

Deadline-constrained Co-evolutionary Genetic Algorithm for Scientific

Workflow Scheduling in Cloud Computing

Li Liu1, Miao Zhang2,1,*, Rajkumar Buyya3, Qi Fan1
1School of Automation and Electrical EngineeringUniversity of Science and Technology Beijing, China

2Beijing Institute of Technology, Beijing, China
3The University of Melbourne, Australia

*Corresponding Author: S20130926@ustb.edu.cn

Abstract
The Cloud infrastructures provide a suitable environment for the execution of large-scale scientific work-
flow application. However, it raises new challenges to efficiently allocate resources for the workflow ap-
plication and also to meet the user’s quality of service (QoS) requirements. In this paper, we propose an
adaptive penalty function for the strict constraints compared with other genetic algorithms. Moreover, the
co-evolution approach is utilized to adjust the crossover and mutation probability which is able to acceler-
ate the convergence and prevent the prematurity. We also compare our algorithm with baselines such as
random, PSO, HEFT and GA in a WorkflowSim simulator on four representative scientific workflows. The
results show that it performs better than other the state-of-the-art algorithms in the criterion of both the
deadline-constraint meeting probability and the total execution cost.

Keywords: Cloud Computing; Scientific Workflow; Resource Scheduling; Co-evolutionary Genetic

Algorithm

1. Introduction

Scientific experiments are usually represented as workflows [1], where tasks are linked according to their
data flow and compute dependencies. Such scientific workflows are data-intensive and compute-intensive
applications, for example, Compact Muon Solenoid (CMS) experiment for the Large Hadron Collider
(LHC) at CERN [2] produces a huge amount of data to be analyzed, which are more than five peta-bytes
per year when running at peak performance. The Human Genome Project is aimed at sequencing and iden-
tifying all three billion chemical units in the human genetic instruction set, and discovering the genetic
roots of disease to find treatments. These scientific workflows have tremendous data and computing re-
quirements, and need a high-performance computing environment for execution. Cloud computing is the
latest development of distributed computing, grid computing and parallel computing [3] [4], which delivers
the dynamically scaling computing resources as a utility, much like how water and electricity were deliv-
ered to households these days. The patterns that Cloud computing provides resources contain: Infrastruc-
ture-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS) [3][5]. In this
paper, we refer to IaaS Cloud which offers us a virtual pool to provide unlimited virtual machines (VMs).

This article is protected by copyright. All rights reserved.

This is the author manuscript accepted for publication and has undergone full peer review but
has not been through the copyediting, typesetting, pagination and proofreading process, which
may lead to differences between this version and the Version of Record. Please cite this article
as doi: 10.1002/cpe.3942

http://dx.doi.org/10.1002/cpe.3942
http://dx.doi.org/10.1002/cpe.3942

The main character of Cloud computing is virtualization. Cloud enables to provide computational re-
sources in the form of virtual machines (VMs). A process that maps tasks in a workflow to compute re-
sources (VMs) for execution (preserving dependencies between tasks) is called workflow scheduling.
There are two layers for Cloud workflow scheduling which include VM-task mapping and the execution
order for tasks in a single VM. In this paper, we just use the evolutionary approach to schedule VM-task
mapping in the first layer, and the execution order in a single VM is set as that in paper [6], where the VM
will schedule the task with the smallest end time. There are different optimization objectives for workflow
scheduling in Cloud, including makespan, cost, throughput, and load balancing. In this paper, the optimiza-
tion objective is the cost of executing a scientific workflow and subject to a deadline constraint, which is to
find a proper task-VM mapping strategy which minimizes the total financial cost and the makespan satis-
fies the deadline constraint.

The context above is a constrained optimization problem, and in order to transform constrained prob-
lem into unconstrained one, most evolutionary algorithms usually use static penalty function to penalize
infeasible solutions by reducing their fitness values in proportion to the degrees of constraint violation.
However, it is difficult to set a suitable penalty factor. Another common method is to eliminate the infeasi-
ble individuals within their evolutionary process. However, some infeasible individuals usually hold very
rarely and excellent gens to be very valuable for the next generations, and unable to be eliminated. We pro-
pose a co-evolutionary genetic algorithm with adaptive penalty function for the constrained scientific
workflow scheduling in Clouds. We have considered the main features of Cloud providers such as hetero-
geneous computing resources and dynamic providing. An adaptive penalty function is applied in the co-
evolutionary genetic algorithm which will adjust itself automatically during the evolution. And we apply
the notion of co-evolution to adjust the crossover and mutation probability factors which are helpful for the
convergence. Our main contributions can be summarized as follows: 1) Present the optimization model of
scientific workflow scheduling in cloud environment which is cost-minimization and deadline-constrained,
and considers Cloud resources’ dynamic provision pattern and heterogenetic character. 2) Propose a new
Co-evolutionary Genetic Algorithm with Adaptive penalty function approach 𝐶𝐶𝐶𝐶𝐶𝐶2 , for deadline con-
strained scientific workflow scheduling in Clouds. It applies a self-adaptive penalty function into the co-
evolutionary GA which is able to prevent premature efficiently, and uses the notion of co-evolution to ad-
just the crossover and mutation probabilities which can efficient accelerate the convergence. 3) Unlike ex-
isting genetic approaches, we generate the initial population based on the critical path [7], which can also
prevent premature efficiently and improve deadline meeting for workflow scheduling. Simulation results
demonstrate that our approach have high accuracy in terms of deadline constraint satisfaction at a lower
costs.

The remainder of this paper is organized as follows: the following section introduces the related works.
The context of our model is presented in Section 3. Section 4presents the 𝐶𝐶𝐶𝐶𝐶𝐶2 approach and the adaptive
penalty function. Section 5 applies the proposed approach (𝐶𝐶𝐶𝐶𝐶𝐶2) to Cloud scientific workflow scheduling
problem. Section 6 evaluates the performance of the 𝐶𝐶𝐶𝐶𝐶𝐶2, and has made comparison with the existing al-
gorithms, then gives the experiment results. We conclude the paper with a discussion and a description of
future work in Section 7.

2. Related Work
To address the problem of constrained workflow scheduling in Cloud Computing, some evolutionary

This article is protected by copyright. All rights reserved.

algorithms have been adopted to generate near-optimal solutions. Wang and Yeo et al.[8] presented a look
ahead genetic algorithm (LAGA) which utilized the reliability-driven (RD) reputation to evaluate the re-
source’s reliability. Moreover the multi-objective model aiming to optimize both the makespan and the re-
liability of a workflow application was proposed. A Particle Swarm Optimization (PSO) based approach
was proposed in [9], which aimed to minimizing the execution cost of a workflow while balancing the task
load on the available resources. Rodriguez and Buyya [6] presented a cost-minimization and deadline-
constrained PSO approach for Cloud scientific workflow scheduling. It considered fundamental features of
IaaS providers, like elastic providing and heterogeneous computing resources (VMs). A penalty function
was used in their algorithms that the particles violating the constraints are inferior to the feasible particles.
However this method would lead a premature convergence which is very common in the PSO algorithms.

Sawant [10] utilized the genetic algorithm (GA) for virtual machines configuration in Cloud Compu-
ting. It incorporated the constraints into the objective fitness function, so as to transform the constrained
optimization problem to the unconstrained one. This is the most popular handling way for the constrained
optimization problem and particularly easy to implementation. But it is very hard to set a suitable penalty
factor to tradeoff between the global optimization searching and the constraints satisfying. The coefficients
they used have none physical meaning and obtained through empirical evaluation. Huang [11] proposed a
new improved genetic algorithm, where the chromosomes is not only representing the computing resource-
task assignment but also indicating the queue on the VMs the task being executed. It firstly evolves indi-
viduals according to the optimization objective, and changes to evolve population based on the constrained
objective when the individuals violate the constraint. This approach releases the burden of devising an ap-
propriate penalty function for constrained optimization problem. However it needs to evolve for numerous
generations and a feasible solution may be unfounded.

The ant colony optimization approach was used for VMs configuration in cloud computing aiming to
energy efficient[12]. The experiments showed that the proposed approach achieved superior energy gains
through better server utilization and required less resource than First-Fit Decreasing approach. A particle
swarm optimization (PSO) for workflow scheduling in cloud computing was proposed in [13], which con-
sidered both the computation cost and the data transmission cost. The experiments showed that the PSO
can achieve as much as 3 times cost savings, and the workload is better than the existing Best Resource
Selection (BRS) algorithm.

3. Problem Formulation
A workflow is depicted as 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), where𝑉𝑉 = {𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛} and E is the vertices and edges of the

graph, respectively. Each vertex represents a task 𝑡𝑡and there are n tasks in the workflow. The edges maintain

execution precedence constraints. Having a directed edge ex,y from 𝑡𝑡𝑥𝑥 to 𝑡𝑡𝑦𝑦 , x, y ∈ M means that 𝑡𝑡𝑦𝑦 can’t

start to execute until 𝑡𝑡𝑥𝑥 is completed, task 𝑡𝑡𝑥𝑥 is a parent task of 𝑡𝑡𝑦𝑦, 𝑡𝑡𝑦𝑦 is a child task of𝑡𝑡𝑥𝑥. Tasks without par-

ents are called the entry task 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, and tasks without child tasks are called the exit task 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. Each work-

flow has a deadline 𝑑𝑑𝑊𝑊 associated to what determines the allowed longest time to complete its execution. Fig.
1 shows an example of workflow, in which each node represents a task and the arcs show the data transfer
between nodes.

This article is protected by copyright. All rights reserved.

The IaaS Cloud providers offer a range of VM types denoted by 𝑉𝑉𝑉𝑉����� = 𝑉𝑉𝑉𝑉1,𝑉𝑉𝑉𝑉2, … ,𝑉𝑉𝑉𝑉𝑛𝑛. Different

VM types provide different computing resources, and then we define VM type in terms of its processing ca-

pacity 𝑃𝑃𝑉𝑉𝑉𝑉𝑖 and cost per unit of time𝐶𝐶𝑉𝑉𝑉𝑉𝑖. VMs are charged per unit of timeτ, if 𝜏𝜏 = 60minutes, a utilization

of VM for 61 minutes would incur a payment of two hours (two units of time). We assume each task is exe-
cuted by a single VM, and a VM can execute several tasks.

The running time 𝑅𝑅𝑅𝑅𝑡𝑡𝑖
𝑉𝑉𝑉𝑉𝑡𝑖 of task ti executed by 𝑉𝑉𝑉𝑉𝑡𝑡𝑖 is calculated in Eq.1, where 𝑠𝑠𝑡𝑡𝑖 is the size of

task𝑡𝑡𝑖𝑖, 𝑃𝑃𝑉𝑉𝑉𝑉𝑡𝑖
 is the processing capacity of 𝑉𝑉𝑉𝑉𝑡𝑡𝑖. The transfer time 𝑇𝑇𝑇𝑇𝑒𝑒𝑖,𝑗 between a parent task 𝑡𝑡𝑖𝑖and its child

task tj is depicted in Eq.2, where dti
out is the output data size produced by task 𝑡𝑡𝑖𝑖, 𝛽𝛽 is the bandwidth between

each VM, and the bandwidth for all VMs are roughly same. If two tasks are executed in the same VM, the
transfer time is 0.

 𝑅𝑅𝑅𝑅𝑡𝑡𝑖
𝑉𝑉𝑉𝑉𝑡𝑖 = 𝑠𝑠𝑡𝑡𝑖/𝑃𝑃𝑉𝑉𝑉𝑉𝑡𝑖

 (1)

𝑇𝑇𝑇𝑇𝑒𝑒𝑖,𝑗 = 𝑑𝑑𝑡𝑡𝑖
𝑜𝑜𝑜𝑜𝑜𝑜/𝛽𝛽 (2)

There are many different optimization objectives for workflow scheduling in Clouds. In this paper, we fo-
cus on finding the optimization solution for workflow scheduling which can minimize the total execution cost
and satisfy the deadline constraint. We define a scheduling vector 𝑆𝑆 = (𝑀𝑀,𝑇𝑇𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇𝑇𝑇) in terms of tasks to
resources matching M, the total execution cost TEC and the total execution time TET. M is the task-VMs
matching which is comprised of VM types, start time and end time for all tasks,

𝑀𝑀 = (𝑚𝑚𝑡𝑡1
𝑉𝑉𝑉𝑉𝑡1 ,𝑚𝑚𝑡𝑡2

𝑉𝑉𝑉𝑉𝑡2 , … ,𝑚𝑚𝑡𝑡𝑀
𝑉𝑉𝑉𝑉𝑡𝑀) , 𝑚𝑚𝑡𝑡𝑖

𝑉𝑉𝑉𝑉𝑡𝑖 = (𝑡𝑡𝑖𝑖,𝑉𝑉𝑉𝑉𝑡𝑡𝑖 ,𝑆𝑆𝑆𝑆𝑡𝑡𝑖 ,𝐸𝐸𝐸𝐸𝑡𝑡𝑖) , which means task ti is associated with

VMti, and the start time and the end time for task ti is calculated by Eq.3and Eq.4.

𝑆𝑆𝑆𝑆𝑡𝑡𝑖 = �
𝐿𝐿𝐿𝐿𝐿𝐿𝑉𝑉𝑉𝑉𝑡𝑖

, 𝑖𝑖𝑖𝑖 𝑡𝑡𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑚𝑚𝑚𝑚𝑚𝑚 (𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡𝑎∈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡𝑖)

(𝐸𝐸𝐸𝐸𝑡𝑡𝑎 + 𝑇𝑇𝑇𝑇𝑒𝑒𝑎,𝑖), 𝐿𝐿𝐿𝐿𝐿𝐿𝑉𝑉𝑉𝑉𝑡𝑖
) 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (3)

𝐸𝐸𝐸𝐸𝑡𝑡𝑖 = 𝑆𝑆𝑆𝑆𝑡𝑡𝑖 + 𝑅𝑅𝑅𝑅𝑡𝑡𝑖
𝑉𝑉𝑉𝑉𝑡𝑖 (4)

where𝐿𝐿𝐿𝐿𝐿𝐿𝑉𝑉𝑉𝑉𝑡𝑖
 is the lease end time of 𝑉𝑉𝑉𝑉𝑡𝑡𝑖, which is also the time that 𝑉𝑉𝑉𝑉𝑡𝑡𝑖 becomes idle.There will be no

charge for data transfers within a same data center, and we do not consider this fee when calculating the
workflow total cost. The total execution cost TEC and the total execution time TET are calculated as Eq.5and
Eq.6 respectively.

𝑇𝑇𝑇𝑇𝑇𝑇 = ∑ 𝐶𝐶𝑉𝑉𝑉𝑉𝑡𝑖
∗ �

𝑅𝑅𝑅𝑅𝑡𝑖
𝑉𝑀𝑡𝑖

𝜏𝜏
� + ∑ 𝑇𝑇𝑇𝑇𝑒𝑒𝑖,𝑗 ∗ 𝑇𝑇𝑇𝑇𝑉𝑉𝑉𝑉𝑡𝑖𝑖𝑖∈𝑇𝑇,𝑗𝑗∈𝑇𝑇

|𝑉𝑉𝑉𝑉|
𝑖𝑖=1 (5)

This article is protected by copyright. All rights reserved.

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝐸𝐸𝐸𝐸𝑡𝑡𝑖: 𝑡𝑡𝑖𝑖 ∈ 𝑉𝑉) (6)

where 𝐶𝐶𝑉𝑉𝑉𝑉𝑡𝑖
 is the processing cost for 𝑉𝑉𝑉𝑉𝑡𝑡𝑖, and 𝑇𝑇𝑇𝑇𝑉𝑉𝑉𝑉𝑡𝑖

 is the data transfer cost for 𝑉𝑉𝑀𝑀𝑡𝑡𝑖.

The problem in this paper can be described as finding a scheme S with minimum the TEC, and the TET
do not exceed the workflow’s deadline constraint 𝑑𝑑𝑊𝑊.As showed in Eq.7.

Minimize 𝑇𝑇𝑇𝑇𝑇𝑇 (7)
 Subject to: 𝑇𝑇𝑇𝑇𝑇𝑇 ≤ 𝑑𝑑𝑊𝑊

In this paper, we use a Co-evolutionary Genetic Algorithm with Adaptive penalty function approach

(𝐶𝐶𝐶𝐶𝐶𝐶2) to solve this optimizing problem. Table 1 gives description of notations used in our paper.

4. Co-evolutionary GA with Adaptive penalty function

In this section, we have described a Co-evolutionary Genetic Algorithm with Adaptive penalty function

approach (𝐶𝐶𝐶𝐶𝐶𝐶2) to solve constrained optimization problem.

4.1 Mechanism of the Co-evolutionary GA
Co-evolution is the process of mutual adaptation of two or more populations. The key issue in the co-

evolutionary algorithms is that the evolution of a population depends on another population.
In 1994, Paredis[15] introduced Co-evolutionary Genetic Algorithm (CGA). Coello[16] incorporated the

notion of co-evolution into a GA to adapt genetic coefficients and for solving constrained optimization prob-
lems. In this work, we will employ the notion of co-evolution to adjust the crossover and mutation probabili-
ties, and apply an adaptive penalty function coefficients scheme in the genetic algorithm.

The structure of co-evolution model in CGA2 is shown in Fig. 2. In CGA2, two types of populations are

used. In particular, one type of a single population (denoted by Population2) with size M2 is used to adapt
suitable crossover and mutation probability factors, and another kind of multiple populations (denoted by

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,1, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,2,…, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,𝑀𝑀2) that each of them is with size M1evolves in parallel

with different crossover and mutation schemes to search good decision solutions. Each individual 𝐵𝐵𝑗𝑗 in

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 represents a set of crossover and mutation probability factors for individuals in𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,𝑗𝑗,

where each individual represents a decision solution.

In every generation of co-evolution process, each 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,𝑗𝑗 will evolve by the GA for a certain

number of generations (G1) with crossover and mutation probability factors obtained from individual

Bj in 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2. Then the fitness of each individual Bj in Population2 will be determined. After all indi-

This article is protected by copyright. All rights reserved.

viduals inPopulation2 are evaluated, Population2will also evolve by using GA. The above co-evolution
process will repeat until a pre-defined stopping criterion is satisfied (e.g., a maximum number of co-evolution
generation G2 is reached).

In short, two types of populations evolve interactively, where𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,𝑗𝑗with an adaptive penalty

function scheme is used to evolve decision solutions, while 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2is used to adapt crossover and
mutation probabilities for solution evaluation. Due to the co-evolution, not only decision solutions are ex-
plored evolutionary, but also crossover and mutation probabilities are adjusted in a self-tuning way to avoid
the difficulty of setting suitable factors by trial and error[14].

4.2 Adaptive crossover and mutation probabilities

In genetic algorithm, the bigger the crossover probabilitypxand mutation probability pm are, the more
new individuals will be generated along with the diversity of population. But if the probabilities are too big,
good genes will be destroyed easily, otherwise if the probabilities are too small, it is not conducive to gen-
erate new individuals and the search speed will slow down [17].

According to Zhang et al. [18], the evolutionary process in GA can be depicted as four states, including
initial state, sub-maturing state, maturing state and matured state. The crossover probability px and muta-
tion probability pmare adjusted differently based on population states. For example, if there are almost in-
ferior individuals with extremely poor fitness, we should increase pm and decrease px, like in initial state.
If the span of fitness values in a population is very large, the crossover probability px should be increased,
like sub-maturing state and maturing state. If there are almost excellent individual with good fitness, we
could decrease px and pm as in the matured state. According these rules and inspired by the idea in the lit-
erature [27] [28], a self-adaptive crossover and mutation operator is described as Eq.8 and Eq.9.

𝑝𝑝𝑥𝑥(𝑖𝑖) = 𝜔𝜔1 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜋𝜋
2
∗ 1
𝑒𝑒(𝜎1(𝑖)+𝜎2(𝑖)+⋯+𝜎𝑚(𝑖))) (8)

𝑝𝑝𝑚𝑚(𝑖𝑖) = 𝜔𝜔2 ∗ 𝑓𝑓𝑖𝑖 𝑓𝑓𝑝𝑝⁄ (9)

where 𝑝𝑝𝑥𝑥(𝑖𝑖) is the crossover probability for i-th individual and pm(i) is the mutation probability. 𝜎𝜎𝑚𝑚(𝑖𝑖) =
|𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖(𝑚𝑚)|/𝑓𝑓𝑖𝑖, 𝑓𝑓𝑖𝑖(𝑚𝑚) is the m-th closest individual to individual i in terms of fitness value. 𝑓𝑓𝑖𝑖 is the fitness

value of individual i, and 𝑓𝑓𝑝𝑝 is the individual with biggest fitness value in the population. 𝜔𝜔1 and 𝜔𝜔2 are the

crossover and mutationprobability factors which are adapted through co-evolution.

4.3 Fitness calculation with Adaptive penalty function
A suitable penalty function plays an important role in the performance of GAs, and it becomes more

important when the constraints are stricter which means that the optimal solution is nearing to the boundary
between the feasible and infeasible search space [19][29]. The most common form of the penalized fitness
function is depicted as following:

𝐹𝐹𝑖𝑖𝑎𝑎 = 𝐹𝐹𝑎𝑎(𝑥𝑥𝑖𝑖) = 𝐹𝐹(𝑥𝑥𝑖𝑖) − 𝑃𝑃(𝑥𝑥𝑖𝑖) = 𝐹𝐹(𝑥𝑥𝑖𝑖) +∑ 𝜆𝜆(𝑗𝑗) ∗ 𝐸𝐸𝑗𝑗(𝑥𝑥𝑖𝑖)𝑚𝑚
𝑗𝑗=1 (10)

This article is protected by copyright. All rights reserved.

where 𝐹𝐹𝑖𝑖𝑎𝑎 is the fitness function of i-th individual after penalty. 𝐹𝐹(𝑥𝑥𝑖𝑖)is the fitness value for the optimizing

objective, 𝜆𝜆(𝑗𝑗) is the penalty factor for the j-th constraints violation, m is the number of constraints, and

𝐸𝐸𝑗𝑗(𝑥𝑥𝑖𝑖)is the j-th constraint violation for i-th individual.

Inspired by Nanakorn et al. [20], the penalty function should be suitable for all infeasible individuals. If
it is too small, many infeasible individuals may have higher penalized fitness value, and the population
would move towards a false direction to the infeasible region. Otherwise, if it is too large, some individuals
with good gens will be eliminated which may lead to premature convergence. According to Tessema et al.
[21], an adaptive penalty function strategy is applied to keep track of the number of feasible individuals in
the population to determine the amount of penalty added to the infeasible individuals.

Firstly, each individual’s fitness value and constraint violation will be normalized by the Eq.11 and
Eq.12.

𝐹𝐹�(𝑥𝑥𝑖𝑖) = 𝐹𝐹(𝑥𝑥𝑖)−𝐹𝐹𝑚𝑖𝑛
𝐹𝐹𝑚𝑎𝑥−𝐹𝐹𝑚𝑖𝑛

 (11)

where 𝐹𝐹�(𝑥𝑥𝑖𝑖) is the normalized fitness value,𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 are the smallest and the largest fitness value for

all individuals in the current population. In this way, each individual’s fitness will lie between 0 and 1. And

the normalized constraint violation 𝐸𝐸�(𝑥𝑥𝑖𝑖)of each infeasible individual is calculated as:

𝐸𝐸�(𝑥𝑥𝑖𝑖) = 1
𝑚𝑚
∑ 𝐸𝐸𝑗(𝑥𝑥𝑖)

𝐸𝐸𝑗
𝑚𝑎𝑥

𝑚𝑚
𝑗𝑗=1 (12)

where m is the number of constraints, Ejmax is the maximum violation for j-th constraints for all infeasible

individual.
Furthermore, for different evolutionary states in GA, the penalty rule should be adapted accordingly.

For example, if there are few feasible individuals in the population, the infeasible individuals with lower
constraint violation will be less penalized than those with higher constraint violation. On the other hand, if
there are many feasible individuals in the population, the infeasible individual with lower normalized fit-
ness should be less penalized. According to literature [19] [21], the final fitness value is formulated in the
follow.

(1) If there is at least one feasible individual in the current population, the fitness function is as Eq.13

𝐹𝐹1𝑎𝑎(𝑥𝑥𝑖𝑖) = �
𝐹𝐹�(𝑥𝑥𝑖𝑖) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
�𝐹𝐹�(𝑥𝑥𝑖𝑖)2 + 𝐸𝐸�(𝑥𝑥𝑖𝑖)2 + ��1 − 𝑟𝑟𝑓𝑓�𝐸𝐸�(𝑥𝑥𝑖𝑖) + 𝑟𝑟𝑓𝑓𝐹𝐹�(𝑥𝑥𝑖𝑖)� 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (13)

where 𝑟𝑟𝑓𝑓 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

. In this way, the individuals with both low fitness value and low

constraint violation will be considered better than those with high fitness value or high constraint violation.

And if the feasibility ratio (𝑟𝑟𝑓𝑓) in the population is small, then the individual that is closer to the feasible

space will be considered better. Otherwise, the individual with lower normalized fitness value will be bet-
ter.

This article is protected by copyright. All rights reserved.

(2) If there is no feasible individual in the current population, the fitness function is calculated as
Eq.14.

𝐹𝐹1𝑎𝑎(𝑥𝑥𝑖𝑖) = 𝐸𝐸�(𝑥𝑥𝑖𝑖) (14)

Obviously, the individuals with smaller constraints violation are considered better. Consequently, the
search will move to the region where the sum of constraints violation is small (i.e. the boundary of the fea-
sible region).

The fitness value for i-th individual in 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,𝑗𝑗 in 𝐶𝐶𝐶𝐶𝐶𝐶2is evaluated based on Eq.13 and Eq. 14.

Each individual in Population2 represents a set of factors (ω1 and ω2).After Population1,j evolves for

G1 generations, the jth individual Bj in Population2is evaluated by Eq.15.

F2�Bj� = −min�F1j� + numinfeasible
M1

 (15)

where 𝐹𝐹1𝑗𝑗 is the fitness values for all individuals in 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,𝑗𝑗, numinfeasible is the number of in-

feasible individuals in 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,𝑗𝑗, 𝑀𝑀1 is the size of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖1,𝑗𝑗.

5 TheCGA2 for Workflow Scheduling

5.1 CGA2 Modeling

In this paper, we use two types of chromosomes to model 𝐶𝐶𝐶𝐶𝐶𝐶2 for scientific workflow scheduling in

Clouds. As shown in Fig.3, the 𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟es𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖,𝑗𝑗 in 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,𝑗𝑗 represents the decision solution which is

also the ordered pair of task-resource matching of a workflow. For the scheduling scenario here, the posi-

tion of each gene in 𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖,𝑗𝑗 is the task number, and the value of each gene in 𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖,𝑗𝑗 is

the VMs’ number, thus the dimension of a 𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖,𝑗𝑗 is the number of tasks in a workflow. The range

of genes in 𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖,𝑗𝑗 is determined by the number of resource available to run the tasks. Fig.3 rep-

resents a workflow with 8 tasks and 5 VMs available. The fitness function is used to determine how good a
decision solution is, which is calculated by the optimizing objective total execution cost 𝑇𝑇𝑇𝑇𝑇𝑇 and the con-
straint total execution time 𝑇𝑇𝑇𝑇𝑇𝑇. The calculation of 𝑇𝑇𝑇𝑇𝑇𝑇 and 𝑇𝑇𝑇𝑇𝑇𝑇 for a chromosome are explained in next
section.

The 𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚 in 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 represent the crossover and mutation probability coefficients,
which is defined by the binary encoding. The range of 𝜔𝜔1 is (0,1], and we use the first 7 genes to represent

This article is protected by copyright. All rights reserved.

the coefficient 𝜔𝜔1 . The value of 𝜔𝜔1 in 𝑐𝑐hro𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is calculated as 𝜔𝜔1 = 26+24+22+1
128

= 0.6640625.

The range of 𝜔𝜔2 is also (0,1], and we use the latter 7 genes to represent the coefficient 𝜔𝜔2 And the value of

𝜔𝜔2 is calculated as 𝜔𝜔2 = 25+23+1
128

= 0.3203125.

The 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,𝑗𝑗 is the evolution decision solutions to match the task with resource to minimize the

total execution cost 𝑇𝑇𝑇𝑇𝑇𝑇 and satisfy the constraint total execution time 𝑇𝑇𝑇𝑇𝑇𝑇. The𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 adapts the
crossover and mutation probabilities for solution evolution.

5.2 TEC and TET Calculation

To address the workflow scheduling problem, we need to estimate the running time of workflow ap-
plication with a specific task-VM mapping schedule firstly and calculate the cost accordingly. The total

execution cost TEC and the total execution time TET of a 𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖,𝑗𝑗 in 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,𝑗𝑗 is shown in

Algorithm 1. The k-th position value of 𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖,𝑗𝑗(𝑘𝑘) represents that task k is associated

with𝑉𝑉𝑉𝑉𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑖,𝑗(𝑘𝑘). In𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,𝑗𝑗, a chromosome is a task-resource match.

Firstly, we initial the VMs state matrix 𝑉𝑉𝑉𝑉 and the task state matrix𝑇𝑇𝑇𝑇.Aset of workflow tasks T and a

set of VMs 𝑉𝑉𝑉𝑉����� are inputted. Then we estimate the execution time 𝑅𝑅𝑅𝑅𝑡𝑡𝑖
𝑉𝑉𝑉𝑉𝑡𝑖 of each workflow task 𝑡𝑡𝑖𝑖(𝑡𝑡𝑖𝑖 ∈ 𝑇𝑇)

on every type of VM 𝑉𝑉𝑉𝑉𝑖𝑖(𝑉𝑉𝑉𝑉𝑖𝑖 ∈ 𝑉𝑉𝑉𝑉�����)according Eq.1, and transfer time 𝑇𝑇𝑇𝑇𝑒𝑒𝑖,𝑗 between tasks is calculated

according Eq.2.

The starting time value 𝑆𝑆𝑆𝑆𝑡𝑡𝑖 has two cases. If the task has no parent tasks, it can start as soon as the VM

assigned to the task is idle. Otherwise, the task starts after the parent tasks finished and the output data
transferred. Furthermore, if the VM is still busy, the starting time has to be delayed until the VM enable.
And in our algorithm, if two tasks allocated on the same VM have the same start time, the VM will process

the task with smaller size. The ending time value ETti is calculated by Eq.4 based on the starting time and

execution time 𝑅𝑅𝑅𝑅𝑡𝑡𝑖
𝑉𝑉𝑉𝑉𝑡𝑖 . After a task has been scheduled, we need to update the VS and the TS to set the

task ti as scheduled and the time period between 𝑆𝑆𝑆𝑆𝑡𝑡𝑖 and 𝐸𝐸𝐸𝐸𝑡𝑡𝑖 as busy for 𝑉𝑉𝑉𝑉𝑡𝑡𝑖. The process continues

until all tasks having been scheduled.

ALGORITHM 1 TEC AND TET ESTIMATION
Input: a set of workflow tasks T, a set of VMs 𝑉𝑉𝑉𝑉�����, and a 𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑘𝑘 ,𝑗𝑗 in 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖1,𝑗𝑗
Output: TEC and TET

This article is protected by copyright. All rights reserved.

1. Initial VMs state matrix 𝑉𝑉𝑉𝑉 and task state matrix 𝑇𝑇𝑇𝑇.
2.Calculate execution time RT[|𝑇𝑇| × |𝑉𝑉𝑉𝑉�����|];
Calculate transfer time TT[|𝑇𝑇| × |𝑇𝑇|];
3. For i=1:|𝑇𝑇|

If 𝑇𝑇𝑇𝑇(𝑇𝑇(𝑖𝑖)) is unscheduled

3.1. 𝑡𝑡𝑒𝑒=𝑇𝑇(𝑖𝑖),𝑉𝑉𝑉𝑉𝑒𝑒𝑖=𝑣𝑣𝑣𝑣𝑐𝑐ℎ𝑒𝑒𝑜𝑜𝑚𝑚𝑜𝑜𝑓𝑓𝑜𝑜𝑚𝑚𝑒𝑒𝑘,𝑗(𝑒𝑒)

3.2. If𝑡𝑡𝑒𝑒 has no parents

𝑆𝑆𝑆𝑆𝑒𝑒𝑖 = 𝐿𝐿𝐿𝐿𝐿𝐿𝑉𝑉𝑉𝑉𝑡𝑖
;

Else

𝑆𝑆𝑆𝑆𝑒𝑒𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑚𝑚𝑚𝑚𝑥𝑥
𝑒𝑒𝑎∈𝑝𝑝𝑚𝑚𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒(𝑒𝑒𝑖)

(𝐸𝐸𝐸𝐸𝑒𝑒𝑎 + 𝑇𝑇𝑇𝑇𝑒𝑒𝑎,𝑖), 𝐿𝐿𝐿𝐿𝐿𝐿𝑉𝑉𝑉𝑉𝑡𝑖
);

End
3.3. For each child task 𝑡𝑡𝑐𝑐 of 𝑡𝑡𝑒𝑒

If𝑡𝑡𝑐𝑐 is mapped to a VM different to 𝑉𝑉𝑉𝑉𝑒𝑒𝑖
𝑇𝑇𝑇𝑇(𝑖𝑖) = 𝑇𝑇𝑇𝑇(𝑖𝑖) + 𝑇𝑇𝑇𝑇(𝑖𝑖, 𝑐𝑐)

End
End

3.4.𝑅𝑅𝑅𝑅𝑒𝑒𝑖
𝑉𝑉𝑉𝑉𝑡𝑖 = 𝑅𝑅𝑅𝑅(𝑡𝑡𝑒𝑒 ,𝑉𝑉𝑉𝑉𝑒𝑒𝑖);

3.5.𝐸𝐸𝐸𝐸𝑒𝑒𝑖=𝑅𝑅𝑅𝑅𝑒𝑒𝑖
𝑉𝑉𝑉𝑉𝑡𝑖 + 𝑇𝑇𝑇𝑇(𝑖𝑖)

3.6.update 𝑉𝑉𝑉𝑉,and 𝑇𝑇𝑇𝑇, set the time period [𝑆𝑆𝑆𝑆𝑒𝑒𝑖 ,𝐸𝐸𝐸𝐸𝑒𝑒𝑖] for 𝑉𝑉𝑉𝑉𝑒𝑒𝑖 is busy, set 𝑇𝑇𝑇𝑇(𝑇𝑇(𝑖𝑖)) as scheduled.
End

End
4.Calculate TEC according Eq.5;
5. Calculate TET according Eq.6;

5.3 Initial population
For a scientific workflow, the execution time of the tasks in the Critical Path makes more influence on

the total execution time of a workflow, while the financial execution cost of these tasks is a small part of
the total execution cost. So allocating these tasks to the high performance VMs will decrease the total exe-
cution time greatly, while just have a little impact on the total financial execution cost.

The diversity of initial population impacts the performance of GA greatly, but most of GAs generate
the initial population randomly. In order to improve the solution quality and convergence speed, we gener-
ate one fifth of the initial population based on Critical Path (CP) [7] and assign these tasks in CP to the
VMs with high processing capacity. The tasks in other one fifth of the initial population are allocated to the
VMs which have the lowest price. The rest of the population is produced in random.

Fig.4 shows the framework of 𝐶𝐶𝐶𝐶𝐶𝐶2 . We firstly initialize two types of populations, where

This article is protected by copyright. All rights reserved.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 is used to adapt crossover and mutation probabilities for 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1 to find decision so-

lutions. In this paper, the evolution of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 is an unconstrained optimizing problem which do need
penalty function, while 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1 uses an adaptive penalty function to transform the constrained Work-
flow scheduling problem as an unconstrained optimizing one. The initial population scheme used in
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1 is depicted in Section 5.3, and the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 adopts the random method. Each sub-

population 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,𝑗𝑗 in the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1 will evolve for 𝐺𝐺1iterations simultaneously, and the best 𝑀𝑀2

individuals from the 𝑀𝑀2 sub-populations will be used to assess the corresponding individual in the
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2. The 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 will evolve for 𝐺𝐺2iterations to find the best crossover and mutation prob-
ability factor and the best decision making solution.

6. Performance Evaluation

To evaluate the performance of 𝐶𝐶𝐶𝐶𝐶𝐶2 in addressing the problem of scientific workflow scheduling in

Clouds, we use the WorkflowSim framework supported by CloudSim to simulate a cloud environment. The
simulated workflows are four famous scientific workflows: Epigenomics, Montage, Inspiral and Cyber-
shake[22][23], which are widely applied for performance measurement of scheduling algorithms in the
WorkflowSim [30]. Each of these workflows has different structures as seen in Fig.5 [10].

We use related approaches for constrained optimization problem, such as the Random, HEFT [24],the
genetic algorithm[10] and the PSO for deadline-constrained Cloud scientific workflow scheduling [9], as a
baseline to evaluate our approach.

The Random is an algorithm that assigns the ready tasks to an idle VM randomly. The Heterogeneous
Earliest Finish Time (HEFT) is a scheduling algorithm that gives higher priority to the workflow task
which has higher rank value. This rank value is calculated by utilizing average execution time for each task
and average communication time between resources of two successive tasks, where the tasks in the CP
have comparatively higher rank values. Then, it sorts the tasks by the decreasing order of their rank values,
and the task with a higher rank value is given higher priority. In the resource selection phase, tasks are
scheduled in the order of their priorities, and each task is assigned to the resource that can complete the
task at the earliest time. We set |𝑇𝑇𝑥𝑥| as the size of task 𝑇𝑇𝑥𝑥 and R as the set of resources (VMs) available

with average processing power|𝑅𝑅| = ∑ |𝑅𝑅𝑖𝑖| 𝑛𝑛�𝑛𝑛
𝑖𝑖=1 , and the average execution time of the task is defined as

𝐸𝐸(𝑇𝑇𝑥𝑥) = |𝑇𝑇𝑥|
|𝑅𝑅| .

Let Txy as the size of data to be transferred between task 𝑇𝑇𝑥𝑥 and 𝑇𝑇𝑦𝑦, and β be the bandwidth between

each VM. Thus, the average data transfer time for the task is defined as 𝑇𝑇𝑇𝑇𝑥𝑥,𝑦𝑦 = 𝑇𝑇𝑥𝑥𝑥𝑥/𝛽𝛽.𝐸𝐸(𝑇𝑇𝑥𝑥) and 𝑇𝑇𝑇𝑇𝑥𝑥,𝑦𝑦 are

used to calculate the rank of a task. Rank value is calculated as:

This article is protected by copyright. All rights reserved.

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑇𝑇𝑥𝑥) = �
𝐸𝐸(𝑇𝑇𝑥𝑥)𝑇𝑇𝑥𝑥 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝐸𝐸(𝑇𝑇𝑥𝑥) + 𝑚𝑚𝑚𝑚𝑚𝑚
𝑇𝑇𝑦∈𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑇𝑇𝑥) (𝑇𝑇𝑇𝑇𝑥𝑥,𝑦𝑦 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑇𝑇𝑦𝑦))𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒（16）

A workflow is represented as a DAG, and the rank values of the tasks in HEFT are calculated by trav-
ersing the task graph in a breadth-first search (BFS) manner in the reverse direction of task dependencies
(i.e., starting from the exit tasks). The HEFT algorithm generates schedules based on VMs and tasks and
does not vary with constraints.

In our experiments, we model an IaaS provider offering a single data center and five types of VMs. The
VM configurations are based on current Amazon EC2 offerings and are presented in Table 2. We set pro-
cessing capacity of each type of VMs based on the work of Ostermann et al. [25].

The experiments are conducted by using 4 different deadlines. These deadlines lie between the slowest
and the fastest runtimes. The slowest runtime is obtained by using a single VM with the average processing
capacity of all VMs to execute all tasks. And the fastest runtimes is obtained by assigning the highest pro-
cessing capacity VM to the ready tasks. To estimate each of the four deadlines, the difference between the
fastest and the slowest times is divided by 10 to get an interval size. The first deadline is the slowest
runtime minus 1 interval sizes to the fastest deadline, as to the second one, we minus 4 interval sizes. The
third is the fastest runtime adding 2 interval sizes to the slowest deadline and the last one is the fastest
runtime adding 1 interval sizes.

For the testing, the parameters of CGA2 are set as follows:𝑀𝑀1 = 200,𝐺𝐺1 = 100,𝑀𝑀2 = 50,𝐺𝐺2 = 20. To

compare the results, we consider the average workflow total execution cost and total execution time after
running each experiment for 30 times. All the experiments are performed on computers with Inter Core i5-
4570S CPU (2.9GHz and 8G RAM).

6.1 Deadline Constraint Evaluation
In this section, we analyze the algorithms in terms of meeting the user’s defined deadlines. We have

compared the deadline meeting percentages for each scientific workflow under different deadline shown as
the Fig.6.

For the Epigenomics workflow, HEFT meets all of the deadlines. Random algorithm meets Deadline 1
and 2 with 10 percent and 3.3 percent respectively, and completely fails to meets Deadline 3 and 4. GA and
PSO meet Deadline 1 and Deadline 2 with 100 percent, but when the constraints become strict, the rates
are less and less. For Deadline 3, the constraint meeting rates for the two evolutionary algorithms are 93
percent and 73.3 percent respectively, and for Deadline 4, the rats are 26.7% and 13.3%. As to our pro-

posed CGA2 algorithm, when the constraints become stricter, 𝐶𝐶𝐶𝐶𝐶𝐶2 algorithm can still find excellent solu-

tions in terms of constraints meeting. The deadline meeting rates for first 3 deadlines are 100%, and80%
for the last deadline constraint. The results for Montage application again show that HEFT meets all of the
deadlines and it is much better than that of other algorithms. In Montage, Random algorithm obtains simi-
lar results to those obtained in Epigenomics, it meets all deadline constraints in the lowest rates. And the
GA and PSO based algorithms perform well just when the deadline is relaxed like in the Deadline 1 and

Deadline 2. 𝐶𝐶𝐶𝐶𝐶𝐶2can still find excellent solutions in terms of constraints meeting when the constraints be-

This article is protected by copyright. All rights reserved.

comes stricter. The meeting rates in different constraints are 100%, 100%, 100%, and 60%.
The results of meeting rate for Inspiral and Cybershake are much like that of the above two workflows.

The Random algorithm could hardly get feasible solutions under all constraints while the HEFT gets 100%
meeting rates under all constraints. As to the 3 evolutionary approaches, they perform similarly under the
first two relaxed constraints, while our proposed algorithm obviously performs much better than the other
two evolutionary algorithms. A possible explanation for these results revolves the fact that: HEFT always
assigns tasks with VMs that make the end time at a minimum level, and it considers the entire workflow
rather than focusing on only unmapped independent tasks at each step to assign priorities to tasks. But it
gives no concern to the cost and constraints. Random algorithm assigns tasks with VMs randomly which is
very hard to satisfy user’s constraints. As to two evolutionary algorithms GA and PSO, they handle the
constraints optimizing problem simply which just give a static penalty function or even exclude the solu-
tions which violate the constraints in the evolutionary process, and it would lead to a premature conver-
gence or a false direction to the infeasible region.

6.2 TET Evaluation
As shown in Fig.7, we measured the average of total execution time TET (also called as makespan) for

each workflow under different constraints (red line is the TET constraint). We can see that, in the Epige-
nomics workflow, the HEFT approach has the lowest average makspan under every deadline constraints,
and the Random has the worst performance. The GA and the PSO have a good performance in the relaxed
constraints like Deadline 1 and Deadline 2. And when the constraints become stricter, they perform poorly.

As to our proposed 𝐶𝐶𝐶𝐶𝐶𝐶2, it shows a better performance than both the GA and the PSO, especially in the

strict constraints. In the Montage workflow case, the HEFT still has the best average makespan value while
the Random is the worst in terms of total execution time. In the Deadline 1 and Deadline 2, the mean of

total execution time(TET) for the GA, PSO and 𝐶𝐶𝐶𝐶𝐶𝐶2 are less than deadlines, while the average TET for

these algorithms in the last constraints are above the deadline values.

In the Inspiral and Cybershake workflows, our proposed algorithm𝐶𝐶𝐶𝐶𝐶𝐶2 still has better TET results

comparing with the other two evolutionary algorithms. These results are in line with those analyzed in the
deadline constraint evaluation section, from which we were able to conclude that, HEFT algorithm can ob-
tain a lowest total execution time value for workflows, and Random algorithm is not efficient in meeting
the deadlines, and the normal GA and PSO can’t find excellent solutions when the constraints become

stricter. On the contrary, 𝐶𝐶𝐶𝐶𝐶𝐶2 exhibits a larger makespan variation which is expected as it can find excel-

lent solution for constrained optimizing problem in a very large and chaotic search space.

6.3 TEC Evaluation
The average total execution costs generated from the above algorithms for each of the workflows are

displayed in Fig. 8. We also give the mean of TET and deadlines meeting rates obtained in the former sec-
tion, as the algorithms should be able to generate a cost-efficient scheme but not at the expense of a long

This article is protected by copyright. All rights reserved.

execution time. There is unavailable for an algorithm to run on the lower cost without meeting the dead-
lines. The mean of TEC, the mean of TET, and the meeting rate for each workflow under different con-
straints are presented in Table 3.

For the Epigenomics workflow, HEFT total execution time is still the lowest one for the 4 different
constraints, but its total execution cost is higher than evolutionary algorithms. In these experiments, 𝐶𝐶𝐶𝐶𝐶𝐶2
get the lowest cost under each deadline which shows the optimizing capacity of our proposed algorithm is
better than other previous evolutionary algorithms especially under the strict deadlines. From the table we
can also find that when the constraints become stricter, the solutions obtained by the GA and PSO are not
only fail to meet deadlines but also get much more cost. It shows that an inferior penalty function would
lead the populations to premature and infeasible sections.

In the Montage workflow, HEFT total execution time is still the lowest for the 4 different constraints,
but its total execution cost is higher than evolutionary algorithms. A possible explanation for this might be
that evolutionary algorithms lease VMs with lower price in order to minimize the total execution cost.
What’s more, the tasks are relatively small in Montage workflow, which means that the machines in the
HEFT’ scheme are only running for a small amount of time but charged for the full billing period, and
choosing a higher processing capacity VM means much more cost.

Among the above algorithms complying with the deadline constraint, GA and PSO can obtain the low
cost schedules on relaxed deadline, but when the constraints become strict, the solutions generated by them

are very poor, while the 𝐶𝐶𝐶𝐶𝐶𝐶2 can still get excellent solutions in terms of the TEC meeting deadlines under

strict constraints. From the results, it is clear that the evolutionary algorithms based approaches perform

better than HEFT in terms of cost. And the 𝐶𝐶𝐶𝐶𝐶𝐶2 can get excellent solution without violating the con-

straints when the deadline becomes strict.
TEC results of 5 algorithms in the Inspiral and Cybershake Workflow are similar to those of the previ-

ous workflows, which again show that 𝐶𝐶𝐶𝐶𝐶𝐶2 could always find the best solutions in terms of TEC, espe-

cially under the strict constraints. We can observe from Fig.8 (c) (d) that, the GA and PSO with static pen-
alty function have a rapid increase in terms of TEC when the constraints get stricter, while our algorithm is
able to maintain the similar level. What’s more, even though the PSO with static penalty function could get

a better TEC results than 𝐶𝐶𝐶𝐶𝐶𝐶2 in the relaxed constraints, it still could not get satisfied solutions in the

strict constraints.
From the above discussion, the following conclusions can be drawn from the experiments: the Random

algorithm fails to meet deadlines in most cases whereas HEFT could get the lowest makespan which al-
ways assign highest processing capacity VMs to ready tasks. While comparing with HEFT, the evolution-
ary algorithms are capable of generating cheaper schedules and hence outperform HEFT in terms of cost

optimization. And compared to GA and PSO with static penalty functions, our proposed algorithm CGA2

can handle the constrained optimization problem of scientific workflow scheduling in Clouds better, and is
still able to find feasible solutions under strict user’s deadline requirements.

7. Conclusion and Future Work

This article is protected by copyright. All rights reserved.

In this paper, a co-evolutionary genetic algorithm with adaptive penalty function (𝐶𝐶𝐶𝐶𝐶𝐶2) for constrained

scientific workflow scheduling in Clouds is proposed.The common drawback of existing evolutionary al-
gorithms is the necessity of defining problem-specific parameters of penalty function for constrained opti-
mization problem. And these algorithms are also static and lead to premature convergence. In order to ad-
dress these problems, our proposed algorithm designs an adaptive penalty function without any parameter
tuning and easy to implement.

This approach could effectively exploit the information hidden in infeasible individuals which sets the
proper penalty rule for the individuals at different stages of the evolutionary process. In addition, our pro-

posed algorithm 𝐶𝐶𝐶𝐶𝐶𝐶2applies an adaptive crossover and mutation probabilities based on the co-evolution

and generates the initial population according to critical path which are efficient for preventing premature
and improving deadline meeting for workflow scheduling. Experiments demonstrate that, our solution has
an overall better performance than the state-of-the-art algorithms Random, HEFT, GA and

PSO.The 𝐶𝐶𝐶𝐶𝐶𝐶2 succeeds with high rate as HEFT which aims to minimizing the makespan without consid-

ering the cost. Furthermore, 𝐶𝐶𝐶𝐶𝐶𝐶2could produce schedules with lower total executing cost and meeting the

deadlines under strict constraints while GA and PSO could not succeed easily.
Our future work will use multi-objective evolutionary algorithm to solve the cloud resource scheduling

problem, and will take into account the load balance and task failures. Meanwhile, we will extend the re-
source model to consider the data transfer cost between data centers.

Acknowledgment

This work is supported by the National Natural Science Foundation of China (Grant No. 61370132
No.61472033, No.61272432), Beijing Natural Science Foundation (No.4152034).

References

[1] Vöckler JS., Juve G., Deelman, E., Rynge M., Berriman B. Experiences using cloud computing for a scientific
workflow application. In Proceedings of the 2nd international workshop on Scientific cloud computing2011;(pp.
15-24). ACM.DOI:10.1145/1996109.1996114.

[2] http://lhc.web.cern.ch/lhc/LHC Experiments.htm
[3] Buyya R., Yeo CS., Venugopal S., Broberg, J, Brandic I. Cloud computing and emerging IT platforms: Vision,

hype, and reality for delivering computing as the 5th utility. Future Generation computer systems2009;25(6), 599-
616.DOI:10.1016/j.future.2008.12.001.

[4] Foster I, Zhao Y, Raicu I, Lu S. Cloud computing and grid computing. 360-degree compared. In Grid Computing
Environments Workshop, 2008. GCE'08 (pp. 1-10). IEEE.DOI: 10.1109/GCE.2008.4738445.

This article is protected by copyright. All rights reserved.

[5] Liu L, Zhang M, Lin Y, Qin L. A survey on workflow management and heduling in cloud computing. In Cluster,
Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM International Symposium on (pp. 837-846).
IEEE.DOI:10.1109/CCGrid.2014.83.

[6] Rodriguez MA, Buyya R. Deadline based resource provisioningand scheduling algorithm for scientific workflows
on clouds. Cloud Computing, IEEE Transactions on2014;2(2), 222-235.DOI:10.1109/TCC.2014.2314655.

[7] Ma T, Buyya R. Critical-path and priority based algorithms for scheduling workflows with parameter sweep tasks
on global grids. In Computer Architecture and High Performance Computing, 2005.SBAC-PAD 2005. 17th Inter-
national Symposium on (pp. 251-258). IEEE.DOI:10.1109/CAHPC.2005.22.

[8] Wang X., YeoCS, Buyya R, Su J. Optimizing the makespan and reliability for workflow applications with reputa-
tion and a look-ahead genetic algorithm. Future Generation Computer2011; Systems, 27(8), 1124-
1134.DOI:10.1016/j.future.2011.03.008.

[9] Pandey S, Wu L, Guru SM, Buyya R. A particle swarm optimization-based heuristic for scheduling workflow
applications in cloud computing environments. In Advanced information networking and applications (AINA),
2010 24th IEEE international conference on (pp. 400-407). IEEE.DOI:10.1109/AINA.2010.31.

[10] Sawant S. A genetic algorithm scheduling approach for virtual machine resources in a cloud computing envi-
ronment. 2011.

[11] Huang J. The workflow task scheduling algorithm based on the GA model in the cloud computing environment.
Journal of Software2014;9(4), 873-880.

[12] Feller E, Rilling L, Morin C. Energy-aware ant colony based workload placement in clouds. In Proceedings of
the 2011 IEEE/ACM 12th International Conference on Grid Computing (pp. 26-33).IEEE Computer Socie-
ty.DOI:10.1109/Grid.2011.13.

[13] Wu Z, Ni Z, Gu L, Liu X. A revised discrete particle swarm optimization for cloud workflow scheduling. In
Computational Intelligence and Security (CIS), 2010 International Conference on (pp. 184-188). IEEE.
DOI:10.1109/CIS.2010.46.

[14] He Q, Wang L. An effective co-evolutionary particle swarm optimization for constrained engineering design
problems. Engineering Applications of Artificial Intelligence2007;20(1), 89-99.
DOI:10.1016/j.engappai.2006.03.003.

[15] Paredis J. Co-evolutionary constraint satisfaction.In Parallel Problem Solving from Nature—PPSN III. Springer
Berlin Heidelberg,1994;46-55.

[16] Coello C A C. Use of a self-adaptive penalty approach for engineering optimization problems. Computers in
Industry2000;41(2), 113-127.DOI:10.1016/S0166-3615(99)00046-9.

[17] Goldberg DE. (1989). Genetic algorithms in search optimization and machine learning (Vol. 412).Reading
Menlo Park: Addison-wesley.

[18] Zhang J, Chung H S H,Lo WL.Clustering-based adaptive crossover and mutation probabilities for genetic algo-
rithms. Evolutionary Computation, IEEE Transactions on2007;11(3), 326-335.
DOI:10.1109/TEVC.2006.880727.

[19] Tessema B, Yen GG. A self adaptive penalty function based algorithm for constrained optimization. In Evolu-
tionary Computation, 2006.CEC 2006. IEEE Congress on (pp. 246-253).
IEEE.DOI:10.1109/CEC.2006.1688315.

[20] Nanakor, P, MeesomklinK..An adaptive penalty function in genetic algorithms for structural design optimization.
Computers & Structures2001;79(29), 2527-2539.DOI:10.1016/S0045-7949(01)00137-7.

This article is protected by copyright. All rights reserved.

[21] Tessema,B, Yen GG. An adaptive penalty formulation for constrained evolutionary optimization.Systems, Man
and Cybernetics, Part A: Systems and Humans, IEEE Transactions on2009;39(3), 565-578.
DOI:10.1109/TSMCA.2009.2013333.

[22] Calheiros RN, Ranjan R, Beloglazov A, De Rose CA.,Buyya R. CloudSim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource provisioning algorithms. Software: Practice and
Experience2011;41(1), 23-50.DOI:10.1002/spe.995.

[23] Chen W, Deelman E. Workflowsim: A toolkit for simulating scientific workflows in distributed environments. In
E-Science (e-Science), 2012 IEEE 8th International Conference on (pp. 1-8). IEEE.
DOI:10.1109/eScience.2012.6404430.

[24] Topcuoglu H, Hariri S, Wu MY. Performance-effective and low-complexity task scheduling for heterogeneous
computing. Parallel and Distributed Systems, IEEE Transactions on2002; 13(3), 260-274.
DOI:10.1109/71.993206.

[25] Ostermann,S, Iosup A, Yigitbasi N, Prodan R, Fahringer T, Epema D. A performance analysis of EC2 cloud
computing services for scientific computing. In Cloud computing. Springer Berlin Heidelberg,2009;115-131.

[26] Rahman M, Hassan R, RanjanR,Buyya R. Adaptive workflow scheduling for dynamic grid and cloud computing
environment. Concurrency and Computation: Practice and Experience2013;25(13), 1816-1842.
DOI:10.1002/cpe.3003.

[27] Li Y L, Shao W, Wang J T, et al. An Improved NSGA-II and its Application for Reconfigurable Pixel Antenna
Design. Radioengineering, 2014, 23(2):733-738.

[28] Srinivas M, Patnaik L. M. Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans-
actions on Systems, Man, and Cybernetics , 1994;24(4), 656 - 667

[29] Coello C A . Use of a self-adaptive penalty approach for engineering optimization problems. Computers in In-
dustry. 2000; 113–127

[30] Zhu Z, Zhang G, Li M, et al. Evolutionary Multi-Objective Workflow Scheduling in Cloud . IEEE Transactions
on Parallel & Distributed Systems 2016; 27(5):1344-1357.

TABLE 1 Notations
Notation Description

𝑉𝑉𝑉𝑉𝑒𝑒 Virtual machine i
𝑃𝑃𝑉𝑉𝑉𝑉𝑖 processing capacity for 𝑉𝑉𝑉𝑉𝑒𝑒
𝐶𝐶𝑉𝑉𝑉𝑉𝑖 cost per unit of time for 𝑉𝑉𝑉𝑉𝑒𝑒
RT𝑒𝑒𝑖

𝑉𝑉𝑉𝑉𝑖 running time of task 𝑡𝑡𝑒𝑒 executed by 𝑉𝑉𝑉𝑉𝑒𝑒
𝑠𝑠𝑒𝑒𝑖 the size of task 𝑡𝑡𝑒𝑒
𝑇𝑇𝑇𝑇𝑒𝑒𝑖,𝑗 the transfer time between a parent task 𝑡𝑡𝑒𝑒and

child task 𝑡𝑡𝑗𝑗
d𝑒𝑒𝑖
𝑜𝑜𝑜𝑜𝑒𝑒 the output data size of task 𝑡𝑡𝑒𝑒
𝛽𝛽 the bandwidth between each VM
𝑇𝑇𝑇𝑇𝑇𝑇 the total execution cost
𝑇𝑇𝑇𝑇𝑇𝑇 the total execution time
𝑑𝑑𝑊𝑊 the workflow’s deadline constraint
𝑆𝑆𝑆𝑆𝑒𝑒𝑖 the starting time of task 𝑡𝑡𝑒𝑒

This article is protected by copyright. All rights reserved.

𝐸𝐸𝐸𝐸𝑒𝑒𝑖 the ending time of task 𝑡𝑡𝑒𝑒
𝐿𝐿𝐿𝐿𝐿𝐿𝑉𝑉𝑉𝑉𝑡𝑖

 the lease ending time of 𝑉𝑉𝑉𝑉𝑒𝑒𝑖, also the time
that 𝑉𝑉𝑉𝑉𝑒𝑒𝑖 is idle

TABLE 2. Types of VMs Used in the Experiments
Name EC2 Units Processing

Capacity
Cost per

Hour
m1.small 1 44 $0.03

m1.large 4 176 $0.12

m1.xlarge 8 352 $0.24

c1.medium 5 220 $0.06

c1.xlarge 20 880 $0.44

TABLE 3.Performance Comparing of Algorithms under Different Constraints
Workflow Algorithm Deadline 1 Deadline 2

Mean
TEC

95%CI
TEC

Mean
TET

Meeting
rate

Mean
TEC

95%CI
TEC

Mean
TET

Meeting
rate

 Random 100.35 [40.2,160.5] 98475 10% 100.35 [40.2,160.5] 102099 3.3%

 HEFT 35.12 [35.12,35.1] 13916 100% 35.10 [35.12,35.12] 13916 100%

Epigenomics GA 22.73 [12.9,32.5] 20743 100% 32.98 [12.5,54.5] 25892 100%

 PSO 21.15 [9.2,33.1] 36140 100% 41.55 [8.1,85.1] 31170 100%

 CGA2 17.95 [7.2,28.7] 20919 100% 20.38 [10.7,20.1] 28404 100%

 Random 52.56 [24.4,80.7] 1233.3 90% 52.56 [24.38,80.74] 1233.3 40%

 HEFT 18.65 [18.7,18.7] 173.45 100% 18.65 [18.65, 18.65] 173.45 100%

Montage GA 4.03 [2.45,5.11] 1806.2 100% 3.98 [2.33,5.63] 1521.0 100%

 PSO 13.7 [6.3,21.1] 1922 100% 16.21 [10.4,22.0] 1315.6 100%

 CGA2 3.64 [2.43,4.85] 1362 100% 4.82 [3.05,6.60] 1082 100%

 Random 52.56 [6.937.82] 32762.0 90% 52.56 [24.38,80.74] 32762 40%
 HEFT 9.83 [9.83,9.83] 4783.56 100% 9.83 [9.83,9.83] 4783.5 100%

Inspiral GA 4.96 [4.64,5.27] 8058.10 100% 5.33 [5.16, 5.50] 8189.0 100%

 PSO 4.24 [4.13,4.35] 12900.0 100% 4.52 [4.40,4.65] 10610 100%

 CGA2 4.94 [4.63,5.25] 8678.10 100% 5.54 [5.38, 5.69] 7129.7 100%

 Random 9.8000 [9.38,10.22] 4130.90 13.3% 9.8000 [9.38,10.22] 4130.90 0%
 HEFT 8.86 [8.86, 8.86] 601 100% 8.86 [8.86, 8.86] 601.00 100%

Cybershake GA 4.31 [3.85,4.78] 1776.80 100% 4.6980 [4.11, 5.28] 1567.40 100%

 PSO 3.41 [3.04,3.77] 2133.00 100% 3.7373 [3.45, 4.02] 1858.00 100%
 CGA2 4.15 [3.91,4.39] 1767.50 100% 4.9487 [4.43, 5.47] 1483.70 100%

Workflow Algorithm Deadline 3 Deadline 4

Mean 95%CI Mean Meeting Mean 95%CI Mean Meeting

This article is protected by copyright. All rights reserved.

TEC TEC TET rate TEC TEC TET rate

 Random 98.37 [40.2,160.5] 98475 0% 87.43 [40.2,160.5] 110509 0%

 HEFT 35.12 [35.12,35.1] 13916 100% 35.12 [35.12,35.12] 13916 100%

Epigenomics GA 46.98 [20.8,73.6] 20743 93.3% 97.69 [54.2,141.3] 22745 73.3%

 PSO 80.28 [28.5,132.1] 36140 26.7% 124.16 [65.9,184.4] 76206 6.7%

 CGA2 23.06 [15.2,30.9] 20919 100% 25.28 [11.7,38.8] 16807 80%

 Random 52.56 [24.38,80.7] 1233.3 10% 52.56 [24.38,80.74] 1233.3 0%

 HEFT 18.65 [18.65,18.7] 173.45 100% 18.65 [18.65, 18.65] 173.45 100%

Montage GA 13.6 [8.64,18.62] 486.4 80% 21.65 [11.63,31.7] 779.5 20%

 PSO 28.9 [16.8,40.1] 611.6 70% 41.6 [35.7,46.5] 1085.5 10%

 CGA2 5.87 [4.05,7.69] 448.9 100% 18.9 [8.9,30.9] 435 60%

 Random 52.56 [24.4,80.7] 32762.0 10% 52.56 [24.38,80.74] 32762 0%
 HEFT 9.83 [9.83,9.83] 4783.5 100% 9.83 [9.83,9.83] 4783 100%

Inspiral GA 9.99 [9.25,10.73] 6233.3 93.3% 11.457 [10.0,12.9] 6803.7 33.3%
 PSO 6.77 [6.42,7.13] 18650.0 73.3% 8.1353 [7.02,9.24] 28300 16.6%

 CGA2 6.46 [6.21, 6.71] 6247.6 100% 6.6580 [6.31,7.00] 5504.5 96.7%

 Random 9.8000 [9.38,10.22] 4130.90 0% 9.8000 [9.38,10.22] 4130 0%
 HEFT 8.86 [8.86, 8.86] 601.00 100% 8.86 [8.86, 8.86] 601.00 100%

Cybershake GA 6.4400 [6.19,6.68] 922.96 100% 10.796 [8.82,12.77] 922.96 86.7%
 PSO 4.8933 [4.56,5.22] 1200.00 100% 25.001 [22.5, 27.47] 1200.0 33.3%
 CGA2 6.3680 [6.04,6.69] 815.99 100% 7.4060 [6.84, 7.96] 815.99 100%

This article is protected by copyright. All rights reserved.

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Liu, L;Zhang, M;Buyya, R;Fan, Q

Title:
Deadline-constrained coevolutionary genetic algorithm for scientific workflow scheduling in
cloud computing

Date:
2017-03-10

Citation:
Liu, L., Zhang, M., Buyya, R. & Fan, Q. (2017). Deadline-constrained coevolutionary genetic
algorithm for scientific workflow scheduling in cloud computing. CONCURRENCY AND
COMPUTATION-PRACTICE & EXPERIENCE, 29 (5), https://doi.org/10.1002/cpe.3942.

Persistent Link:
http://hdl.handle.net/11343/291707

http://hdl.handle.net/11343/291707

