

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/136585

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/136585
mailto:wrap@warwick.ac.uk

CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2016; 00:1–18
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Developing Power-aware Scheduling Mechanisms for Virtualized
Environments

Shenyuan Ren1, Ligang He∗, Huanzhou Zhu1, Zhuoer Gu1, Wei Song2 and Jiandong
Shang3

1 Department of Computer Science, University of Warwick,United Kingdom
Email: S.Ren@warwick.ac.uk, zhz44@dcs.warwick.ac.uk, Zhuoer.gu@dcs.warwick.ac.uk
2School of Information Engineering, Zhengzhou University, Email:iewsong@zzu.edu.cn

3Zhengzhou Research Institute of Smart City, Zhengzhou University, Email:sjd@zhengzhou.gov.cn

SUMMARY

Cloud computing emerges as one of the most important technologies for interconnecting people and building
the so-called ”Internet of People” (IoP). In such a Cloud-based IoP, the virtualization technique provides
the key supporting environments for running the IoP jobs such as performing data analysis and mining
personal information. Nowadays, energy consumption in such a system is a critical metric to measure
the sustainability and eco-friendliness of the system. This paper develops three power-aware scheduling
strategies in virtualized systems managed by Xen, which is a popular virtualization technique. These three
strategies are the Least performance Loss Scheduling (LLS) strategy, the No performance Loss Scheduling
(NLS) strategy and Best Frequency Match (BFM) scheduling strategy. These power-aware strategies are
developed by identifying the limitation of Xen in scaling the CPU frequency and aim to reduce the energy
waste without sacrificing the jobs’ running performance in the computing systems virtualized by Xen. LLS
works by re-arranging the execution order of the VMs. NLS works by setting a proper initial CPU frequency
for running the VMs. BFM reduces energy waste and performance loss by allowing the VMs to jump the
queue so that the VM that is put into execution best matches the current CPU frequency. Scheduling for both
single core and multi-core processors are considered in this paper. The evaluation experiments have been
conducted and the results show that compared with the original scheduling strategy in Xen, the developed
power-aware scheduling algorithm is able to reduce energy consumption without reducing the performance
for the jobs running in Xen.
Copyright c© 2016 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Power-aware scheduling, Virtualization, Cloud computing

1. INTRODUCTION

Cloud computing emerges as one of the most important technologies for interconnecting people and
building the so-called ’Internet of People’ (IoP). Nowadays, energy consumption in such a system
is a critical metric to measure its sustainability and eco-friendliness. Indeed, data centers used by
the Cloud service providers have become one of the fastest growing sources of power consumption
in industry. According to IDC (International Data Corporation), power consumption of data centers
worldwide accounts for about 8% of the global electricity, which does not include the additional
electricity consumed by the cooling systems equipped in the data center. In such a Cloud-based
IoP, the virtualization technique, which allows multiple operating system instances (i.e., Virtual

∗Correspondence to: Department of Computer Science, University of Warwick, United Kingdom
Email:liganghe@dcs.warwick.ac.uk

Copyright c© 2016 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

2 SHENYUAN REN ET AL.

Machines) to run simultaneously in a physical machine, provides the key supporting environments
for running the IoP jobs such as performing data analysis and mining personal information.

Xen [2] is a popular virtualization hypervisor used in the academic community. It has also been
widely deployed in a number of industry-level Clouds, such as AWS (Amazon Web Service),
Rackspace, Verizon, etc. SEDF (Simple Earliest Deadline First) is a scheduler in Xen. In SEDF,
the CPU requirement for each VM is specified by a tuple (s,p,x), in which s and p designate that the
VM has to run at least s in a period of p. This CPU requirement can be translated to the deadlines
by which a VM has to start running (otherwise, the CPU requirement will not be met). In each
scheduling round, SEDF puts the VM with the earliest deadline into execution [5].

Dynamic Voltage Frequency Scaling (DVFS) is a power management technique. DVFS can
change the running frequency of CPU dynamically as required and therefore reduce power
consumption when the tasks do not need to be run with the maximum CPU frequency. Xen currently
has four power governors. 1) The Ondemand governor selects the CPU frequency which best fits
the VM (guest domain). 2) The Userspace governor selects the frequency specified by user. 3) The
Performance governor selects the highest frequency. 4) The Powersave governor selects the lowest
frequency. There are twelve frequency states in the Xen power management, in which the state
P0 represents the highest frequency while the state P12 represents the lowest frequency. In this
paper, we consider the most complex scenario and assume that the guest domains are run under the
Ondemand governor, namely, the CPU frequency is dynamically adjusted towards the best execution
frequency of a guest domain.

In Xen, the CPU frequency can only be changed by one state in every interval of 10ms. The
interval of 10ms is called the frequency scaling slice. For example, it takes Xen 40ms to change the
CPU frequency from P1 to P4. Our studies show that this limitation in Xen in frequency changing
may cause the energy waste and performance loss (The problem is illustrated by an example in
Subsection 2), which this paper aims to reduce. In this work, we conduct the theoretical ananlysis
and construct the performance model and the energy consumption model by taking into account the
feature of Xen in frequency changing. Based on the analysis and the models, we derive the condition
under which the best performance can be achieved, i.e., there is no performance loss caused by the
limitation of Xen in frequency changing. Further, we propose a frequency-aware scheduling policy,
called BFM (Best Frequency Match), by adapting the SEDF scheduling policy in Xen. Compared
with SEDF, BFM is able to reduce the power consumption of running VMs without violating their
CPU requirements.

The reminder of this paper is organized as follows. In Section 2, an example is presented to
illustrate the problem of energy waste and performance loss due to the limitation of Xen in changing
CPU frequencies. Section III reviews the related work. We present the energy consumption model
and the performance model in Section IV. In Section V, we derive the situaltion where the best
performance scheduling can be achieved. In Section VI, we propose the frequency-aware scheduling
policies for single-core processors and multi-core processors. The experiment results are presented
in Section VII. Finally, Section VIII concludes this paper and present the plan for future work.

2. A MOTIVATING EXAMPLE

As introduced in Section 1, under the OnDemand governor, DVFS is used to adjust the CPU
frequency on demand. We ran an experiment on a quad-core machine to record the frequency of
the CPU core which Domain0 runs on. We pinned two vcpus of Domain0 to core 3 and recorded
the frequency of the core once every 300 ms for 60 times. The results are shown in Fig. 1. It can
be seen that Domain0 does not always run with the highest frequency of 2301 MHz. Indeed, under
the Ondemand governor, different tasks may run with different execution frequencies. For example,
Fio, which is a I/O benchmarking tool, ran at the lowest scaling frequency (1200 MHz), while the
computation-intensive benchmark BT (a benchmark application in the NAS Parallel benchmark)
ran at the highest frequency, 2301 MHz.

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

DEVELOPING POWER-AWARE SCHEDULING MECHANISMS FOR VIRTUALIZED SYSTEMS 3

0 10 20 30 40 50 60

1,200

1,400

1,600

1,800

2,000

2,200

2,400

Samples

Fr
eq

ue
nc

ey
/M

H
z

Figure 1. Frequency sampling of Domai0 for 60 times; each sampling interval is 300ms

The following illustrate the problem of energy waste and performance loss caused by the
limitation of Xen in changing the CPU frequency. Fig. 2 shows the changes of Power-states (P-
states) when four VMs (VM1-VM4) are running on a single core. The x axis is the elapsed time,
while the y axis is the Power-state of the core at the corresponding time point.. The time slice of a
VM (namely the time duration for which a VM runs continuously before the Xen hypervisor jumps
in and schedule another VM into execution.) is 30ms by default. The running order of the VMs in
the experiment is also labelled in the figure. The power governor checks and changes, if necessary,
the CPU frequency every 10ms by at most one level [11]. Assume that the P-states demanded by
VM1, VM2, VM3 and VM4 are P1, P9, P3 and P7, respectively. In this example, the initial P-state
is set to be P3. When the current frequency deviates from (higher or lower than) the best frequency
of a running VM, the power governor adjusts the frequency towards the best frequency. However,
it can only adjust the frequency by one level every 10ms due to the feature of Xen in frequency
changing. With this restriction, the actual CPU frequencies over time are those highlighted by the
bold black line. When a VM runs on a frequency higher or lower than its best execution frequency,
Energy waste or performance loss occurs. The difference between the best frequency and the actual
frequency represents the amount of energy waste or performance loss. In this figure, the red area and
the shadowed grey area represent the amount of energy waste and performance loss, respectively.
For example, at time 0, the VM (VM4) only requires P5 (the best P-state), while the current actual
frequency is P3 (initial P-state). Since the current P-state is higher than the best P-states of the VM,
the frequency is adjusted down by one level every 10ms until it reaches the best frequency or the
VM is scheduled out after its time slice of 30ms is used up. In the case of VM4, the VM is scheduled
out before the actual frequency reaches the best frequency. VM3 is scheduled in after VM4. Since
the best frequency of VM3 is P3, which is higher than the current running frequency, the frequency
is adjusted up. Since the frequency can only be adjusted by one level every 10ms, VM3 still runs
at a frequency lower than its best frequency in the first 10ms of VM3’s time slice, which leads
to the performance loss (indicated by the shadowed grey area) and will consequently increase the
execution time of the application that is running in the VM. In the remaining time slice, VM3 runs
perfectly at its best frequency.

The above example suggests that the feature of Xen in adjusting the CPU frequency may cause
both energy waste and performance loss. The objective of this work aims to improve the situation.
We adapt the default SEDF scheduling policy so as to minimize the energy waste and performance
loss under DVFS.

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

4 SHENYUAN REN ET AL.

10 20 30 40 50 60 70 80 9010
0
11

0
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

0
21

0
22

0
23

0
24

0P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

VM2
VM4

VM3
VM4

VM1
VM2

VM3
VM4

Time/ms

P-
st

at
es

best frequency

power waste

performance loss

Figure 2. Energy waste and performance loss under DVFS in Xen

3. RELATED WORK

There have been many prior efforts to optimize the performance and the energy consumption for
scheduling and running tasks in native and virtualized computing systems [6] [22] [1] [9] [16]
[18] [20] [1] [19] [14] [15]. This section discusses the related work in different aspects, including
performance and power consumption models, energy-aware scheduling and VM scheduling.

The work in [9] proposes an energy-aware strategy for scheduling stochastic tasks in
heterogeneous computing environments. The work takes the performance and energy budget into
account. The work in [17] [3] and [4] presents power consumption models in different computing
environments.

The work in [8] considers scheduling a set of aperiodic tasks on DVFS-enabled multi-core
processors. It attempts to meet the execution requirements of all the tasks and minimize the overall
energy consumption on the processor. The work introduces the concept of Desired Execution
Requirement for tasks and proposes an balanced allocation method to save processor energy.

A task scheduling strategy is presented in [10] to tackle the task allocation problems on DVFS-
enabled CPU cores, the execution order of tasks and the CPU processing frequency of the each task.
It presents the task scheduling model, the energy consumption model, the CPU frequency model
and a cost function for capture the scheduling scenario. Both batch-mode and online-mode tasks are
considered. The developed algorithm guarantees the minimal total cost for every time interval. The
work does not consider virtualized systems, but is applied to native computing environments.

The work in [16] considers the power-aware scheduling problem in Cluster systems. The
performance model is proposed to capture the task scheduling and executions in DVFS-enabled
virtualized clusters tasks.

In [7], a power consumption model is proposed to estimate the energy consumption of the tasks
in cloud systems. It divides the power consumption into leakage power and dynamic power and
formulates the energy consumption of processors according to each in-processor event. An energy-
credit scheduler is proposed to schedule the tasks according to their energy budgets instead of time
credits.

The work in [13] extends the existing formulation of the power-aware job placement problem
proposed in the literature, so that it can be adapted to DVFS-enabled cluster nodes. Two optimization
problems are investigated in the work: (i) performance optimization given the constraint on energy
consumption, and (ii) optimization of energy consumption given the constraint of job performance.
In addition, it calculates the performance bound for several instantiations of the DVFS model,
aiming to quantify the added benefit of the increased DVFS capabilities.

The work presented in our paper analyzes the energy consumption and designs the energy-aware
scheduling strategies by taking into account the feature (limitation) of Xen in adjusting the CPU
frequency, which, to our best knowledge, has not been investigated before in literature.

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

DEVELOPING POWER-AWARE SCHEDULING MECHANISMS FOR VIRTUALIZED SYSTEMS 5

4. PERFORMANCE AND ENERGY MODEL FOR THE DVFS-ENABLED XEN

4.1. Performance Model

Assume a set of independent tasks T = {T1, T2, ..., Tn}. Task Ti runs in VMi. fi denotes the best
frequency of VMi. ti denotes the execution time of task Ti when VMi runs at the frequency of fi
(Ti is executed in VMi). Ps denotes the scheduling time slice, which is 30ms by default, while Pf

denotes the frequency scaling slice, which is 10ms. When a VM runs at a frequency, f ′i , lower than
its best frequency fi, the actual work completed for the task in a time unit will be less than that when
the VM runs at its best frequency. Let c(f ′i) denote the equivalent execution rate of Ti when VMi

runs at the frequency f ′i . c(f
′
i) can be calculated by Eq. 1, where Ft(f

′
i) is the function of execution

time over CPU frequency.

c(f ′i) =

{ ti
Ft(f ′i)

iff ′i < fi,

1 iff ′i ≥ fi.
(1)

f ′i(j) denotes the frequency which task Ti runs at in the jth time interval. c(f ′i(j)) denotes the
execution rate of Ti in the jth time interval. InEq. 2 can be used to determine the number of intervals
that VMi uses to complete the execution of task Ti, which is the minimal value of m that satisfies
InEq. 2.

m∑
j=0

c(f ′i(j))Pf ≥ ti (2)

Then the total execution time of task Ti when it is not always running at its best frequency fi
(denoted by t′i) can be modelled as Eq. 3, where m is the minimal value that satisfies InEq. 2.

t′i =

m∑
j=0

c(f ′i(j))Pf (3)

4.2. Power Consumption Model

When task Ti runs at the frequency of f ′i , Eq. 4 is the classic equation to calculate the power
consumption rate of CPU for running Ti [12] (denoted by ri), where C is the capacitance being
switched per clock cycle, V is the voltage, A is the activity factor indicating the average number of
switching events undergone by the transistors in the chip and f ′i is the frequency.

ri(f
′
i) = A× C × V 2 × f ′i (4)

InEq. 2 has been used to determine the number of intervals that VMi uses to complete the
execution of task Ti. The total power consumption of task Ti, denoted by ei, can be modelled by
Eq. 5, where f ′i(j) is the frequency which task Ti runs at in the jth time interval, same as in Eq. 2.

ei =

m∑
j=0

ri(f
′
i(j))Pf (5)

5. SCHEDULING STRATEGIES

5.1. The Scheduling Strategy with Least Performance Loss

The power management in Xen can only adjust the power state by at most one level every 10ms.
The frequency gap between the current CPU frequency f and the task Ti’s best (desired) executing
frequency fi will lead to either performance loss or energy waste. When the current CPU frequency
f is lower (or higher) than Ti’s best executing frequency, fi, and the power management cannot
increase (or reduce) f to fi immediately, performance loss (or energy waste) occurs.

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

6 SHENYUAN REN ET AL.

0 10 20 30 40 50 60 70 80 90 10
0
11

0
12

0
13

0P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2

...
fi

...
fj

...
fn...

fj...

fi...
fr

Time/ms

B
es

te
xe

cu
tin

g
fr

eq
ue

nc
y best frequency

(a) “Least Performance Loss” Scheduling Strategy

0 10 20 30 40 50 60 70 80 90 10
0
11

0
12

0
13

0P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2

...
fi

...
fj

...
fn...

...
fj

fi...
fr

Time/ms

B
es

te
xe

cu
tin

g
fr

eq
ue

nc
y best frequency

(b) Illustration of changing the execution position of a randomly
selected task

Figure 3. “Least Performance Loss” Scheduling Strategy & Illustration of changing the execution position
of a randomly selected task

Given the current CPU frequency and a set of tasks, Theorem 1 gives the “Least Performance
Loss” Scheduling strategy (LLS), namely the execution order of the tasks that leads to the least
performance loss.

Theorem 1
Given a set of tasks, T = { T1,T2,...,Tn}, the best CPU frequency of Ti is fi and the set of tasks are
run in a time-sharing manner. Assume f1 ≤ f2 ≤ ... ≤ fn. If the current CPU frequency is f , then
given the current CPU frequency, the LLS strategy (i.e., the execution order that leads to the least
performance loss for the set of tasks) is to run the tasks in the following order, where Tr’s frequency
fr is the highest frequency that is less than the current frequency f .

Tr,Tr+1,...,Tn−1,Tn,Tn−1,...,Tr+1,Tr,Tr−1,...,T2,T1, T2,..., Tn, Tn−1,..., T1 ...
Namely, the execution order is to start from Tr, go up to Tn in the increasing order of frequency

and then come down to T1 in the decreasing order of frequency, and that the upward and downward
execution pattern in terms of frequency repeat until all tasks have been completed.

Proof
The performance loss is related to the frequency gap of the tasks during the execution. Performance
loss increases with the increase in the frequency gap. We prove this theorem by proving that any
change in the execution order from the LLS strategy will lead to the increase of the frequency gap,
thus the performance loss.

We randomly change the execution position (specified by the LLS strategy) of a randomly selected
task. Assume task Tj is moved to the position after task Ti. Without the loss of generality, we assume
j > i + 1, (i.e., we move Tj forwards as shown in Fig. 3a and Fig. 3b.

Before the change, the frequency gap among the relevant tasks (i.e. task Ti, Ti+1, Tj−1, Tj , Tj+1)
is:
E = (fi+1 - fi) + (fj - fj−1) + (fj+1 - fj)

= fi+1 - fi - fj−1 + fj+1.

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

DEVELOPING POWER-AWARE SCHEDULING MECHANISMS FOR VIRTUALIZED SYSTEMS 7

After the change, the frequency gap among the involved tasks is:
E′ = (fj - fi) + (fj+1 - fj−1).
Note that the gap of fj − fi+1 is not counted in the expression above since it does not cause

performance loss (but energy waste) even if Xen cannot adjust the frequency timely from fj to fi+1.
The difference between E′ and E is:
E′ - E = (fj - fi) + (fj+1 - fj−1) - (fi+1 - fi - fj−1 + fj+1)

= fj - fi+1.
Since fj ≥ fi+1, we get E′ ≥ E.
In the similar way, we can prove the theorem also holds when i > j (i.e., moving the task

backwards). Therefore, given the current CPU frequency, the LLS strategy generates the least
performance loss for a set of tasks.

5.2. The Scheduling Strategy with No Performance Loss

The previous section derives LLS, the scheduling strategy with the least performance loss, given the
current CPU frequency. LLS requires re-arranging the execution order of the VMs. In this section,
we will derive the scheduling strategy under which there is no performance loss for a set of tasks.
We call this strategy the No performance Loss Scheduling (NLS) Strategy. NLS aims to ensure all
tasks run with the frequencies no less than their best frequencies. NLS does not reorder the VMs’
execution. The VMs can be executed in the order of their positions in the run-queue. Rather, NLS
calculates the initial CPU frequency that the CPU needs to be set with in order for all VMs to run
without performance loss.

According to the Xen power management policy, the execution frequency can be modified once
every 10ms, which we call the frequency scaling slice. The default time slice, which we call the
scheduling slice, for running a VM in Xen is 30ms. After 30ms, the Xen hypervisor jumps in
and schedule another VM to run. Therefore, the frequency can be changed three times at most
in each scheduling slice. As shown in Fig.4, fk(j),fk(j + 1),fk(j + 2) indicates the three execution
frequencies of task Tk in the three frequency scaling slices (indexed as j, j + 1 and j + 2 in the
example of Fig. 4) in Tk’s scheduling slice. To ensure that task Tk can execute with at least its best
frequency, the frequency of the frequency scaling slice before fk(j) (i.e., the (j − 1)-th frequency
scaling slice) should be at least fk(j)−∆f , where ∆f is the frequency that can be changed at most
each frequency scaling slice (which is 100 MHz, i.e., one P-state, in Xen). (j − 1)-th frequency
scaling slices falls in the scheduling slice of task Tk−1, which means that the execution frequency
that Tk−1 has to run with, denoted by fk−1(j − 1), has to be (fk(j)−∆f) even if Tk−1 does not
need such a high running frequency. In Fig. 4, the best frequency of task Tk−1, i.e., fk−1 is shown by
the yellow bar, which is lower than fk−1(j − 1). Similarly, fk−1(j − 2) has to be fk−1(j − 1)−∆f
or fk−1 (Tk−1’s best frequency), whichever is higher.

In general, assuming that Tk has the highest best frequency in the set of tasks (i.e., fk is highest)
and that j, j + 1 and j + 2 are the three frequency scaling slices in Tk’s first scheduling slice during
the running of the set of tasks, Eq. 6 can be used recursively, starting from i = j, to calculate the
running frequency in each frequency scaling slice before j-th frequency scaling slice (it is obvious
that fk(j), fk(j + 1) and fk(j + 2) should all be fk), so that all VMs can run without performance
loss, i.e., with the frequencies no less than their corresponding best frequencies.

The algorithm for performing the recursive calculation is outlined in Algorithm 1. The output of
Algorithm 1 is the value of f1(1), i.e., the starting frequency that the CPU has to be set with in order
for the set of tasks to run without performance loss.

Note that although NLS guarantees no performance loss, it may cause energy waste. The
shadowed areas above the coloured bars in Fig. 4 represent the energy waste.

fk′(i− 1) = max(fk(i)−∆f, fk′) (6)

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

8 SHENYUAN REN ET AL.

1 2 3 4 5 6 7 8 9 10 11 12 13
P12
P11
P10

P9
P8
P7
P6
P5
P4
P3
P2

fk(j + 2)

fk(j + 1)

fk(j)

fk−1(j − 1)

Frequency Scaling Slice

Fr
eq

ue
nc

y
L

ev
el

Tk−2best frequency

Tk−1best frequency

Tk best frequency

Tk+1 best frequency

Figure 4. ”No Performance Loss” Scheduling Strategy

where,

k′ =

{
k if (i− 1)-th frequency scaling slice is in Tk’s scheduling slice
k − 1 if (i− 1)-th frequency scaling slice is in Tk−1’s scheduling slice

(7)

Algorithm 1 No performance loss scheduling strategy
Input: Tasks T1,T2,...,Tn in the run-queue, whose best running frequencies are f1,f2,...,fn; TK is
the task with the highest best frequency fK ; j is the index of the first frequency scaling slice in
TK’s scheduling slice
Output: f1(1);

k = K, fk(j) = fK ;
for (i = j; i ≥ 2; i−−) do

if (j − 1)th frequency scaling slice is in Tk’s scheduling slice then
k′ = k

else
k′ = k − 1;

end if
fk′(i− 1) = max(fk(i)−∆f, fk′);

end for

6. BFM SCHEDULER

In section IV, we presented two scheduling strategies: The Least Performance Loss Scheduling
Strategy (LLS) and No Performance Loss Scheduling Strategy (NLS).

NLS will achieve the shortest execution time since every VM will execute with a frequency equal
to or higher than its best frequency. Those VMs which run with a frequency higher than its best
frequency (in order to guarantee that other VMs can run with their best frequencies) will cause
energy waste. Therefore, NLS is designed with maximizing the performance as the only goal. In
NLS, we propose the method to determine the minimal initial frequency that the CPU has to be set
with in order to guarantee that no VM will experience performance loss.

Different from NLS, LLS does not reeve up CPU frequency to guarantee there is no performance
loss, but makes the best effort to reduce the performance loss by manipulating the VMs’ execution
order. NPS does not artificially set the initial CPU frequency for running a set of VMs, but goes
along with the current CPU frequency.

In order to guarantee that every VM’s deadline is met, however, the SEDF scheduler in Xen
requires the VMs to be run in the order of deadline (earliest deadline first). In this execution
environment, meeting the deadlines is the top priority and VMs’ execution order may not be able

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

DEVELOPING POWER-AWARE SCHEDULING MECHANISMS FOR VIRTUALIZED SYSTEMS 9

to be adjusted in the way designated by LLS. Thus, in this section we present a power-aware SEDF
scheduling strategy, called the Best Frequency Match strategy (BFM). BFM aims to make the best
effort to reduce performance loss subject to respecting the principle of SEDF, i.e., meeting all VMs’
deadlines.

Next, we first present BFM for single-core processors and then extend it to multi-core processors.

6.1. BFM for Single-core Processors

BFM aims to minimize the performance loss while satisfying the VMs’ CPU requirement specified
in SEDF.

Assume that a set of VMs Ti (1 ≤ i ≤ n) are in the run queue of a single core with their CPU
requirement expressed as (pi, si, xi) and that task Ti’s best execution frequencies is fi. The deadline
of each VM is recalculated when the current scheduling slice is finished. BFM checks the deadline
and the best frequency of each VM (VCPU) in the run-queue of the CPU core. If the first VM in the
run-queue (i.e., the one with the earliest deadline) has the smallest gap between its the best frequency
and the current executing frequency, the VM will be scheduled. However, if there are other VMs in
the queue which have smaller frequency gaps than the first VM, scheduling the first VM (with the
earliest deadline) will cause either performance loss (if the current frequency is less than the best
frequency) or energy waste (if the current frequency is higher than the best frequency) compared
with scheduling a VM with smaller frequency gaps. Under this circumstance, BFM checks if there
is any better scheduling choice in the following way.

Firstly, BFM identifies the VM, for instance Tj , whose best frequency has the smallest gap with
the current CPU frequency. Before allowing task Tj to jump the queue, BFM needs to make sure that
all the VMs queueing before Tj satisfy InEq. 8, where tc is the current time while Li is the position
of task Ti in the run-queue. InEq. 8 can be understood in the following way. The scheduling slice
of a VM is Ps. Task Ti, whose position in the original queue is Li, needs to wait Li − 1× Ps for
Ti being put into execution. After the queue jump, the waiting time of Ti becomes Li × Ps. The
waiting time plus the VM’s running duration, which is Ps, must be no greater than VMi’s deadline
di, which results in InEq. 8.

∀Li < Lj di − [tc + (Li + 1) ∗ Ps] ≥ 0 (8)

If InEq. 8 can be satisfied for all the VMs before Tj , BFM allows task Tj to jump the queue. If
not, BFM continues to find the VM which has the second smallest gap between its best frequency
and the current frequency, and applies InEq. 8 to determine whether the queue-jumping is allowed.
The process repeats until BFM finds a VM that is eligible to jump the queue or all VMs have been
considered (in this case, no VMs can jump the queue and BFM schedules and run the first VM in
the queue, same as the SEDF scheduler).

The pseudo code of BFM on a single core is presented in Algorithm 2.
An example is used in Fig. 5 to illustrate the working of BFM. 4 VMs are considered in this

example: T1(20, 100), T2(5, 100), T3(10, 100), T4(30, 100), where the first number of the pair is the
time that a VM has to run in a period, which is indicated by the second number. For example, T1

has to run at least 20 ms in every period of 100 ms. In the beginning of each time slice, all VMs are
sorted by their deadlines in the run queue. di presents the deadline of Ti and fi is its best frequency
of Ti. At the time point of 30 ms, T3 has the earliest deadline, while T2 has the smallest frequency
gap with the current CPU frequency P12. Under this circumstance, BFM will check if scheduling
T3 first (i.e., allowing T2 to jump the queue) will cause the VMs before T2 (i.e., T3 in this example)
to miss the deadlines. In this case, it will not and therefore T2 jumps the queue successfully. At 60
ms, T1 has the the smallest frequency gap with the current frequency. However, it is rejected for T1

to jump the queue, since otherwise T3, the VM before T1 in the queue, would miss its deadline.

6.2. BFM for Multi-core Processors

In this section, we extend the BFM strategy for a single core to multicore processors. In this section,
we denote BFM for single core by BFMS and BFM for multicore by BFMM. Compared with

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

10 SHENYUAN REN ET AL.

90ms 30ms 60ms 0ms time

task 𝑇1

task 𝑇2

task 𝑇3

task 𝑇4

𝑇1 𝑑1, 𝑓1 = (80,12)

𝑇3 𝑑3, 𝑓3 = (70,5)

𝑇2 𝑑2, 𝑓2 = (95,10)

𝑇4 𝑑4, 𝑓4 = (97,3)

𝑇3 𝑑3, 𝑓3 = (70,5)

𝑇2 𝑑2, 𝑓2 = (95,10)

𝑇4 𝑑4, 𝑓4 = (97,3)

𝑇1 𝑑1, 𝑓1 = (190,12)

𝑇3 𝑑3, 𝑓3 = (70,5)

𝑇4 𝑑4, 𝑓4 = (97,3)

𝑇1 𝑑1, 𝑓1 = (190,12)

𝑇2 𝑑2, 𝑓2 = (695,10)

30ms 60ms 0ms

queue-jumper

Figure 5. An example of the BFM scheduling strategy

Algorithm 2 BFMS scheduling Algorithm
Require: A set of of VMs, Ti (1 ≤ i ≤ n), with their CPU requirements (pi, si, xi); the best
frequency of Ti, fi; scheduling slice Ps; frequency scaling slice Pf ; current time tc; Ti’s deadline
di; Ti’s location in the queue, Li;

1: for The end of each scheduling slice do
2: Calculate the deadlines of all tasks, sort the tasks in the ascending order of deadline in queue

Q
3: Obtain the VM with the earliest deadline, denoted by Te

4: for all Tasks in the run queue do
5: Calculate the frequency gap gi between the best frequency of task Ti and the current

frequency f
6: end for
7: Sort the tasks’ frequency gaps in the ascending order
8: Get the first frequency gap, gk, in the frequency-gap sorting queue and denote the

corresponding task by Tk

9: if Tk is Te, i.e., ge is the minimal gap
then

10: Schedule Te to run
11: else
12: while gk is no more than ge do
13: if Each task Ti before Tk in queue Q satisfies di − [tc + (Li + 1) ∗ Ps] ≥ 0 then
14: Schedule Tk to run next
15: end if
16: Get the next frequency gap, gk, in the frequency-gap sorting queue and denote the

corresponding task by Tk

17: end while
18: Schedule Te to run next
19: end if
20: end for

BFMS, the main additional work of BFMM is to allocate a set of VMs among multiple cores in the

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

DEVELOPING POWER-AWARE SCHEDULING MECHANISMS FOR VIRTUALIZED SYSTEMS 11

processor. This section first presents Theorem 2, which is used as the principle for allocating the
VMs, and then presents a actual allocation method. After the set of VMs are allocated, the VMs are
scheduled and run using BFMS in each individual core.

Theorem 2
Assume there are n VMs and m cores in the processor (assume n can be divided by m). The
following allocation method results in the least performance loss.

The n VMs are sorted in the ascending order of their best frequencies. The sequence of the
VMs are denoted by T1, T1, ..., Ti, ..., Tn (VM Ti’s best frequency is fi). The sequence of VMs
are allocated evenly into m cores. Namely, assuming j denotes the index of core 1 ≤ j ≤ m, VMs
T(j−1) n

m
to T(j) n

m
are allocated to core j. In this way, tasks with the nearest best frequency will be

allocated on the same core, which will lead to the least performance loss.

Proof
We prove the theorem by proving that exchanging any two VMs between different cores in the
allocation method will lead to the increase in performance loss.

Assume we exchange task Ti on core CI with task Tj on core CJ (assume I < J , i.e. the VMs’
best frequency on CI are lower than those on CJ). If the total frequency gap after the exchange is
higher than that before the exchange, the performance loss after the exchange must be no less than
that before the exchange.

Before the exchange, the total frequency gap E between the relevant VMs is:

E = (fi − fi−1 + fi+1 − fi) + (fj − fj−1 + fj+1 − fj) (9)

After exchanging, the total frequency gap E′ between the involved tasks can be calculated as:

E′ = fj − fi−1 + fj+1 − fi (10)

Note that the gap of fj − fi+1 and fj−1 − fi are not counted in the expression above since it does
not cause performance loss (but energy waste) even if Xen cannot adjust the frequency timely from
fj to fi+1 and fj−1 to fi. Thus,

E′ − E = fj + fj−1 − fi − fi+1 (11)

Since fj and fj−1 are greater than fi+1 and fi, we get E′ ≥ E.
Note the above expressions for calculating E and E’ capture the general cases. There are special

cases where fi and fj are the highest or lowest frequencies in their cores. These special cases can
also be proved in a similar way.

Theorem 2 essentially states the allocation principle that the VMs with close best frequencies
should be allocated to the same core. In SEDF, however, a VM, Ti, has the CPU requirement,
specified by the first two parameters of the triple (si, pi, xi). Ti’s CPU requirement can be computed
as si

pi
. When BFMM allocates the VMs, it needs to make sure that all VMs allocated to the same core

can meet their CPU requirements. According to the schedulability analysis in the literature [21], if
the sum of si

pi
for a group of VMs allocated in a core is less than 100%, the CPU requirements of

this group of VMs can be met by SEDF. Based on the consideration of the CPU requirement, we
adjust the allocation method in Theorem 2 and present the allocation method used in BFMM. The
fundamental idea of the adjusted allocation method is as follows.

When allocating a set of VMs to a set of cores, C = {C1,C2,...,Cm}, BFMM first sorts the VMs
in the ascending order of their best frequencies. The sorted VM set is T = {T1,T2,...,Tn} (i.e. T1

has the lowest best frequency while Tn has the highest best frequency). VM Ti’s best frequency and
CPU requirement are fi and si

pi
. BFMM allocates the VMs from T1 to Tn one by one to m cores.

It tries to allocate the VMs with the closest best frequencies to the same core as long as the CPU
requirement of the VMs on the same core can be satisfied, i.e., the sum of si

pi
on the core is less than

100%. When BFMM allocates Ti and finds that Ti’s CPU requirement cannot be met in the core, it
moves to the next VM and check if the next VM can be allocated the core. The process continues

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

12 SHENYUAN REN ET AL.

until all VMs are examined for the current core. BFMM then moves to the next core and tries to
allocate VMs to the core. This process repeats until all VMs are allocated. The allocation method
for BFMM is outlined in Algorithm 3.

Algorithm 3 The VM allocation method in BFMM
Require: A set of VMs {Ti}(1 ≤ i ≤ n); the frequency of Ti, fi; the CPU requirement of Ti, si

pi
); a

set of cores Cj , (1 ≤ j ≤ m);
1: for all VMs do
2: Sort the VMs in the ascending order of frequency and obtain the sorted list of {T1, T2, ..., Tn},

i.e., f1 ≤ f2 ≤ ... ≤ fn
3: end for
4: The current core Cc is initialized to be C1, i.e., c = 1
5: for T1 → Tn do
6: if VM Ti has not been allocated then
7: Calculate the total CPU requirement of VMs allocated to Cc, denoted by

∑
c

8: if si
pi

+
∑

c ≤ 100%
then

9: allocate Ti to core Cc

10: else
11: for j = i + 1; j ≤ n; j + +; do
12: if VM Tj satisfies sj

pj
+
∑

c ≤ 100% then
13: Allocate Tj to core Cc

14: end if
15: end for
16: c + +
17: end if
18: end if
19: end for

Note that when there are no deadlines, the BFM strategy essentially becomes LLS. Another point
is that BFM works by re-arranging the execution order of the jobs in the run queue (i.e., allowing
queue-jumping), which is designated by SEDF, only when the deadline allows. So in terms of
meeting real-time requirements, BFM is as good as SEDF. The only case where BFM is unable
to guarantee a task’s deadline is when SEDF is unable to meet its deadline. In this case, BFM will
simply disallow the queue-jumping and the scheduling behaviour of BFM will be the same as SEDF.

7. EVALUATION

7.1. Experimental Setup

We conducted the experiments on the server with Intel(R) Core(TM) i7-3615QM CPU@2.30GHz
processor, 32GB RAM and 122GB hard drives. The processor has 4 physical cores and supports
12 performance states from the minimum frequency of 1200 MHz to the maximum frequency of
2301 MHz. Xen-4.4.1 hypervisor with the kernel version of 3.13.0-32-generic was used to create
the virtualized system. SEDF is selected as the vCPU scheduler and the Ondemand governor as the
DVFS runtime power management. Each VM in the experiments was run with 2 VCPUs and 256M
memory.

The best CPU frequency for running a task in a VM is determined in the following way. We first
set the Xen governor to userspace and then set the CPU frequency using the commands: xenpm
set-scaling-minfreq and xenpm set-scaling-maxfreq. We run the task with different frequencies and
record the execution time and energy consumption. Fig. 6 shows the execution times of different
benchmark tasks running on different frequencies.

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

DEVELOPING POWER-AWARE SCHEDULING MECHANISMS FOR VIRTUALIZED SYSTEMS 13

1,200 1,400 1,600 1,800 2,000 2,200 2,400

50

100

150

Execution Frequency/MHz

E
xe

cu
tio

n
tim

e/
se

c

EP Class=A

LU Class=A

CG Class=B

BT Class=A

Figure 6. The execution times of different benchmark tasks running with different frequencies

As we can see in Fig. 6, as the execution frequency increases, the decreasing trend of the execution
times of all the benchmarks diminishes. The total energy consumption of completing a task can be
calculated by the execution frequency times the corresponding execution time (i.e., the value on the
x axis times the corresponding value on the y axis). Fig. 7 shows the power consumption of the
benchmark tasks running on different frequencies. In this paper, the best CPU frequency of a task
is defined as the frequency which leads to the lowest energy consumption of the task. According to
Fig. 7a to Fig. 7d, we can know that the best frequencies of the four benchmarks, EP, LU, CG and
BT, are 2300 MHz, 1400 MHz, 1200 MHz and 1700 MHz, respectively. A task’s execution time
when it is run with the best frequency is called the best frequency execution time.

7.2. Experiments on Single-core processors

In this section, we compare the BFM scheduler with the SEDF scheduler in Xen in terms of the
performance of managing the VMs in a single core. Four benchmark applications, EP, LU, CG and
BT, are used, which are denoted T1, T2, T3 and T4, respectively. The best frequencies of T1 to T4 are
2300 MHz, 1400 MHz, 1200 MHz, 1700 MHz. Their best frequency execution times are 9850 ms,
7899 ms, 16768 ms, 9938 ms. We run these tasks, each in a separate VM, on a single core under the
SEDF and the BFM schedulers. Fig. 8 compares the execution times of the tasks under these two
schedulers. The best frequency execution time is also depicted in the figure for comparison.

Our experimental records for Fig. 8 show that the execution times of T1, T3 and T4 are reduced
by 10 ms, 140 ms and 10 ms, respectively, under BFM, compared to SEDF. This can be explained
as follows. Under SEDF, the tasks, especially those frequency-sensitive tasks (i.e. the executing
frequency has a big influence on its execution time, for instance T3), may run with the frequency
which is lower than its best frequency, and therefore the execution time may decrease. For the tasks
with high best frequencies (i.e. T1 and T4), the execution times under SEDF increase, comparing to
their best frequency execution times. This is because they may be scheduled behind some tasks with
low best frequencies and Xen cannot adjust the frequency up timely during the scheduling process.
On the countrary, BFM may allow other tasks to jump the queue if they have smaller gap between
the best frequency and the current frequency (subject to the deadline requirement) and therefore
give Xen more time to build up the frequency to run the high frequency tasks.

Fig. 9 compares the power consumption of the tasks running under SEDF and BFM. The power
consumption of the tasks running with their best frequencies, i.e., the frequencies that result in the
minimal power consumption by tasks, are also drawn in the figure for comparison. It can be seen
that the power consumption under BFM is much less than that under SEDF for the tasks T2 and T3.
This is because under SEDF, the tasks, especially those with low best frequencies, may run with
the frequency higher than what they need (the best frequency), which causes energy waste. High
best frequency tasks, for example, T1 (EP), consume 2.2655× 107, 2.2728× 107, 2.2720× 107,

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

14 SHENYUAN REN ET AL.

1,200 1,400 1,600 1,800 2,000 2,200 2,400

4.54

4.56

4.58

·104

Execution Frequency/MHz

Po
w

er
C

on
su

m
pt

io
n

EP Class=A

(a) The power consumption of EP running with different frequencies

1,200 1,400 1,600 1,800 2,000 2,200 2,400

1.11

1.12

1.13

·105

Execution Frequency/MHz

Po
w

er
C

on
su

m
pt

io
n

LU Class=A

(b) The power consumption of LU running with different frequencies

1,200 1,400 1,600 1,800 2,000 2,200 2,400

2

2.1

2.2

·105

Execution Frequency/MHz

Po
w

er
C

on
su

m
pt

io
n

CG Class=B

(c) The power consumption of CG running with different frequencies

1,200 1,400 1,600 1,800 2,000 2,200 2,400

1.69

1.69

1.7

·105

Execution Frequency/MHz

Po
w

er
C

on
su

m
pt

io
n

BT Class=A

(d) The power consumption of BT running with different frequencies

Figure 7. The power consumption of benchmarks running with different frequencies

respectively, with the best frequency, under SEDF and under BFM. SEDF scheduler leads to a power
waste of 73000 (i.e. 2.2728× 107 - 2.2655× 107) while BFM leads to a power waste of only 65000.
These results suggest that BFM can reduce energy consumption while improving performance by
allowing the suitable VMs to jump the queue to fill in the gap between the current frequency and
the best frequency of the VM at the head of the queue under SEDF.

7.3. Experiments on multi-core processors

We use SEDF and BFMM to schedule and run 20 tasks on a DVFS-enabled Quad-Core processor.
Each task Ti has the best execution frequency and the CPU requirement, represented by a tuple
(fi,

si
pi

). We set the tasks’ execution times so that every task’s execution time is 20000ms when they
are run with their best frequencies.

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

DEVELOPING POWER-AWARE SCHEDULING MECHANISMS FOR VIRTUALIZED SYSTEMS 15

Task 1 Task 2 Task 3 Task 4

0.7

0.9

1.1

1.3

1.5

1.7

·104

Task

E
xe

cu
tio

n
Ti

m
e/

m
s

best freq

BFM

SEDF

Figure 8. Execution times of tasks on a single core under SEDF and BFM

Task 1 Task 2 Task 3 Task 4

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

·107

Task

Po
w

er
C

on
su

m
pt

io
n

best freq

BFM

SEDF

Figure 9. Power consumption of tasks on a single core under SEDF and BFM

Fig. 10 and Fig. 11 show the allocation of 20 tasks on the quad-core processor under SEDF and
BFMM. The results show that BFMM allocates the VMs with closer frequencies to the same core,
compared with SEDF. Fig. 12 and Fig. 13 show the performance and power consumption of these
20 tasks, respectively. As can be seen from Fig. 12, the VMs with high best frequencies (e.g., T13

and T14) have much longer execution times under SEDF than under BFMM. The reason is similar
as the reason for the performance gap shown in Fig. 8. Namely, under SEDF these tasks with high
best frequencies may be scheduled to run behind the tasks with low best frequencies and therefore
Xen cannot adjust the frequency up timely. AS we can see from Fig. 13, BFMM reduces power
consumption of all tasks. The reason for this is also similar as the reason for the difference of the
power consumption in Fig. 9.

8. CONCLUSION

This work reveals that the traditional scheduling strategies in virtualized systems managed by
Xen may lead to performance loss and energy waste, due to the limitation of Xen in adjusting
CPU frequency, i.e., Xen can only check and change the CPU frequency at most once every
10ms. This paper presents four scheduling strategies to remedy this situation, which are the Least
performance Loss Scheduling (LLS) strategy, the No performance Loss Scheduling (NLS) strategy,
the Best Frequency Match strategy for a single core (BFMS) and the Best Frequency Match

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

16 SHENYUAN REN ET AL.

Core 1 Core 2 Core 3 Core 4

 𝑇1(1200,20%) 𝑇2(1700,15%) 𝑇3(1400,5%) 𝑇4(2000,15%)

𝑇5(2000,10%) 𝑇6(1300,15%) 𝑇7(2200,35%) 𝑇8(2100,20%)

 𝑇9(1300,20%) 𝑇10(1600,20%) 𝑇11(1800,20%) 𝑇12(1900,25%)

𝑇13(2100,20%) 𝑇14(2200,25%) 𝑇15(2300,20%) 𝑇16(1300,5%)

 𝑇17(1200,25%) 𝑇18(1400,15%) 𝑇19(1900,15%) 𝑇20(2300,25%)

Figure 10. Task consolidation on Quad-Core using SEDF scheduler

Core1 Core2 Core3 Core4

𝑇1(1200,20%) 𝑇3(1400,5%) 𝑇4(2000,15%) 𝑇14(2200,25%)

𝑇17(1200,25%) 𝑇10(1600,20%) 𝑇5(2000,10%) 𝑇20(2300,25%)

𝑇9(1300,20%) 𝑇2(1700,15%) 𝑇8(2100,20%) 𝑇15(2300,20%)

𝑇6(1300,15%) 𝑇11(1800,20%) 𝑇13(2100,20%)

𝑇16(1300,5%) 𝑇12(1900,25%) 𝑇7(2200,35%)

𝑇18(1400,15%) 𝑇19(1900,15%)

Figure 11. Task consolidation on Quad-Core using BFM scheduler

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1.95

1.98

2

2.03

2.05

·104

Task

E
xe

cu
tio

n
tim

e

SEDF

BFM

Figure 12. Execution times of tasks on a multi-core processor under SEDF and BFMM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

40

70

100

130

160

190

220

250

Task

Po
w

er
co

ns
um

pt
io

n

SEDF

BFM

Figure 13. Power consumption of tasks on a multi-core processor under SEDF and BFMM

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

DEVELOPING POWER-AWARE SCHEDULING MECHANISMS FOR VIRTUALIZED SYSTEMS 17

strategy for multiple cores (BFMM). These strategies make use of the scheduling behaviour in
the Xen hypervisor and aim to reduce energy consumption while mitigating performance loss. the
effectiveness of these strategies is theoretically proved and also evaluated by the experiments. The
philosophy used in BFM to reduce performance loss and energy consumption may also be applied
to other schedulers in Xen, such as the Credit scheduler. In the future, we plan to adapt the Credit
scheduler to mitigate the performance loss and energy waste.

9. ACKNOWLEDGEMENT

This work is partially supported by the EU Horizon 2020Marie Sklodowska-Curie Actions through
the project entitled Computer Vision Enabled Multimedia Forensics and People Identification
(Project No. 690907, Acronym: IDENTITY).

REFERENCES

1. Jeongseob Ahn, Chang Hyun Park, and Jaehyuk Huh. Micro-sliced virtual processors to hide the effect of
discontinuous cpu availability for consolidated systems. In Microarchitecture (MICRO), 2014 47th Annual
IEEE/ACM International Symposium on, pages 394–405. IEEE, 2014.

2. Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and
Andrew Warfield. Xen and the art of virtualization. SIGOPS Oper. Syst. Rev., 37(5):164–177, October 2003.

3. Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. Energy-aware resource allocation heuristics for efficient
management of data centers for cloud computing. Future Generation Computer Systems, 28(5):755 – 768, 2012.
Special Section: Energy efficiency in large-scale distributed systems.

4. Yiyu Chen, Amitayu Das, Wubi Qin, Anand Sivasubramaniam, Qian Wang, and Natarajan Gautam. Managing
server energy and operational costs in hosting centers. SIGMETRICS Perform. Eval. Rev., 33(1):303–314, June
2005.

5. Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat. Comparison of the three cpu schedulers in xen.
SIGMETRICS Performance Evaluation Review, 35(2):42–51, 2007.

6. Ligang He, Deqing Zou, Zhang Zhang, Chao Chen, Hai Jin, and Stephen A Jarvis. Developing resource
consolidation frameworks for moldable virtual machines in clouds. Future Generation Computer Systems, 32:69–
81, 2014.

7. Nakku Kim, Jungwook Cho, and Euiseong Seo. Energy-credit scheduler: An energy-aware virtual machine
scheduler for cloud systems. Future Generation Computer Systems, 32(0):128 – 137, 2014. Special Section:
The Management of Cloud Systems, Special Section: Cyber-Physical Society and Special Section: Special Issue on
Exploiting Semantic Technologies with Particularization on Linked Data over Grid and Cloud Architectures.

8. Dawei Li and Jie Wu. Energy-aware scheduling for aperiodic tasks on multi-core processors. In Parallel Processing
(ICPP), 2014 43rd International Conference on, pages 361–370. IEEE, 2014.

9. Kenli Li, Xiaoyong Tang, and Keqin Li. Energy-efficient stochastic task scheduling on heterogeneous computing
systems. Parallel and Distributed Systems, IEEE Transactions on, 25(11):2867–2876, Nov 2014.

10. Ching-Chi Lin, Chao-Jui Chang, You-Cheng Syu, Jan-Jan Wu, Pangfeng Liu, Po-Wen Cheng, and Wei-Te Hsu. An
energy-efficient task scheduler for multi-core platforms with per-core dvfs based on task characteristics. In Parallel
Processing (ICPP), 2014 43rd International Conference on, pages 381–390. IEEE, 2014.

11. Ming Liu, Chao Li, and Tao Li. Understanding the impact of vcpu scheduling on dvfs-based power management in
virtualized cloud environment. In Modelling, Analysis & Simulation of Computer and Telecommunication Systems
(MASCOTS), 2014 IEEE 22nd International Symposium on, pages 295–304. IEEE, 2014.

12. T. Mudge. Power: a first-class architectural design constraint. Computer, 34(4):52–58, Apr 2001.
13. Jean-Marc Pierson and Henri Casanova. On the utility of dvfs for power-aware job placement in clusters. In

Euro-Par 2011 Parallel Processing, pages 255–266. Springer, 2011.
14. Andrei Sfrent and Florin Pop. Asymptotic scheduling for many task computing in big data platforms. Information

Sciences, 319:71 – 91, 2015. Energy Efficient Data, Services and Memory Management in Big Data Information
Systems.

15. Mihaela-Andreea Vasile, Florin Pop, Radu-Ioan Tutueanu, Valentin Cristea, and Joanna Kołodziej. Resource-aware
hybrid scheduling algorithm in heterogeneous distributed computing. Future Generation Computer Systems, 51:61
– 71, 2015. Special Section: A Note on New Trends in Data-Aware Scheduling and Resource Provisioning in
Modern {HPC} Systems.

16. Gregor Von Laszewski, Lizhe Wang, Andrew J Younge, and Xi He. Power-aware scheduling of virtual machines in
dvfs-enabled clusters. In Cluster Computing and Workshops, 2009. CLUSTER’09. IEEE International Conference
on, pages 1–10. IEEE, 2009.

17. Leping Wang and Y. Lu. Efficient power management of heterogeneous soft real-time clusters. In Real-Time
Systems Symposium, 2008, pages 323–332, Nov 2008.

18. Sisu Xi, J. Wilson, Chenyang Lu, and C. Gill. Rt-xen: Towards real-time hypervisor scheduling in xen. In
Embedded Software (EMSOFT), 2011 Proceedings of the International Conference on, pages 39–48, Oct 2011.

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

18 SHENYUAN REN ET AL.

19. Cong Xu, Sahan Gamage, Pawan N Rao, Ardalan Kangarlou, Ramana Rao Kompella, and Dongyan Xu. vslicer:
latency-aware virtual machine scheduling via differentiated-frequency cpu slicing. In Proceedings of the 21st
international symposium on High-Performance Parallel and Distributed Computing, pages 3–14. ACM, 2012.

20. Chao Yu, Leihua Qin, and Jingli Zhou. A multicore periodical preemption virtual machine scheduling scheme to
improve the performance of computational tasks. The Journal of Supercomputing, 67(1):254–276, 2014.

21. Fengxiang Zhang and Alan Burns. Schedulability analysis for real-time systems with edf scheduling. Computers,
IEEE Transactions on, 58(9):1250–1258, 2009.

22. Huanzhou Zhu, Ligang He, Stephen Jarvis, et al. Optimizing job scheduling on multicore computers. In Modelling,
Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS), 2014 IEEE 22nd International
Symposium on, pages 61–70. IEEE, 2014.

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

	1 Introduction
	2 A Motivating Example
	3 Related Work
	4 Performance and Energy Model for the DVFS-enabled Xen
	4.1 Performance Model
	4.2 Power Consumption Model

	5 Scheduling Strategies
	5.1 The Scheduling Strategy with Least Performance Loss
	5.2 The Scheduling Strategy with No Performance Loss

	6 BFM Scheduler
	6.1 BFM for Single-core Processors
	6.2 BFM for Multi-core Processors

	7 Evaluation
	7.1 Experimental Setup
	7.2 Experiments on Single-core processors
	7.3 Experiments on multi-core processors

	8 Conclusion
	9 Acknowledgement

