 95 9 13 6
7 31 92 10 13 6

Table V. Measurements of the energy consumption and latencies during state transitions for the five distinct
hosts

Latency (s) x Power (W)

(G2,G0) (G0,G2) (S3,G0) (G0,S3) (G0,S4) (S4,G0)

host l p l p l p l p l p l p

1 44 40 4 30 8 36 3 27 7 36 28 42
3 48 46 3 31 9 35 2 28 9 27 21 50
5 81 69 59 108 5 91 25 51 101 86 79 79
6 56 43 5 31 8 35 4 35 9 37 20 55
7 65 55 4 29 7 40 3 30 6 38 42 63

6.3. ACPI Validation on One Host

To analyze CloudSim’s accuracy in a real environment we simulated a trace on a single host (host
6 in Table V and IV) to validate each state individually. The trace driven by a strategy that puts idle
hosts into the three states (S3, S4 and G2) is presented in Figure 7.

In the beginning, the host was idle and remained in that G/S-state until a request for provisioning
a virtual machine was received. Slice (a) means there was a request, and the host must be ready to
receive a virtual machine. In this case, a transition to the G0 state has occurred and the host has
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begun leaving from its current state. While in G0, the host has started the virtual machine and its
processors are no longer idle (CPUs are at the maximum power peak since DVFS is in performance
governor mode). This step refers to the slice (b) in the figures. Finally, slice (c) means the virtual
machine was unallocated and the host became idle again, thereby, according to the energy-saving
strategy policy, the host had its state switched back to either G- or S-state. Thus, it has begun
transitioning into a state (a state in which the host are consuming less power) and remained there
until the next request.
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Figure 7. Comparison of the real and simulated energy consumption of all the three ACPI states: S3
(standby), S4 (hibernate), G2 (soft off). Only the first 400 seconds of the total execution time are shown,

however the same behavior is repeated seven times.

All hosts maintained the same behavior regardless of the power state governed by the strategy,
since the events had the same timeslice proportion among them. However, it is worth noting that
there were substantial differences regarding energy consumption and latency among the states, as
observed in Table VI.

Table VI. Simulation results on one host in all of the three ACPI states.

ν ET E{G0,G0} E LT Run-time

S3 21 Wh 26 Wh 47 Wh 84 sec 1406 sec
S4 10 Wh 26 Wh 36 Wh 207 sec 1529 sec
G2 5 Wh 26 Wh 31 Wh 427 sec 1751 sec

Notable differences in run-time are due to the latency LT associated with each state transition, and
the differences in overall energy consumption E are influenced by the energy consumed by states
throughout the trace, as noted by ET . These simulation has shown an accuracy of 83% compared to
the real results.

7. MODEL EVALUATION

Strategies that put hosts into different power states were necessary to validate the new CloudSim
capabilities for more realistic scenarios, and then we implemented and evaluated the straightforward
strategy proposed by Alvarruiz et al. [9] that we referred to as Green energy-saving strategy. In
addition, we also implemented and evaluated a timeout-based strategy widely employed in various
works [33] [34] [35]. Both strategies reproduce different cloud computing data center behaviors
regarding energy-saving policies.

A set of state transitions (denoted by S) was executed for each test case in real and simulated
environments, and the simulator’s accuracy was quantified by comparing the results. To reproduce
the traces in the real OpenStack environment, we developed a set of scripts that implement the
strategies by orchestrating hosts’ power states according to transitions in S. Since we are only
interested in the simulation of the G and S states we assumed that the hosts’ CPUs operate at their
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highest frequency while running user’s workloads, ensuring that the hosts are at power consumption
peak. The Linux stress tool [36] was used to impose load on and stress the hosts.

Prior to experiments, some constraints have been defined before running the traces: (1) the virtual
machines allocate the total amount of the hosts’ resources, while being careful not to exceed the
maximum capacity; (2) a number of virtual machine requests are carried out throughout the traces.
After the allocation time has expired, the virtual machine is unallocated and the host is released; (3)
the traces start with all hosts in a power state different of G0. Lastly, (4) when the host becomes
busy (provisioned virtual machine), the CPU-bound workload boosts the CPUs’ frequency up to the
maximum supported.

7.1. Green Energy-saving Strategy

This strategy is proposed by Alvarruiz et al. [9] and considers a cloud computing data center
composed of hosts that become idle or busy in different periods of time. Under these conditions, the
strategy takes into account the following policies which rely on two ACPI states (V = {G0, G2}):

1. When a given host becomes idle (no provisioned virtual machine), then it enters into G2 state;
2. The host remains in G2 until it is requested for a new virtual machine provisioning;
3. The host returns immediately to the G0 state if it is requested.

Figure 8 shows the policies applied on one host and illustrates iteration among the above
mentioned states.

G2 G0

requested

idle

busy

Figure 8. Green Energy-saving Strategy‘s policies employed on one host.

The definition denoted by E{G0,G0} quantifies the total energy when the host is in the G0 state
since the CPUs’ frequencies are governed by DVFS. On the other hand, the host enters into the
G2 state when it gets idle and ET is calculated. Finally, the testbed in this experiment consists of a
cluster of four identical hosts (host 5 in Table III). We set the KVM [37] as the hypervisor under the
OpenStack platform.

The trace carried out to analyze CloudSim’s accuracy is illustrated in Figure 9. We varied the
number of transitions per minute during the 19752 seconds to analyze the model’s accuracy with a
lot of (G0,G2) and (G2,G0) transitions. Only the first 4000 seconds were plotted, but the interval
lying between the second 0 and 2000 was performed ten times repeatedly. This is why the interval
from A to H were sliced only in this time interval.

Slice (A) represents (G2,G0) transitions triggered in all hosts. A set of virtual machine requests
was received from the user that led all hosts to get ready to receive the workloads. All hosts were
busy in slice (B). They were using the totality of resources and their processors’ units were working
at the highest power rate. The virtual machines were unallocated in slice (C), and the hosts went into
G2 state to save energy. In slice (D), OpenStack started receiving virtual machine requests in 60-
second intervals that made the hosts are gradually switched from the G2 to G0 state. The hosts were
busy processing the workload in slice (E). They started entering to G2 state as the virtual machine
allocation time begins to expire. Finally, the hosts become idle in slice (G).

Green Energy-saving Strategy’s simulation results had an accuracy of 95%. This shows that the
simulator can correlate latency with power rate in the states and during their transitions. Finally,
Table VII outlines the simulation results.
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Figure 9. Comparison of energy consumption in real and simulated experiments for the Green energy-saving
strategy.

Table VII. Green Energy-saving Strategy’s simulation results

ET E{G0,G0} E LT Run-time

310 Wh 1221 Wh 1531 Wh 5127 sec 19740 sec

7.2. Timeout Strategy

The Green strategy relies only on two power states (V = {G0, G2}). This new experiment expands
our validations to a scenario that covers other states presented in this work. To this purpose,
we evaluated a well-known timeout-based strategy [33] [34] [35] that uses four power states
(V = {G0, S3, S4, G2}):

1. When the host in the G0 state becomes idle, it enters into the S3 state;
2. The host returns immediately to the G0 state if it is requested;
3. The host enters successively to a lower-power state if the timeout expires.

Figure 10 shows the policies applied on one host and illustrates iteration among the above
mentioned states.

G2 S4 S3 G0

idle

busy

l > timeout
l < timeout

l > timeout
l < timeout

requested requested requested

Figure 10. Timeout Strategy’s policies employed on one host.

As we saw, the deeper the power state, the longer it takes to return from the state. On the other
hand, the deeper the state, the lower the energy consumption. Thus, state transitions should be
performed conservatively, because it is less costly, in terms of latency, to ”wake up” a host from
S3 than a host from G2. Hence, the strategy imposes a priority order to aid in deciding which host
should be returned to G0 when a virtual machine request arrives. The hosts are ordered by priorities
based on their current power state. Deeper states have lower priority over shallow states. Based on
this, when a new request arrives, hosts in S3 will be chosen for allocation followed by in S4 and
finally those in G2.

The simulation was carried out based on the same trace adopted by [38]. We deployed the
OpenStack on the ten hosts described in Table III. We also changed the underlying virtualization
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technology to experiment our model on an alternative virtualization architecture. Thus, we installed
the LXC container-based system [39] as a representative operating system-level virtualization
system. The timeout value was set to 300 seconds based on the the state-of-the-art works
[40][41][42]. Finally, when idle hosts reach the timeout value, they are placed gradually in lower-
power states as depicted in Figure 10. Figure 11 shows a comparison of the real versus the simulated
experiments.
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Figure 11. Comparison of energy consumption in real and simulated experiments for the Timeout energy-
saving strategy

The simulation achieved an accuracy of 94%. We believe part of this difference is due to
granularity in watts measured by the power meter when compared with power values configured
in CloudSim. This difference becomes evident when we look at the variance spikes in the real
experiment, and a linear behavior when these spikes are represented in the simulated experiment.
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Figure 12. Percentage of hosts in each power state during the simulation.

Although Figure 11 shows the total energy consumed for each time interval, the state each host is
in during each of these time intervals can not be seen. Figure 12 shows the percentage of hosts
in each state. This enables monitoring of the host state distributions throughout the simulated
experiment, and estimating the accumulated energy at every moment. Finally, we outlined the
simulation results for 150, 300 and 600-second timeout values in Table VIII.

Table VIII. Timeout Strategy’s simulation results

Timeout ET E{G0,G0} E LT Run-time

150 sec 118 Wh 418 Wh 536 Wh 973 sec 5764 sec
300 sec 130 Wh 418 Wh 548 Wh 852 sec 5764 sec
600 sec 182 Wh 418 Wh 580 Wh 609 sec 5764 sec

Differences in timeout values reflect strongly in energy consumption and latency. It occurs
because the number of hosts reaching lower-power states varies considerably. It is easy to see
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that high-throughput clusters would suffer more impact on latency for lower timeout values. In
counterpart, the energy consumption is reduced. This is a typical case study in which the strategy
could be refined to improve scheduling performance. Based on the simulation results, we could
suggest a timeout adaptive solution to balance the number of hosts in lower-power states based on
the requests arrival time interval.

8. CONCLUSION AND FUTURE DIRECTIONS

In this paper we proposed an improved energy model for the ACPI power states, and show not only
that these states offer different energy-saving levels, but also that state transitions consume energy
and impact on performance.

Evaluation of energy-saving strategies through simulation is of paramount importance before
implementing them in a production data center. The definitions we have presented provide
fundamental information to quantify the trade-off between the energy consumption and
performance, and assist in the analysis/decision on which strategy fits better in the environment
based on the number of available hosts and the cloud provider’s throughput.

As we have presented, the latency to create and destroy virtual machines might eventually impact
the end-user’s satisfaction and violate service-level agreements. In such cases, the S3 (standby) state
would be the most suitable, because it incurs a lower latency to return the hosts to the G0 state. On
the other hand, if impact on energy consumption is a concern and can not be disregarded, then an
energy-saving strategy that uses the G2 (soft off ) state should be taken into account. Yet, if the
latency and energy consumption reflect end-user dissatisfaction and also concerns in a green cloud
computing environment, a strategy that uses the S4 (hibernate) state would be a good choice.

Our energy model was implemented in CloudSim and validated with real- and simulation-
based. We also evaluate the implementation of two energy-saving strategies in CloudSim. In our
preliminary results we obtained a very high accuracy, with a standard deviation of at most 6%,
compared to the same experiments running in a real testbed.

Therefore we strongly believe that the inclusion of ACPI support in CloudSim with the
implementation of our more precise energy model expands its applicability even more. This leads
also to a better understanding of the cost-benefit trade-offs involved in changing states to save
energy, thereby allowing a more accurate simulation and analysis of a wide range of energy-saving
strategies in cloud environments, combining the consolidation of virtual machines, DVFS, and other
less explored ACPI states. The CloudSim ACPI package is available in [43].
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