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SUMMARY

The constant need for faster and more energy-efficient processors has been stimulating the development
of new architectures, such as low-power many-core architectures. Researchers aiming to study these
architectures are challenged by peculiar characteristics of some components such as Networks-on-Chip and
lack of specific tools to evaluate their performance. In this context, the goal of this paper is to present a
benchmark suite to evaluate state-of-the-art low-power many-core architectures such as the Kalray MPPA-
256 low-power processor, which features 256 compute cores in a single chip. The benchmark was designed
and used to highlight important aspects and details that need to be considered when developing parallel
applications for emerging low-power many-core architectures. As a result, this paper demonstrates that the
benchmark offers a diverse suite of programs with regard to parallel patterns, job types, communication
intensity and task load strategies, suitable for a broad understanding of performance and energy consumption
of MPPA-256 and upcoming many-core architectures. Copyright c© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Computer Architecture is a research field that is largely based on a rapid evolution of processors
in order to support the high demand for performance in software development. The ever-increasing
amount of data to be processed demands large scale platforms that are able to surpass the petaflop
barrier and deliver exaflop performance. However, the development of large scale platforms with
exponentially scaling performances also led to an exponential growth in power consumption. This
problem was also pointed out by the Defense Advanced Research Projects Agency (DARPA) in
their report [1], which states that current trends are insufficient to achieve exascale systems due to
power and energy consumption constraints. This concern is now enough to warrant the research
on the use of low-power many-core processors [2, 3]. Indeed, several research efforts are looking
for alternatives to place a large number of processing cores inside a single chip to increase the
processor’s efficiency [4, 5, 6].

In this context, the use of busses and crossbar switches as global interconnection mechanisms is
no longer viable when scalability is necessary, due to physical wire-related constraints, such as low
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bandwidth, signal attenuation, delays due to the long wire sizes, and concurrency [7, 8]. To address
this issue, Networks-on-Chip (NoCs) have emerged as an appealing approach for interconnecting
a large number of cores [9, 10]. The Multi-Purpose Processor Array (MPPA-256) is a state-of-
the-art low-power many-core processor designed by Kalray that embraces such structure, featuring
16 multi-core clusters of 16 cores each, totaling 256 cores in a single chip. In this architecture,
clusters are interconnected by two NoCs. It is a next-generation many-core architecture built for
low energy consumption that may be potentially used to attain exaflop performance with better
energy efficiency [11, 12].

To make efficient use of such many-core processors, parallel applications developed for them
must efficiently exploit both shared and distributed memory programming models [2]. In MPPA-
256, for instance, applications must use a shared memory model inside multi-core clusters,
whereas they must use a specific Application Programming Interface (API) that implements a NoC
Inter-Process Communication (IPC) model to exchange data between clusters. Writing code for
such hybrid models demands deep knowledge about the target architecture. Unfortunately, most
programmers are used to develop code based on the shared memory paradigm, which is the usual
programming model for multi-cores. These challenges increase the complexity in the effective use
of NoC-based many-core processors.

Another important issue concerning these emerging architectures is performance evaluation. Even
though several benchmark suites have been previously proposed to assess the performance of multi-
core processors, they are not suitable for conducting analyses on low-power many-core architectures
[13, 14]. There are three main reasons for that. First, they were not designed to accommodate the
greatly increased number of cores. Work units are either too small or outnumbered, which leads to
load imbalance and thus poor performance. Second, they do not deal effectively with low-power
many-core memory constraints such as limited amounts of on-chip memory and the absence of
cache coherence protocols. The use of smaller memory units might be a key aspect in many-core
architectures in order to achieve low-power consumption [15]. Third, they are not usually designed
to specifically exploit platform-dependent features, such as vector processing units or NoCs, which
might demand a specific understanding about how to deal with them.

New research efforts are needed to efficiently deal with NoC-based many-core architectures, since
they are the state-of-the-art for future exascale computing. However, both industry and academy are
now facing challenges on software development and performance evaluation of the emerging many-
core processors. For instance, when new architectures based on different programming models such
as MPPA-256 come up, they have no accompanying software to address these issues upon their
arrival. Fortunately, this stalemate may be resolved by open benchmarks that are able to encourage
programmers and demystify the architecture.

In this paper we discuss the design of an open benchmark suite (CAP Bench) to provide a solution
to evaluate energy consumption and performance of low-power many-core architectures. As a case
study, we used CAP Bench to evaluate an emergent state-of-the-art low-power many-core processor
called MPPA-256 and to assess whether MPPA-256 can be used as an alternative for energy-efficient
High Performance Computing (HPC). To the best of our knowledge no benchmark is available to
be used as baseline to design, program, evaluate and learn about MPPA-256. Besides being used
and validated specifically on MPPA-256, CAP Bench also features an OpenMP implementation of
all applications. This implementation can be used in shared-memory many-core architectures such
as the Intel Xeon Phi [16] and the Mellanox TILE-Gx [17], the PULP platform [18], as well as in
full-system simulators such as Gem5 [19].

This paper is organized as follows: Section 2 presents an overview of related work. Section 3
quickly introduces the MPPA-256 architecture. Section 4 presents the design method used
throughout the development of the benchmark suite. Section 5 discusses the algorithms available
in CAP Bench as well as their main characteristics. An evaluation of the benchmark applications is
presented in Section 6. Finally, Section 7 concludes this paper and suggests future research paths.
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2. RELATED WORK

The need for energy-efficient processors led to the development of low-power many-core
architectures. Early studies such as the GigaNetIC [20], the CHNoC [21] and the MCNoC [22]
focused on NoC aspects. Currently, cluster-based architectures are under development such as
the SMYLEref many-core [23] and a cluster-based multi-core SoC [24]. The STHORM/P2012
project [25], which is developed by CEA and ST Microeletronics, and the Parallel Ultra-Low-Power
Processing-Platform (PULP) [18], a joint project between groups at ETH Zurich and UNIBO, are
also under development. Both were designed on cluster-based NoCs towards low-power many-core
architectures with strong similarities to the already mentioned MPPA-256 platform.

With regard to benchmark suites, several ones have already been proposed to assess the
performance of multi-core processors. In this section, we first underline the main aspects of the most
popular ones, and then discuss why these benchmark suites are not suitable to evaluate emerging
low-power many-core processors such as the MPPA-256.

The NAS Parallel Benchmark (NPB) [26] was developed at NASA Ames Research Center in
1991 with the goal of testing the performance of highly parallel supercomputers running scientific
applications. NPB originally consisted of five parallel kernel benchmarks and three simulated
applications that were developed to resemble Computational Fluid Dynamics (CFD) applications.
The benchmark applications were implemented in C/Fortran77 and involved larger computations
than other benchmarks that were available at the time, and therefore were suitable for the evaluation
of parallel machines. Additionally, they were conceived to be simple enough to be implemented in
new machines without much effort and time.

SPLASH-2 [14] is a parallel application suite proposed in 1995 to study shared-memory
multiprocessors. It is composed of 8 complete applications and 4 kernels, representing a variety
of scientific, engineering and graphic applications. The paper characterizes the applications with
respect to aspects that interfere in their performance, namely: concurrency and load balance;
working sets and temporal locality; communication-to-computation ratio and traffic; and spatial
locality and false sharing. The authors remark that this characterization was made to help people to
better understand the applications and thus to make a more efficient use of them.

In 2006, the Standard Performance Evaluation Corporation (SPEC) announced an update
to its benchmark suite CPU2000, introducing CPU2006 [27]. CPU2006 contains applications
implemented in C, C++ and Fortran, inspired by real life applications instead of using synthetic
benchmarks. It has a total of 30 benchmarks, of which 12 are integer benchmarks and the remaining
18 are floating-point benchmarks. Each of the applications has a varied set of pertinent inputs and
different outputs. One of the intended uses of the CPU2006 benchmark suite is early design analysis
of new architectures, hence the focus on including varied, real-world applications.

PARSEC [28] is a parallel benchmark suite designed in 2008 with the goal of studying Chip
Multiprocessor (CMP) architectures. The need for a new benchmark suite is due to old suites
being biased towards HPC architectures, as well as using dated implementation techniques and not
necessarily being research-friendly. PARSEC is composed of 9 applications and 3 kernels, selected
to be as diverse as possible. Several different parallelism strategies are used in the applications.
The paper also characterizes the applications with regard to metrics such as locality exploration,
communication-to-computation ratio, off-chip traffic, parallelization and working sets.

The Rodinia benchmark was conceived to enable the study of heterogeneous computing
architectures, which might use, for instance, Graphics Processing Units (GPUs) [29]. The
authors developed 9 applications or kernels aiming to evaluate multi-core architectures and GPU
platforms, characterizing them with respect to inherent architectural characteristics, parallelization,
synchronization, communication overhead and power consumption. They concluded that each
application might present different and specific behaviors.

Although these benchmark suites do provide researchers with a variety of applications to assess
the performance of multi-core processors, they are not suitable for conducting analyses on low-
power many-core architectures [13]. They neither consider severe local memory constraints, which
may be just a handful of megabytes like in MPPA-256, nor the specific NoC topology, which
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(a) MPPA-256 chip. (b) Compute cluster.

Figure 1. Kalray MPPA-256 overview. (a) The chip is composed of 16 compute clusters interconnected by
NoCs. (b) Inside each cluster, there are 16 cores that share 2 MB of memory.

plays an important role in many-cores. Furthermore, applications with small work units and load
imbalance may not be suitable to evaluate many-core architectures. For instance, the SPLASH-2
characterization reveals that some of the applications present poor performance when the number of
cores were greatly increased [14]. The Rodinia benchmark concept is quite similar to ours, however,
its characterization does not cover parallel patterns applied to hybrid programming models, which
is an alternative in low-power many-core architectures that improves the explicit parallelism and the
programming flexibility.

Strategies to address the aforementioned problems could be employed, such as load balance
of loop iterations and vectorization. To accommodate these changes, however, these applications
would need to be completely remodeled and redesigned to be suitable for use in the aforementioned
architecture, which is an endeavor that can be time-consuming [2, 12, 30, 31].

Given the above considerations, it is important to evaluate and understand low-power many-core
architectures, by setting a baseline, using proper benchmarks, in order to support innovations in
the same direction. Our proposal, CAP Bench, also differs from the aforementioned benchmarks
since it takes into account a design methodology, which is substantiated in parallel patterns, energy
efficiency of many-core architectures and workload balance. This design method will be further
detailed in Section 4.

It is worth noting that some of the reported benchmark suites have been proposed in the past
decades, thus, they did not cover application design aspects that are essential to conduct evaluations
and research on the state-of-the-art many-core architectures, which reinforces the need for new
approaches .

3. THE MPPA-256 MANY-CORE PROCESSOR

MPPA-256 [11] is a many-core processor developed by Kalray which features 16 compute clusters
in a single chip. An overview of MPPA-256 is presented in Figure 1(a), and a more detailed view of a
compute cluster is shown in Figure 1(b). Each compute cluster is composed of 16 processing cores
(named C0–C15) and a Resource Manager (RM ), thus totaling 256 processing cores. Processing
cores are dedicated to run user threads (one thread per core) in non-interruptible and non-preemptive
mode, whereasRMs execute kernel routines and communication services. Each compute cluster has
2 MB of memory shared by the 16 processing cores of the cluster.

MPPA-256 also has 4 quad-core clusters, named I/O subsystems, that make it possible to perform
I/O operations, such as getting data from the DDR memory (2 GB) and sending it to compute
clusters. A compute cluster cannot directly access the DDR or another cluster’s memory. Because
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of that, the 16 compute clusters and the 4 I/O subsystems are connected by two parallel NoCs
with bi-directional links, one for data (D-NoC), and the other for control (C-NoC). The D-NoC
allows any of the compute clusters to write data to the internal memory of other compute clusters.
Moreover, it allows the I/O subsystem to write data from the DDR to the compute clusters’ internal
memories and vice-versa. The way in which communication occurs is covered in Section 4.

4. DESIGN METHOD

To enable the design of a benchmark suite to evaluate low-power many-core architectures, MPPA-
256 processor was chosen as target and a development method was defined and adopted. Our
main goal was to keep the source code as clear as possible, while optimizing the applications to
make a more efficient evaluation of the target architecture. This way, the benchmark itself can be
easily extended and applications may help new programmers to learn about low-power many-core
architectures, MPPA-256 and next generations.

Applications were developed using the C language with two parallel programming libraries: (i)
OpenMP 3.0 and (ii) a proprietary Application Programming Interface (API) from Kalray. The
former is based on a shared memory model and was used to parallelize the applications inside the
clusters and the I/O subsystems. The latter, on the other hand, follows a distributed memory model
and was used for inter-cluster communication and for communication between clusters and the I/O
subsystem through the NoC. The API is based on the classic POSIX Inter-Process Communication
(IPC) with synchronous and asynchronous operations adapted to the NoC and PCI features. It is
worth noting that the proprietary API relies on explicit parallelism, in which the work units are
totally independent in terms of data and computing. It means that the programmer must use functions
and directives from the API in order to determine how the parallelism, with respect to inter-cluster
communication, should happen. To actually build applications, the Kalray toolchain that specifically
targets MPPA-256 was used.

The first step of the development cycle was the selection of the algorithms. We selected algorithms
that solve general scientific problems, such as image processing and clustering. The selected
algorithms (Section 5) can be used to develop relevant applications with diverse characteristics
with respect to parallel patterns, job types, communication intensities and task loads. We believe
that these characteristics are relevant to evaluate MPPA-256.

Once the algorithms were chosen, they were parallelized with OpenMP (shared memory model).
This first parallelization allowed us to identify code snippets that would work in parallel units.
Different parallel patterns were considered during this process. Several runs of the applications
were conducted with the shared memory model. On that stage, after running an application, the
perceived results were analyzed and code redesigns were done. This way, the parallel pattern might
have been changed in this process, until we get a version that have performance improvements.
Once the parallel versions of all applications using the shared memory model were finished, they
were tested on MPPA-256 using a single cluster. This allowed us to evaluate the performance of
our parallel solutions without any communication overhead. The next step was then to adapt these
solutions to a hybrid model, which uses OpenMP inside the clusters and the Kalray API to perform
cluster-to-cluster and cluster-I/O communications.

The execution flow on MPPA-256 is the following. The main process runs on an RM of the I/O
subsystem and is responsible for spawning worker processes. These processes are then executed on
compute clusters and may create up to 16 threads, one for each core (PE) inside them. Figure 2
shows an overview of how this process occurs in MPPA-256.

The I/O subsystem creates one process per cluster using the mppa spawn() function.
Communication channels are allocated using mppa open() on the I/O subsystem and on all
clusters involved in the communication. These communication channels are associated with
preallocated buffers on the receiver’s memory. By using these communication channels, the I/O
subsystem can perform write operations (mppa write() function) on the memory allocated in
each cluster (2 MB) and clusters can perform write operations on the DDR connected to the I/O
subsystem (2 GB). Each mppa write() operation executed by the transmitter must be combined
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Figure 2. Kalray MPPA-256 execution flow.

with an mppa read() on the receiver. The API allows both synchronous and asynchronous
communication. Threads in compute clusters are then created and managed by either OpenMP 3.0
or Pthreads, allowing thread parallelism through the 2 MB shared memory. Once all computations
are finished, each compute cluster should call mppa close(), which will be responsible for
performing a synchronization with the I/O subsystem (mppa waitpid() function).

Each application was adapted to the hybrid model described before. After that, their performance
was analyzed in order to found opportunities for possible improvements. For instance, an empirical
study of the impact of the task size on the performance of each application was conducted. We
concluded that the tradeoff between communication time and load imbalance is key to achieve high
performance on MPPA-256. This study led us to fine-tune the task sizes and communications done
through the NoC, which improved the performance of all applications due to a better use of the
MPPA-256 resources.

All results presented in Section 6 represent the average values for the metrics considered in this
study (i.e., time and energy). Averages were calculated based on the values obtained from at least
10 runs, presenting statistical confidence of 95% by Student’s t-distribution and less than 0.7% of
relative error. Confidence intervals were omitted from the results due to very low relative error. The
rationale behind such a low relative error is due to the fact that there is almost no overhead from
the operating system on MPPA-256. For instance, threads within the clusters run without being
interrupted by the operating system that runs on the Resource Manage RM .

The MPPA-256 was evaluated with respect to performance, scalability and energy consumption.
To measure performance, the applications were executed with small, default and huge input sizes,
using 2, 4 and 16 compute clusters, respectively. Then, all applications were executed with all
input sizes, varying the number of used compute clusters in a base-2 logarithmic scale (1, 2, 4,
8 and 16 compute clusters) to evaluate both scalability and energy consumption on MPPA-256.
Additionally, all applications were executed with the default input size comprising any possible
quantity of compute clusters (1 to 16). The energy consumption was collected through the use of
specific tools for Kalray MPPA-256, while the executions were conducted.

5. THE CAP BENCH SUITE

To compose the benchmark, seven applications are proposed, covering a wide range of
characteristics. Applications follow five different parallel patterns based on [32, 33]:
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1. Divide and Conquer, which starts with a division of the problem into small subproblems
solvable in parallel, merging partial solutions into a result;

2. Map, where operations are mostly uniform and applied individually over elements of a data
structure;

3. MapReduce, which combines Map with a consolidation of results in a Reduce procedure;
4. Stencil, in which a function can access an element in a collection and its neighbors, given by

relative offsets; and
5. Workpool, where the algorithm can be divided into independent tasks and distributed among

the execution units.

Job types pertain to what resource is critical to the application: the CPU, memory or NoC. When
using the MPPA-256, if the time to complete a specific application task is determined mainly by
the compute clusters’ speed, the application is said to be CPU-bound. If the application time to
solution is decided primarily by the amount of memory required, it is said do be memory-bound.
In the case of MPPA-256, with limited memory inside compute clusters, it was an effort to adjust
the applications to be as little memory-bound as possible. Finally, the application is said to be
NoC-bound if the time to solution is mainly determined by the period spent transferring data
through the D-NoC. This behavior occurs, for instance, when the task sizes are small, causing high
communication intensity.

Communication intensity concerns how often the applications require the use of the NoC. Three
levels of communication intensity were defined: low, for applications that do not require the NoC
often; average, for applications that make moderate use of the NoC; and high, for applications
that rely heavily on the NoC in their operations. It is worth noting that the data sent to compute
clusters must not be larger than 2 MB, since the memory space in these clusters is limited. Thus,
communication intensities are mainly dependent on the number of times the NoC is required.

Finally, task loads can be regular, if they have the same size, or irregular, if they have diverse
sizes due to irregularities in task generation and/or computation.

In the following sections we describe the strategies used to implement these applications for the
MPPA-256 processor. These sections are meant to introduce the applications and briefly outline how
they were implemented. CAP Bench is open source software and it is available online†.

5.1. Features from Accelerated Segment Test - FAST

Features from Accelerated Segment Test (FAST) [34, 35] is a corner detection method that follows
the Stencil parallel pattern. It is usually used to extract feature points and to track and map objects
in computer vision tasks. It uses a circle of 16 pixels to test whether a candidate point p is actually a
corner. Each pixel in the circle is labeled from integer number 1 to 16 clockwise. If allN contiguous
pixels in the circle are brighter than the intensity of the candidate pixel p plus a threshold value t or
all darker than the intensity of p− t, then p is classified as a corner.

In the MPPA-256 implementation, we use randomly generated images as inputs and a mask
containing the positions relative to p that must be analyzed. The N value is set to 12 and threshold
t is set to 20. Due to very large input images and the compute cluster memory restriction, the I/O
subsystem partitions the input image into 256 KB chunks and sends them to compute clusters for
corner detection. Such a fine granularity causes intense communications through the NoC. After
that, output chunks are sent back to the I/O subsystem, which in turn puts them together to build
the output image that indicates all corners present in it. Moreover, the I/O subsystem receives the
amount of corners detected by each compute cluster and summarizes them to indicate the overall
number of corners detected.

†github.com/cart-pucminas/CAPBenchmarks
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5.2. Friendly Numbers - FN

In number theory, two natural numbers are friendly if they share the same abundancy. The
abundancy A of a given number n is defined as A(n) = σ(n)

n , where σ(n) denotes the sum of
divisors of n, i.e., σ(n) =

∑
d|n

d. FN computes and compares the abundancy of all numbers in a

given interval [m,n] to determine which pairs of numbers are friendly. The parallel pattern used in
FN implementation is MapReduce.

The MPPA-256 implementation uses a master/slave approach. Since every processing task for
FN can be executed independently, we split the input interval into equal sized tasks in the master
process and distribute them among the compute clusters to be simultaneously processed. These
tasks are balanced, causing a regular task load in the slave processes. The abundancy results are sent
back to the master process, which then performs abundancy comparisons using the 4 I/O clusters in
parallel. This computation is not influenced by the NoC use or memory access, being exclusively
CPU-bound.

5.3. Gaussian Filter - GF

The Gaussian blur (also known as Gaussian smoothing) filter is an image smoothing filter that
seeks to reduce noise and achieve an overall smoothing of the image. It consists in applying a
specially computed two-dimensional Gaussian mask (m) to an image (i), using a matrix convolution
operation. It uses the Stencil parallel pattern.

In the MPPA-256 implementation, we use randomly generated masks and images as inputs. Since
some input images are very large and the compute clusters have a 2 MB memory restriction, the I/O
subsystem partitions the image into 1 MB chunks and sends them to compute clusters to be filtered.
This is an average chunk size, causing a moderate use of the NoC that in general does not overwhelm
the general computation. After the individual chunks are filtered, they are be sent back to the I/O
subsystem, which puts them together to build the output image.

5.4. Integer Sort - IS

The integer sort problem consists in sorting a very large amount of integer numbers. We
implemented a variation of the integer sort problem called bucket sort, which divides the elements
to be sorted into buckets. A bucket is a structure that stores numbers in a certain range. The integer
numbers used as input are randomly generated and range from 0 to 220 − 1. IS uses the Divide and
Conquer parallel pattern.

In the MPPA-256 implementation, the buckets are further subdivided into minibuckets of 1 MB.
As input elements are mapped to the appropriate buckets, they are placed in a minibucket. When the
minibucket becomes full, a new minibucket is allocated inside its parent bucket and starts receiving
elements. This takes place in the I/O subsystem, which will also send minibuckets for compute
clusters to work on. Each compute cluster receives only one minibucket at a time, due to memory
restrictions. Inside a compute cluster, minibuckets are sorted using a parallel mergesort algorithm,
and as the starting order are random, the task load is irregular. Sorted minibuckets are then sent back
to the I/O subsystem to be merged in parallel by its 4 cores. Because of this flow of minibuckets, IS
is a high-intensity algorithm in terms of communication, therefore being NoC-bound.

5.5. K-Means - KM

K-Means clustering is a data clustering solution employed in clustering analysis. We opted to use
Lloyd’s algorithm [36] in our work. Given a set of n points in a real d-dimensional space, the
problem is to partition these n points into k partitions. The data points are evenly and randomly
distributed among the k partitions, and the initial centroids are computed. Then, the data points
are re-clustered into partitions taking into account the minimum Euclidean distance between them
and the centroids. Next, the centroid of each partition is recalculated taking the mean of all points
in the partition. The whole procedure is repeated until no centroid is changed and every point is
farther than the minimum accepted distance. During the execution, the number of points within
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each partition may differ, implying different recalculation times for each partitions centroid. The
parallel pattern of KM is Map.

The MPPA-256 version of the K-Means algorithm (KM) takes additional parameters p, specifying
the number of compute clusters to be used, and t, which specifies the total number of execution
flows. Each cluster spawns t working threads, so the total number of threads equals p × t. This
strategy causes intense communication between the I/O subsystem and the compute clusters. We
first distribute data points and replicate data centroids among clusters, and then loop over a two-
phase iteration. First, partitions are populated. Then, data centroids are recalculated, which is a
memory-intensive process. For this recalculation, each cluster uses its local data points to compute
partial centroids, i.e., a partial sum of data points and population within a partition. Next, clusters
exchange partial centroids so each cluster ends up with the partial centroids of the same partitions.
Tasks in KM are irregular, since the amount of work for each thread may vary during each iteration.
Finally, clusters compute their local centroids and send them to the master process.

5.6. LU Factorization - LU

LU is a matrix decomposition algorithm which factors a matrix A as a product of two triangular
matrices: lower (L) and upper (U ). We opted to implement Gaussian elimination to compute L and
U , which requires n− 1 iterations, where n is the order of A (always square). In each iteration, a
sub-matrix of a smaller order (1 unit smaller) is analyzed, starting from order n. First, the biggest
element in the submatrix (pivot) is found. Then, this element is moved to the (1, 1) position, shifting
rows and columns appropriately. The line containing the pivot is subsequently divided by itself,
thus the pivot element becomes 1. The last step (reduction) aims to nullify elements below the main
diagonal. For every line l below the pivot, we multiply the pivot line p by the opposite of the first
element e of l and replace l with l + p. We store −e in a separate matrix. After the iterations are
finished, every line will have undergone reduction, and the resulting matrix is the U matrix. The L
matrix is formed by the −e factors that were stored in the separate matrix. Therefore, both matrices
are computed simultaneously. LU uses the Workpool parallel pattern.

Our MPPA-256 solution assigns rows to compute clusters so the largest element can be found.
Each compute cluster receives no more than 1 MB of data, in this case, leading to intensive
communication. On the other hand, the distributed task loads are regular. The same restriction of
1 MB applies when distributing lines among the compute clusters to apply reduction. Row swapping
is done in the master process (I/O subsystem), so the pivot becomes the first element in the matrix.
The I/O subsystem is also used to rebuild the L and U matrices from chunks processed in the
compute clusters.

5.7. Traveling-Salesman Problem - TSP

The Traveling-Salesman Problem consists in solving the routing problem of a hypothetical traveling
salesman. Such a route must pass through n towns, only once per town, return to the town of origin
and have the shortest possible length. Our solution (TSP) is based on the branch-and-bound method
using brute force [12]. It takes as input the number of towns and a cost matrix, and outputs the
minimum path length. The algorithm does a depth-first search looking for the shortest path, pruning
paths that have a bigger cost than the current minimum cost. This pruning introduces irregularities
in the algorithm, since the depth-first search needs to discard branches depending on the order in
which the branches are searched. TSP uses the Workpool parallel pattern.

The MPPA-256 implementation uses a task queue in which tasks are branches of the search tree.
Compute clusters take jobs from the queue and run them. The number of clusters and the number of
threads define the total number of lines of execution. For each cluster, n threads will be spawned,
totaling n threads× n clusters threads. When the minimum path is updated, the new value is
broadcast to every cluster so they can also use it to optimize their execution. At the end of the
execution, one of the clusters (typically the 0-th) prints the solution. The final solution might be
discovered by any one of the clusters, however all of them are aware of it due to the broadcasts of
each path update.
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Table I. Characteristics of each application available in CAP Bench.

App. Parallel Patterns Job Types Communication Intensities Task Loads
FAST Stencil CPU-bound; NoC-bound High Irregular

FN MapReduce CPU-bound Low Regular
GF Stencil CPU-bound Average Regular
IS Divide and Conquer NoC-bound High Irregular
KM Map CPU-bound; Memory-bound High Irregular
LU Workpool NoC-bound High Regular

TSP Workpool CPU-bound Low Irregular

5.8. Design Decisions

We had to make several decisions in order to develop suitable applications for the MPPA-256.
Diverse parallel patterns were considered for each application running on the processor with regard
to communication intensities and strategies, job types, and task loads. Table I summarizes the
general characteristics of CAP Bench applications that allow for a better use of the MPPA-256
resources.

The applications that deal with image processing, such as FAST and GF, commonly have to take an
image data array as input to operate on. The Stencil pattern, used in both FAST and GF, enables the
use of low-level operations over highly parallel data that can be optimized by using the numerous
MPPA-256 cores. The communication intensities when running FAST are higher than GF due to the
chunk sizes, which are bigger in GF. Smaller chunks create more communication between the I/O
subsystem and the compute clusters and therefore a heavier use of the NoC. There is a trade-off
in FAST, which pertains to the fact that if we increase the chunk size, the compute cluster would
become very overloaded by the irregular tasks.

The Divide and Conquer pattern is almost inherent to the bucket sort used in the IS application.
This sort of strategy is effective when an optimal number of buckets are used, which is easy
to achieve when using MPPA-256. We conclude that a big number of buckets with small sizes
generates high communication intensities, by the constant use of the NoC. On the other hand, bigger
buckets would not fit on the limited memory size of a compute cluster. Generally speaking, the
division of numbers in many independent parallel units has no impact in the sorting algorithm’s
performance, even though the task load is irregular.

FN and KM use the Map parallel pattern. The former also uses the Reduce pattern. Applications
using these patterns scale well in MPPA-256 due to the explicit parallelism of the architecture and
patterns. As FN and KM are algorithms with highly independent tasks, the other patterns’ results
were worse than Map or MapReduce. FN tasks consist of operations over sets of positive integers.
Each cluster receives one set of integers, regardless of the input size (i.e., there is only one send
and one receive operation per cluster). Thus, FN does not use the NoC very intensely. In the case of
KM, the opposite occurs. There is high-intensity communication between the I/O subsystem and the
compute clusters to distribute the points.

The Workpool pattern could be easily used in any MPPA-256 application. Given a set of
independent tasks, they are distributed by the master process between the slave processes. LU and
TSP follow this approach, in which the tasks are coordinated by the I/O Subsystem (master process)
(for instance in a task queue) and then delivered to any available compute cluster (slave process).
This was the best pattern we found to develop both LU and TSP. The LU application is mainly
favored by this pattern because of task regularity. The size of rows sent to compute clusters is
the same, leading to balanced computations, improved by the Workpool strategy. Just like in other
applications, this brings up the NoC-bound behavior. In the case of TSP application, the data set is
smaller, and time to solution is mainly determined by the compute cluster speed (CPU-bound).

In order to enable testing with different workload sizes, we defined 5 input set sizes for
applications in CAP Bench:

• Tiny: very small input sizes, meant to test the behavior of the applications;
• Small: small input sizes, meant for fast execution of the applications;
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Table II. Input parameters.

App. Tiny Small Default Large Huge

FAST 2048× 2048 4096× 4096 8192× 8192 16384× 16384 24576× 24576

FN 8× 106 + 1 to
8× 106 + 212

8× 106 + 1 to
8× 106 + 213

8× 106 + 1 to
8× 106 + 214

8× 106 + 1 to
8× 106 + 215

8× 106 + 1 to
8× 106 + 216

GF 2048× 2048 (i)
7× 7 (m)

4096× 4096 (i)
7× 7 (m)

8192× 8192 (i)
11× 11 (m)

16384× 16384 (i)
11× 11 (m)

32768× 32768 (i)
15× 15 (m)

IS 223 integer 224 integer 225 integer 226 integer 227 integer
KM 212R16 points,

256 centroids
213R16 points,
512 centroids

214R16 points,
512 centroids

215R16 points,
1024 centroids

216R16 points,
1024 centroids

LU 512× 512
matrix

1024× 1024
matrix

1536× 1536
matrix

2048× 2048
matrix

2560× 2560
matrix

TSP 14 towns 15 towns 17 towns 19 towns 20 towns

• Default: medium-sized inputs, meant to resemble input sizes of typical application workloads;
• Large: larger-scale inputs, meant to be above-average in resource needs, but not much;
• Huge: very large input sizes, sometimes greater than 1 GB, meant to more thoroughly evaluate

the processing and NoC performance.

Each application was designed to fully support all workload sizes. Applications related to image
processing, such as FAST and GF, have different symmetric image sizes. FN and IS, which deal with
integer numbers, have input parameters that are directly related to these numbers. Thus, the higher
the number or the range of numbers, the higher the computation cost. LU is an application that deal
with symmetric matrix operations, thus the workload is associated to the size of the matrix. KM
is a clustering application that computes a number of centroids based on a set of points. If these
parameters are increased, the workload increases proportionally. Finally, in the case of TSP, the
number of towns is required in order to determine the computation cost. The addition of a single
town in the problem set can substantially increase the computation cost. Table II summarizes the
parameters for each application.

6. RESULTS

In this section we first present a workload analysis of all applications in CAP Bench. Hence, we
show the performance scalability and energy consumption results.

6.1. Workload Analysis

To point out the main characteristics and potential bottlenecks on all applications, we measured
master time, slave time and communication time. Master time corresponds to processing time in
the I/O subsystem, and excludes data transfer time or blocking time. Slave time is the average
processing time of all compute clusters. Communication time corresponds to the total data transfer
time between master and slave processes, and excludes the time spent by the master process waiting
for slaves to be ready to send or receive data. We considered a total of ten executions for each
application and input size combination, and we observed a relative standard deviation below 1.00%.

The applications were executed with small, default and huge input sizes, using 2, 4 and 16
compute clusters respectively. The results are presented in Table III. Total time in the table
corresponds approximately to the sum of master and communication times, since slave time happens
in parallel relative to the other two. Frequently, communication time can be close to slave time,
which happens because the referred applications use blocking communication in the I/O subsystem.

The results for FN show a predominance of slave and communication time over master time for
small and default input sizes, but the opposite occurs for huge input size and 16 compute clusters (a
master time of 69.02% of total time). This happens because, as input sizes grow, more comparisons
to identify which numbers are friendly have to be made in the master process during the Reduce
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Table III. Breakdown of execution times (in seconds) with different number of clusters and input sizes: small
with 2 clusters (left), default with 4 clusters (middle) and huge with 16 clusters (right).

App. Small – 2 Clusters Default – 4 Clusters Huge – 16 Clusters
Master Slave Comm. Total Master Slave Comm. Total Master Slave Comm. Total

FAST 0.00 0.79 1.02 1.03 0.00 1.58 2.50 2.52 0.0 3.55 13.32 13.40
FN 7.47 213.94 213.94 221.43 29.90 214.04 214.04 243.95 478.31 214.60 214.61 692.97
GF 0.00 0.87 1.04 1.05 0.00 3.46 4.11 4.12 0.00 24.09 33.89 33.95
IS 47.21 18.94 19.69 66.95 93.86 9.66 10.97 104.90 523.89 6.06 11.06 535.09
KM 0.07 6.89 8.19 8.28 0.38 22.72 25.54 25.97 2.89 42.68 56.17 59.17
LU 1.92 1.42 36.17 38.63 4.66 2.42 121.06 127.41 14.73 2.93 566.72 589.15

TSP 0.00 1.88 0.24 2.18 0.01 35.46 0.05 38.66 0.02 254.30 0.73 325.94

procedure. Communication times remained constant for the tested input sizes because the amount
of numbers to be sent to each cluster during the Map procedure remained almost constant as input
sizes and available resources were increased. FN also has regular task loads, which makes the slave
time equal for all clusters.

For FAST and GF, results indicate that the majority of the time is spent sending data chunks
to compute clusters (an average communication time of 99.54% and 99.21% of total time,
respectively). It is worth noting that the communication part refers to blocking communication.
These applications, characterized by high or average communication intensities, would benefit from
a faster NoC with smaller delays, as well as faster and more numerous compute clusters.

FAST slightly has better communication times than GF due to its smaller chunks, which flow faster
through the NoC. The I/O subsystem is not a bottleneck for these applications. A similar behavior
can be observed for KM, with the difference that it spends more time in the slave processes relative
to communication than FAST and GF do (KM presented a slave time average of 80.94% of total time).
This occurs because slave processes in KM run more computationally expensive code than FAST and
GF slave processes, therefore requiring proportionally more time to perform their tasks.

A result that immediately draws attention to IS is that the time spent in the slave processes
decreases as input sizes increase, with a slave time of 29.29% of total time with 2 clusters and the
small input size, 9.21% for 4 clusters with default input size and 1.13% with 16 clusters and huge
input size. This means that even though there are more numbers to be sorted they are distributed
among more compute clusters, improving the slave time. This behavior corroborates the use of the
Divide and Conquer pattern, mainly on the divide phase. Time spent in the master process tends to
increase with input, and this is due to the fact that more merge operations need to be carried out in
the master process running in the I/O subsystem when inputs are larger.

Communication would be a bottleneck for IS if the minibuckets sent to the clusters were bigger,
as IS is really a NoC-bound application. In other words, as the size of the data sent each time is
relatively small, communication happens more often, and the NoC is required many times. But the
communication time was not excessively large, as shown in Table III, due to the small data packets
flowing through the NoC.

For LU, communication is the key performance-halting factor. Even though both the I/O
subsystem and compute clusters are used in this application, the vast majority of the total execution
time can be attributed to the use of the NoC to send matrix chunks back and forth (an average
communication time of 94.95% of total time). This behavior explains the increase in communication
time, since more chunks have to be sent for bigger matrices and when more compute clusters are
employed.

Communication time is not a bottleneck for TSP, which does not use the NoC heavily in spite of
using the same Workpool parallel pattern as LU, a NoC-bound application. Both applications have
a pool of tasks to be executed, but LU generates more tasks to be sent to the compute clusters. TSP
also spends most of its execution time in compute clusters. However, unlike the GF and KM, little
time is spent in communication. This behavior, as mentioned before, can be explained by the fact
that TSP performs few data transfers.

Another particularity that is observed in TSP is the great difference between the total and slave
time – for the huge input size, for instance, the slave time corresponds to 78.02% of total time.
However, this behavior is expected due to the irregularity issue discussed in Section 5.7, related to
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the branch-and-bound method. This also incurs in a reduction in average slave time, because some
threads finish earlier than others, which brings the mean down.

6.2. Performance and Energy Consumption

To analyze the overall performance and energy consumption, we executed all the applications using
every input size with 1, 2, 4, 8 and 16 compute clusters (Figure 3). We collected the average time-to-
solution (TTS) and energy-to-solution (ETS) for the applications to evaluate how they scale when
larger inputs and more resources are used. Additionally, a more detailed scaling test was conducted
for all applications using the default input size, gradually increasing the number of compute clusters
from 1 to 16 (Figure 4). The performance gains mentioned below use executions with 1 compute
cluster as base for comparison. For each application and input size we ran the applications ten times,
and observed a relative standard deviation below 1.00%.

Energy measurements were obtained from a proprietary tool called K1-POWER, which allows
us to collect energy measurements of the whole chip, including all clusters, on-chip memory, I/O
subsystems and NoCs when running the applications. According to the Kalray’s reference manuals,
energy measurements are accurate to within ±0.25 W of the current power draw. In order to clarify
how good this accuracy is, Table IV presents a sample analysis of the power consumption perceived
on all applications when executed with default input set size. The minimum, maximum and average
values of power consumption are presented, with the respective accuracy taking into account the
±0.25 W margin. The worst accuracy value was 92.88% in FN, when running it with one cluster.

Table IV. Power consumption sample analysis (in Watts) of all applications with default input set size.

App. Minimum Accuracy Maximum Accuracy Average Accuracy

FAST 4.14 93.96% 4.34 94.24% 4.24 94.10%
FN 3.51 92.88% 9.22 97.29% 6.34 96.06%
GF 4.16 93.99% 4.35 94.25% 4.25 94.12%
IS 4.06 93.84% 4.73 94.72% 4.37 94.28%
KM 4.51 94.46% 7.70 96.75% 6.31 96.04%
LU 4.31 94.20% 6.88 96.37% 5.49 95.45%

TSP 4.34 94.24% 7.96 96.86% 6.28 96.02%

FAST, FN, GF, KM and TSP have similar well-scaling behaviors, which means that for a determined
input size, TTS tends to decrease as more compute clusters are employed. These applications, as
we can see in Table I, are all CPU-bound. IS and LU have their TTS mainly determined by the data
transfers through the NoC, resulting in worse scalability results than the others.

Other exceptions are KM and GF for tiny input size. The inputs are so small that synchronization
operations become a bottleneck as the number of compute clusters increases. Besides that, KM is
a Memory-bound application which could not be executed with large input size using 1 compute
cluster and with huge input size using 1 and 2 compute clusters, due to the 2 MB memory restriction
in them. Concerning the applications that follow the Stencil pattern, the chunks in GF are bigger than
in FAST and therefore the compute clusters are less often used by the former.

Regarding energy consumption, the same decreasing behavior is observed in some applications:
since consumed power is constant and applications take less time to finish when more resources are
used, energy consumption is smaller. FAST, GF, KM and TSP do not rely heavily on the I/O subsystem
for their operations, causing TTS and energy consumption to be closely related to the time spent on
compute clusters.

On the other hand, the Reduce procedure in FN heavily relies on the I/O subsystem for comparing
abundancies. Besides that, it is a CPU-bound algorithm composed of a high number of arithmetic
operations. These characteristics led the average power consumption to increase linearly. With
that in mind, when changing from 4 to 5 clusters, the average power consumed by FN was more
determinant for the energy consumption than the TTS. Changing from 5 to 6 clusters, the power
consumption increased slightly, thus, in this case, the TTS was more determinant. Although FN and
KM have similar parallel patterns, the latter does not use the Reduce procedure on the I/O subsystem.
Nevertheless, the overall time spent in compute clusters in KM substantially surpasses the time spent
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Figure 3. Execution time and energy consumption of all applications and input sizes.

on the I/O subsystem, causing TTS and energy consumption to decrease as more compute clusters
are used.

The best execution time results for these applications were obtained with 16 clusters. In tests with
16 compute clusters, FAST obtained a decrease in execution time up to 82.24% and FN a decrease up
to 92.91%. In GF, a reduction of about 89.80% was achieved. In KM and TSP, the achieved reduction
in execution times was 87.84% and 93.01%, respectively.

In spite of achieving better results with 16 clusters, IS presented a decreasing scalability behavior,
which means that performance gains tended to decrease as input set sizes increased. More precisely,
the referred gain with 16 clusters was 58.42% with tiny input size, and 14.57% with huge input size.
This happened because, as input sizes grow, IS relies more on the I/O subsystem to merge sorted
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Figure 4. Detailed execution time and energy consumption results of all applications with default input set
size.

minibuckets in the Conquer phase than sorting the numbers in the compute clusters. Larger input
sets mean a larger number of minibuckets to be merged by the I/O subsystem, which in turn causes
performance gains to diminish because the I/O subsystem has a constant number of cores and does
not perform computations as well as the compute clusters.

Regarding energy consumption, Figure 4 shows that IS presented the most irregularities among all
the applications in CAP Bench: it decreased proportionally when up to five clusters were used and
then it increased almost linearly. This is because when more clusters are used, more communication
takes place, causing the average power to increase linearly. The performance behavior is reflected
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in energy consumption results, with smaller inputs presenting energy consumption gains which
dwindle as input sizes augment.

The performance scalability of LU was negligible. Generally, we observed a more significant
reduction in execution time when varying the number of compute clusters from 1 to 2. For more
than 4 clusters, however, the overall execution time of LU usually increased. This poor scalability is
justified by the fact that LU is heavily NoC-bound, and communication was its main performance
bottleneck. As we increase the number of compute clusters we also increase the contention on the
NoC. As a result, the amount of time spent in communications becomes higher than the amount of
processing time. Overall, the highest reduction in execution time observed for this application was
4.21%, which was obtained with 4 clusters and large input size.

Regarding energy consumption, we can see in Figure 4 that it increases in a quasi-linear fashion
for LU, except when increasing the number of compute clusters from 1 to 2, when a slight decrease
is present. As in FN, the average power consumption in LU increases linearly when more compute
clusters are employed. However, LU presented worse energy consumption results due to its poor
scalability. The perceptible increase in energy consumption can also be attributed to the more intense
use of the NoC, since bigger inputs will require more data chunks to be sent and more compute
clusters also require the NoC to work more intensely.

To summarize, CAP Bench scales well enough to study the MPPA-256 architecture and its
potential bottlenecks. We believe that CAP Bench applications cover important aspects of low-
power many-core architectures, being useful to study emerging and upcoming low-power many-
core architectures in terms of performance, energy consumption and communication bottlenecks.
It is worth noting that MPPA-256 has all of the previously mentioned constraints, and the parallel
patterns and design decisions related on Section 5.8 proved to be appropriated to address them.
For instance, the tradeoffs between the NoC use and the data sizes (chunks) is something that
some applications could expose, also pointing out that the NoC speed might be improved in spite
of increasing the clusters’ memory size. The results corroborate that CAP Bench enables a solid
evaluation concerning energy efficiency of current low-power many-core architectures, such as the
MPPA-256, and can be further used to evaluate and compare the upcoming ones.

7. CONCLUSIONS

In this paper we presented CAP Bench, an open source benchmark suite that includes parallel
applications suitable to evaluate emerging low-power many-core processors such as MPPA-256.
The benchmark contains a diverse set of applications that evaluated key aspects of MPPA-256,
namely the use of its compute clusters, I/O subsystem, NoC and energy consumption. We expose
development difficulties and potential bottlenecks that can stem from the shift in development
paradigm when programming for low-power many-core architectures. The results showed us that
different applications can have different performance bottlenecks, which is why a solid knowledge
about the low-power many-core architecture is necessary for the development of efficient programs.

Our analysis shows that CAP Bench is prepared for the analysis of low-power many-core
processors such as the MPPA-256, being scalable and concerned with new trends on this type of
architectures. To achieve good performance and scalability, we developed applications considering
aspects such as parallel patterns, load balance and architecture limitations. This allowed us to
evaluate several aspects of the MPPA-256.

Our benchmark explores the hybrid programming model, which is a trend in low-power many-
core processors, following parallel patterns. This enables us to verify that, in the case of MPPA-256,
communication time may surpass computation time, which would ideally never occur. This behavior
was highlighted by the LU application available in CAP Bench, which may indicate that the NoC
should be improved to achieve better performance on NoC-bound applications. In this manner, CAP
Bench comes up with the proposal to identify such bottlenecks, revealing potential improvements
that might be done in future many-core architectures.

Application development challenges are still out there, and have to be solved to enable the
evaluation of next generation many-core processors. As future work, we intend to incorporate other
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applications to the benchmark, to make it more diverse and allow for a better characterization
of the architecture and its aspects. We also intend to extend the benchmark use to other many-
core architectures, to achieve a broader understanding of them and the differences between many-
core processors. Another future plan is to collect full-system simulation results to strengthen
the hypothesis that CAP Bench can be used to evaluate emerging many-core architectures with
specific characteristics. These characteristics could be adjusted in a simulator to reveal strengths
and potential bottlenecks of the simulated architecture. Thus, the use of a simulator along with
CAP Bench opens up a wide range of possible evaluations of NoC and memory characteristics of
many-core processors.
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