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Abstract 
The Cloud infrastructures provide a suitable environment for the execution of large-scale scientific work-
flow application. However, it raises new challenges to efficiently allocate resources for the workflow ap-
plication and also to meet the user’s quality of service (QoS) requirements. In this paper, we propose an 
adaptive penalty function for the strict constraints compared with other genetic algorithms. Moreover, the 
co-evolution approach is utilized to adjust the crossover and mutation probability which is able to acceler-
ate the convergence and prevent the prematurity. We also compare our algorithm with baselines such as 
random, PSO, HEFT and GA in a WorkflowSim simulator on four representative scientific workflows. The 
results show that it performs better than other the state-of-the-art algorithms in the criterion of both the 
deadline-constraint meeting probability and the total execution cost. 
 
Keywords: Cloud Computing; Scientific Workflow; Resource Scheduling; Co-evolutionary Genetic 

Algorithm 

1. Introduction 

Scientific experiments are usually represented as workflows [1], where tasks are linked according to their 
data flow and compute dependencies. Such scientific workflows are data-intensive and compute-intensive 
applications, for example, Compact Muon Solenoid (CMS) experiment for the Large Hadron Collider 
(LHC) at CERN [2] produces a huge amount of data to be analyzed, which are more than five peta-bytes 
per year when running at peak performance. The Human Genome Project is aimed at sequencing and iden-
tifying all three billion chemical units in the human genetic instruction set, and discovering the genetic 
roots of disease to find treatments. These scientific workflows have tremendous data and computing re-
quirements, and need a high-performance computing environment for execution. Cloud computing is the 
latest development of distributed computing, grid computing and parallel computing [3] [4], which delivers 
the dynamically scaling computing resources as a utility, much like how water and electricity were deliv-
ered to households these days. The patterns that Cloud computing provides resources contain: Infrastruc-
ture-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS) [3][5]. In this 
paper, we refer to IaaS Cloud which offers us a virtual pool to provide unlimited virtual machines (VMs). 

This article is protected by copyright. All rights reserved.

This is the author manuscript accepted for publication and has undergone full peer review but
has not been through the copyediting, typesetting, pagination and proofreading process, which
may lead to differences between this version and the Version of Record. Please cite this article
as doi: 10.1002/cpe.3942

http://dx.doi.org/10.1002/cpe.3942
http://dx.doi.org/10.1002/cpe.3942


The main character of Cloud computing is virtualization. Cloud enables to provide computational re-
sources in the form of virtual machines (VMs). A process that maps tasks in a workflow to compute re-
sources (VMs) for execution (preserving dependencies between tasks) is called workflow scheduling. 
There are two layers for Cloud workflow scheduling which include VM-task mapping and the execution 
order for tasks in a single VM. In this paper, we just use the evolutionary approach to schedule VM-task 
mapping in the first layer, and the execution order in a single VM is set as that in paper [6], where the VM 
will schedule the task with the smallest end time. There are different optimization objectives for workflow 
scheduling in Cloud, including makespan, cost, throughput, and load balancing. In this paper, the optimiza-
tion objective is the cost of executing a scientific workflow and subject to a deadline constraint, which is to 
find a proper task-VM mapping strategy which minimizes the total financial cost and the makespan satis-
fies the deadline constraint.  

The context above is a constrained optimization problem, and in order to transform constrained prob-
lem into unconstrained one, most evolutionary algorithms usually use static penalty function to penalize 
infeasible solutions by reducing their fitness values in proportion to the degrees of constraint violation. 
However, it is difficult to set a suitable penalty factor. Another common method is to eliminate the infeasi-
ble individuals within their evolutionary process. However, some infeasible individuals usually hold very 
rarely and excellent gens to be very valuable for the next generations, and unable to be eliminated. We pro-
pose a co-evolutionary genetic algorithm with adaptive penalty function for the constrained scientific 
workflow scheduling in Clouds. We have considered the main features of Cloud providers such as hetero-
geneous computing resources and dynamic providing. An adaptive penalty function is applied in the co-
evolutionary genetic algorithm which will adjust itself automatically during the evolution. And we apply 
the notion of co-evolution to adjust the crossover and mutation probability factors which are helpful for the 
convergence. Our main contributions can be summarized as follows: 1) Present the optimization model of 
scientific workflow scheduling in cloud environment which is cost-minimization and deadline-constrained, 
and considers Cloud resources’ dynamic provision pattern and heterogenetic character. 2) Propose a new 
Co-evolutionary Genetic Algorithm with Adaptive penalty function approach 𝐶𝐶𝐶𝐶𝐶𝐶2 , for deadline con-
strained scientific workflow scheduling in Clouds. It applies a self-adaptive penalty function into the co-
evolutionary GA which is able to prevent premature efficiently, and uses the notion of co-evolution to ad-
just the crossover and mutation probabilities which can efficient accelerate the convergence. 3) Unlike ex-
isting genetic approaches, we generate the initial population based on the critical path [7], which can also 
prevent premature efficiently and improve deadline meeting for workflow scheduling. Simulation results 
demonstrate that our approach have high accuracy in terms of deadline constraint satisfaction at a lower 
costs. 

The remainder of this paper is organized as follows: the following section introduces the related works. 
The context of our model is presented in Section 3. Section 4presents the 𝐶𝐶𝐶𝐶𝐶𝐶2 approach and the adaptive 
penalty function. Section 5 applies the proposed approach (𝐶𝐶𝐶𝐶𝐶𝐶2) to Cloud scientific workflow scheduling 
problem. Section 6 evaluates the performance of the 𝐶𝐶𝐶𝐶𝐶𝐶2, and has made comparison with the existing al-
gorithms, then gives the experiment results. We conclude the paper with a discussion and a description of 
future work in Section 7. 

2. Related Work 
To address the problem of constrained workflow scheduling in Cloud Computing, some evolutionary 
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algorithms have been adopted to generate near-optimal solutions. Wang and Yeo et al.[8] presented a look 
ahead genetic algorithm (LAGA) which utilized the reliability-driven (RD) reputation to evaluate the re-
source’s reliability. Moreover the multi-objective model aiming to optimize both the makespan and the re-
liability of a workflow application was proposed. A Particle Swarm Optimization (PSO) based approach 
was proposed in [9], which aimed to minimizing the execution cost of a workflow while balancing the task 
load on the available resources. Rodriguez and Buyya [6] presented a cost-minimization and deadline-
constrained PSO approach for Cloud scientific workflow scheduling. It considered fundamental features of 
IaaS providers, like elastic providing and heterogeneous computing resources (VMs). A penalty function 
was used in their algorithms that the particles violating the constraints are inferior to the feasible particles. 
However this method would lead a premature convergence which is very common in the PSO algorithms. 

Sawant [10] utilized the genetic algorithm (GA) for virtual machines configuration in Cloud Compu-
ting. It incorporated the constraints into the objective fitness function, so as to transform the constrained 
optimization problem to the unconstrained one. This is the most popular handling way for the constrained 
optimization problem and particularly easy to implementation. But it is very hard to set a suitable penalty 
factor to tradeoff between the global optimization searching and the constraints satisfying. The coefficients 
they used have none physical meaning and obtained through empirical evaluation. Huang [11] proposed a 
new improved genetic algorithm, where the chromosomes is not only representing the computing resource-
task assignment but also indicating the queue on the VMs the task being executed. It firstly evolves indi-
viduals according to the optimization objective, and changes to evolve population based on the constrained 
objective when the individuals violate the constraint. This approach releases the burden of devising an ap-
propriate penalty function for constrained optimization problem. However it needs to evolve for numerous 
generations and a feasible solution may be unfounded. 

The ant colony optimization approach was used for VMs configuration in cloud computing aiming to 
energy efficient[12]. The experiments showed that the proposed approach achieved superior energy gains 
through better server utilization and required less resource than First-Fit Decreasing approach. A particle 
swarm optimization (PSO) for workflow scheduling in cloud computing was proposed in [13], which con-
sidered both the computation cost and the data transmission cost. The experiments showed that the PSO 
can achieve as much as 3 times cost savings, and the workload is better than the existing Best Resource 
Selection (BRS) algorithm. 

3. Problem Formulation 
A workflow is depicted as 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), where𝑉𝑉 = {𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛} and E is the vertices and edges of the 

graph, respectively. Each vertex represents a task 𝑡𝑡and there are n tasks in the workflow. The edges maintain 

execution precedence constraints. Having a directed edge ex,y from 𝑡𝑡𝑥𝑥  to 𝑡𝑡𝑦𝑦 , x, y ∈ M means that 𝑡𝑡𝑦𝑦  can’t 

start to execute until 𝑡𝑡𝑥𝑥 is completed, task 𝑡𝑡𝑥𝑥 is a parent task of 𝑡𝑡𝑦𝑦,  𝑡𝑡𝑦𝑦 is a child task of𝑡𝑡𝑥𝑥. Tasks without par-

ents are called the entry task  𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, and tasks without child tasks are called the exit task 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. Each work-

flow has a deadline  𝑑𝑑𝑊𝑊 associated to what determines the allowed longest time to complete its execution. Fig. 
1 shows an example of workflow, in which each node represents a task and the arcs show the data transfer 
between nodes. 
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The IaaS Cloud providers offer a range of VM types denoted by 𝑉𝑉𝑉𝑉����� = 𝑉𝑉𝑉𝑉1,𝑉𝑉𝑉𝑉2, … ,𝑉𝑉𝑉𝑉𝑛𝑛. Different 

VM types provide different computing resources, and then we define VM type in terms of its processing ca-

pacity 𝑃𝑃𝑉𝑉𝑉𝑉𝑖 and cost per unit of time𝐶𝐶𝑉𝑉𝑉𝑉𝑖. VMs are charged per unit of timeτ, if 𝜏𝜏 = 60minutes, a utilization 

of VM for 61 minutes would incur a payment of two hours (two units of time). We assume each task is exe-
cuted by a single VM, and a VM can execute several tasks. 

The running time 𝑅𝑅𝑅𝑅𝑡𝑡𝑖
𝑉𝑉𝑉𝑉𝑡𝑖  of task ti  executed by 𝑉𝑉𝑉𝑉𝑡𝑡𝑖  is calculated in Eq.1, where 𝑠𝑠𝑡𝑡𝑖  is the size of 

task𝑡𝑡𝑖𝑖,  𝑃𝑃𝑉𝑉𝑉𝑉𝑡𝑖
 is the processing capacity of 𝑉𝑉𝑉𝑉𝑡𝑡𝑖. The transfer time 𝑇𝑇𝑇𝑇𝑒𝑒𝑖,𝑗 between a parent task 𝑡𝑡𝑖𝑖and its child 

task tj is depicted in Eq.2, where dti
out is the output data size produced by task 𝑡𝑡𝑖𝑖, 𝛽𝛽 is the bandwidth between 

each VM,  and the bandwidth for all VMs are roughly same. If two tasks are executed in the same VM, the 
transfer time is 0. 

    𝑅𝑅𝑅𝑅𝑡𝑡𝑖
𝑉𝑉𝑉𝑉𝑡𝑖 = 𝑠𝑠𝑡𝑡𝑖/𝑃𝑃𝑉𝑉𝑉𝑉𝑡𝑖

                                                        (1) 

𝑇𝑇𝑇𝑇𝑒𝑒𝑖,𝑗 = 𝑑𝑑𝑡𝑡𝑖
𝑜𝑜𝑜𝑜𝑜𝑜/𝛽𝛽                                                              (2) 

There are many different optimization objectives for workflow scheduling in Clouds. In this paper, we fo-
cus on finding the optimization solution for workflow scheduling which can minimize the total execution cost 
and satisfy the deadline constraint. We define a scheduling vector 𝑆𝑆 = (𝑀𝑀,𝑇𝑇𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇𝑇𝑇) in terms of tasks to 
resources matching M, the total execution cost TEC and the total execution time TET. M is the task-VMs 
matching which is comprised of VM types, start time and end time for all tasks, 

𝑀𝑀 = (𝑚𝑚𝑡𝑡1
𝑉𝑉𝑉𝑉𝑡1 ,𝑚𝑚𝑡𝑡2

𝑉𝑉𝑉𝑉𝑡2 , … ,𝑚𝑚𝑡𝑡𝑀
𝑉𝑉𝑉𝑉𝑡𝑀) , 𝑚𝑚𝑡𝑡𝑖

𝑉𝑉𝑉𝑉𝑡𝑖 = (𝑡𝑡𝑖𝑖,𝑉𝑉𝑉𝑉𝑡𝑡𝑖 ,𝑆𝑆𝑆𝑆𝑡𝑡𝑖 ,𝐸𝐸𝐸𝐸𝑡𝑡𝑖) , which means task ti  is associated with 

VMti, and the start time and the end time for task ti is calculated by Eq.3and Eq.4. 

𝑆𝑆𝑆𝑆𝑡𝑡𝑖 = �
𝐿𝐿𝐿𝐿𝐿𝐿𝑉𝑉𝑉𝑉𝑡𝑖

,                            𝑖𝑖𝑖𝑖 𝑡𝑡𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑚𝑚𝑚𝑚𝑚𝑚 ( 𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡𝑎∈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡𝑖)

(𝐸𝐸𝐸𝐸𝑡𝑡𝑎 + 𝑇𝑇𝑇𝑇𝑒𝑒𝑎,𝑖), 𝐿𝐿𝐿𝐿𝐿𝐿𝑉𝑉𝑉𝑉𝑡𝑖
 )  𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                   (3) 

 

𝐸𝐸𝐸𝐸𝑡𝑡𝑖 = 𝑆𝑆𝑆𝑆𝑡𝑡𝑖 + 𝑅𝑅𝑅𝑅𝑡𝑡𝑖
𝑉𝑉𝑉𝑉𝑡𝑖                                                 (4) 

where𝐿𝐿𝐿𝐿𝐿𝐿𝑉𝑉𝑉𝑉𝑡𝑖
 is the lease end time of 𝑉𝑉𝑉𝑉𝑡𝑡𝑖, which is also the time that 𝑉𝑉𝑉𝑉𝑡𝑡𝑖 becomes idle.There will be no 

charge for data transfers within a same data center, and we do not consider this fee when calculating the 
workflow total cost. The total execution cost TEC and the total execution time TET are calculated as Eq.5and 
Eq.6 respectively. 

𝑇𝑇𝑇𝑇𝑇𝑇 = ∑ 𝐶𝐶𝑉𝑉𝑉𝑉𝑡𝑖
∗ �

𝑅𝑅𝑅𝑅𝑡𝑖
𝑉𝑀𝑡𝑖

𝜏𝜏
� + ∑ 𝑇𝑇𝑇𝑇𝑒𝑒𝑖,𝑗 ∗ 𝑇𝑇𝑇𝑇𝑉𝑉𝑉𝑉𝑡𝑖𝑖𝑖∈𝑇𝑇,𝑗𝑗∈𝑇𝑇

|𝑉𝑉𝑉𝑉|
𝑖𝑖=1                               (5) 
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𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝐸𝐸𝐸𝐸𝑡𝑡𝑖: 𝑡𝑡𝑖𝑖 ∈ 𝑉𝑉)                                                (6) 

where 𝐶𝐶𝑉𝑉𝑉𝑉𝑡𝑖
 is the processing cost for 𝑉𝑉𝑉𝑉𝑡𝑡𝑖, and 𝑇𝑇𝑇𝑇𝑉𝑉𝑉𝑉𝑡𝑖

 is the data transfer cost for 𝑉𝑉𝑀𝑀𝑡𝑡𝑖. 

The problem in this paper can be described as finding a scheme S with minimum the TEC, and the TET 
do not exceed the workflow’s deadline constraint 𝑑𝑑𝑊𝑊.As showed in Eq.7. 

Minimize 𝑇𝑇𝑇𝑇𝑇𝑇                                                           (7) 
                       Subject to: 𝑇𝑇𝑇𝑇𝑇𝑇 ≤ 𝑑𝑑𝑊𝑊 

In this paper, we use a Co-evolutionary Genetic Algorithm with Adaptive penalty function approach 

(𝐶𝐶𝐶𝐶𝐶𝐶2) to solve this optimizing problem. Table 1 gives description of notations used in our paper. 

4. Co-evolutionary GA with Adaptive penalty function 

In this section, we have described a Co-evolutionary Genetic Algorithm with Adaptive penalty function 

approach (𝐶𝐶𝐶𝐶𝐶𝐶2) to solve constrained optimization problem.  

4.1 Mechanism of the Co-evolutionary GA 
Co-evolution is the process of mutual adaptation of two or more populations. The key issue in the co-

evolutionary algorithms is that the evolution of a population depends on another population.  
In 1994, Paredis[15] introduced Co-evolutionary Genetic Algorithm (CGA). Coello[16] incorporated the 

notion of co-evolution into a GA to adapt genetic coefficients and for solving constrained optimization prob-
lems. In this work, we will employ the notion of co-evolution to adjust the crossover and mutation probabili-
ties, and apply an adaptive penalty function coefficients scheme in the genetic algorithm. 

The structure of co-evolution model in CGA2 is shown in Fig. 2. In CGA2, two types of populations are 

used. In particular, one type of a single population (denoted by Population2) with size M2 is used to adapt 
suitable crossover and mutation probability factors, and another kind of multiple populations (denoted by 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,1, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,2,…, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,𝑀𝑀2) that each of them is with size M1evolves in parallel 

with different crossover and mutation schemes to search good decision solutions. Each individual 𝐵𝐵𝑗𝑗  in 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 represents a set of crossover and mutation probability factors for individuals in𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,𝑗𝑗, 

where each individual represents a decision solution. 

In every generation of co-evolution process, each 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,𝑗𝑗 will evolve by the GA for a certain 

number of generations (G1 ) with crossover and mutation probability factors obtained from individual 

Bj in 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2. Then the fitness of each individual Bj in Population2 will be determined. After all indi-
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viduals inPopulation2 are evaluated, Population2will also evolve by using GA. The above co-evolution 
process will repeat until a pre-defined stopping criterion is satisfied (e.g., a maximum number of co-evolution 
generation G2 is reached). 

In short, two types of populations evolve interactively, where𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,𝑗𝑗with an adaptive penalty 

function scheme is used to evolve decision solutions, while 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2is used to adapt crossover and 
mutation probabilities for solution evaluation. Due to the co-evolution, not only decision solutions are ex-
plored evolutionary, but also crossover and mutation probabilities are adjusted in a self-tuning way to avoid 
the difficulty of setting suitable factors by trial and error[14]. 

4.2 Adaptive crossover and mutation probabilities 

In genetic algorithm, the bigger the crossover probabilitypxand mutation probability pm are, the more 
new individuals will be generated along with the diversity of population. But if the probabilities are too big, 
good genes will be destroyed easily, otherwise if the probabilities are too small, it is not conducive to gen-
erate new individuals and the search speed will slow down [17]. 

According to Zhang et al. [18], the evolutionary process in GA can be depicted as four states, including 
initial state, sub-maturing state, maturing state and matured state. The crossover probability px and muta-
tion probability pmare adjusted differently based on population states. For example, if there are almost in-
ferior individuals with extremely poor fitness, we should increase pm and decrease px, like in initial state.  
If the span of fitness values in a population is very large, the crossover probability px should be increased, 
like sub-maturing state and maturing state. If there are almost excellent individual with good fitness, we 
could decrease px and pm as in the matured state. According these rules and inspired by the idea in the lit-
erature [27] [28], a self-adaptive crossover and mutation operator is described as Eq.8 and Eq.9. 

𝑝𝑝𝑥𝑥(𝑖𝑖) = 𝜔𝜔1 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜋𝜋
2
∗ 1
𝑒𝑒(𝜎1(𝑖)+𝜎2(𝑖)+⋯+𝜎𝑚(𝑖)))                                              (8) 

𝑝𝑝𝑚𝑚(𝑖𝑖) = 𝜔𝜔2 ∗ 𝑓𝑓𝑖𝑖 𝑓𝑓𝑝𝑝⁄                                                                  (9) 

where 𝑝𝑝𝑥𝑥(𝑖𝑖) is the crossover probability for i-th individual and pm(i) is the mutation probability. 𝜎𝜎𝑚𝑚(𝑖𝑖) =
|𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖(𝑚𝑚)|/𝑓𝑓𝑖𝑖, 𝑓𝑓𝑖𝑖(𝑚𝑚) is the m-th closest individual to individual i in terms of fitness value. 𝑓𝑓𝑖𝑖 is the fitness 

value of individual i, and 𝑓𝑓𝑝𝑝 is the individual with biggest fitness value in the population. 𝜔𝜔1 and 𝜔𝜔2 are the 

crossover and mutationprobability factors which are adapted through co-evolution. 

4.3 Fitness calculation with Adaptive penalty function 
A suitable penalty function plays an important role in the performance of GAs, and it becomes more 

important when the constraints are stricter which means that the optimal solution is nearing to the boundary 
between the feasible and infeasible search space [19][29]. The most common form of the penalized fitness 
function is depicted as following: 

𝐹𝐹𝑖𝑖𝑎𝑎 = 𝐹𝐹𝑎𝑎(𝑥𝑥𝑖𝑖) = 𝐹𝐹(𝑥𝑥𝑖𝑖) − 𝑃𝑃(𝑥𝑥𝑖𝑖) = 𝐹𝐹(𝑥𝑥𝑖𝑖) +∑ 𝜆𝜆(𝑗𝑗) ∗ 𝐸𝐸𝑗𝑗(𝑥𝑥𝑖𝑖)𝑚𝑚
𝑗𝑗=1                            (10) 
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where 𝐹𝐹𝑖𝑖𝑎𝑎 is the fitness function of i-th individual after penalty. 𝐹𝐹(𝑥𝑥𝑖𝑖)is the fitness value for the optimizing 

objective, 𝜆𝜆(𝑗𝑗) is the penalty factor for the j-th constraints violation, m is the number of constraints, and 

𝐸𝐸𝑗𝑗(𝑥𝑥𝑖𝑖)is the j-th constraint violation for i-th individual. 

Inspired by Nanakorn et al. [20], the penalty function should be suitable for all infeasible individuals. If 
it is too small, many infeasible individuals may have higher penalized fitness value, and the population 
would move towards a false direction to the infeasible region. Otherwise, if it is too large, some individuals 
with good gens will be eliminated which may lead to premature convergence. According to Tessema et al. 
[21], an adaptive penalty function strategy is applied to keep track of the number of feasible individuals in 
the population to determine the amount of penalty added to the infeasible individuals.  

Firstly, each individual’s fitness value and constraint violation will be normalized by the Eq.11 and 
Eq.12. 

𝐹𝐹�(𝑥𝑥𝑖𝑖) = 𝐹𝐹(𝑥𝑥𝑖)−𝐹𝐹𝑚𝑖𝑛
𝐹𝐹𝑚𝑎𝑥−𝐹𝐹𝑚𝑖𝑛

                                                                   (11) 

where 𝐹𝐹�(𝑥𝑥𝑖𝑖) is the normalized fitness value,𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 are the smallest and the largest fitness value for 

all individuals in the current population. In this way, each individual’s fitness will lie between 0 and 1. And 

the normalized constraint violation 𝐸𝐸�(𝑥𝑥𝑖𝑖)of each infeasible individual is calculated as: 

𝐸𝐸�(𝑥𝑥𝑖𝑖) = 1
𝑚𝑚
∑ 𝐸𝐸𝑗(𝑥𝑥𝑖)

𝐸𝐸𝑗
𝑚𝑎𝑥

𝑚𝑚
𝑗𝑗=1                                                           (12) 

where m is the number of constraints, Ejmax is the maximum violation for j-th constraints for all infeasible 

individual. 
Furthermore, for different evolutionary states in GA, the penalty rule should be adapted accordingly. 

For example, if there are few feasible individuals in the population, the infeasible individuals with lower 
constraint violation will be less penalized than those with higher constraint violation. On the other hand, if 
there are many feasible individuals in the population, the infeasible individual with lower normalized fit-
ness should be less penalized. According to literature [19] [21], the final fitness value is formulated in the 
follow. 

(1) If there is at least one feasible individual in the current population, the fitness function is as Eq.13 

𝐹𝐹1𝑎𝑎(𝑥𝑥𝑖𝑖) = �
𝐹𝐹�(𝑥𝑥𝑖𝑖)                                                 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
�𝐹𝐹�(𝑥𝑥𝑖𝑖)2 + 𝐸𝐸�(𝑥𝑥𝑖𝑖)2 + ��1 − 𝑟𝑟𝑓𝑓�𝐸𝐸�(𝑥𝑥𝑖𝑖) + 𝑟𝑟𝑓𝑓𝐹𝐹�(𝑥𝑥𝑖𝑖)�  𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

                      (13) 

where 𝑟𝑟𝑓𝑓 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

. In this way, the individuals with both low fitness value and low 

constraint violation will be considered better than those with high fitness value or high constraint violation. 

And if the feasibility ratio (𝑟𝑟𝑓𝑓) in the population is small, then the individual that is closer to the feasible 

space will be considered better. Otherwise, the individual with lower normalized fitness value will be bet-
ter. 
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(2) If there is no feasible individual in the current population, the fitness function is calculated as 
Eq.14. 

𝐹𝐹1𝑎𝑎(𝑥𝑥𝑖𝑖) = 𝐸𝐸�(𝑥𝑥𝑖𝑖)                                                               (14) 

Obviously, the individuals with smaller constraints violation are considered better. Consequently, the 
search will move to the region where the sum of constraints violation is small (i.e. the boundary of the fea-
sible region).   

The fitness value for i-th individual in 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,𝑗𝑗 in 𝐶𝐶𝐶𝐶𝐶𝐶2is evaluated based on Eq.13 and Eq. 14. 

Each individual in Population2 represents a set of factors (ω1 and ω2).After Population1,j evolves for 

G1 generations, the jth individual Bj in Population2is evaluated by Eq.15. 

F2�Bj� = −min�F1j� + numinfeasible
M1

                                                       (15) 

where 𝐹𝐹1𝑗𝑗 is the fitness values for all individuals in 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,𝑗𝑗, numinfeasible is the number of in-

feasible individuals in 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,𝑗𝑗, 𝑀𝑀1 is the size of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖1,𝑗𝑗.   

5 TheCGA2 for Workflow Scheduling  

5.1 CGA2 Modeling  

In this paper, we use two types of chromosomes to model 𝐶𝐶𝐶𝐶𝐶𝐶2 for scientific workflow scheduling in 

Clouds. As shown in Fig.3, the 𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟es𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖,𝑗𝑗 in 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,𝑗𝑗 represents the decision solution which is 

also the ordered pair of task-resource matching of a workflow. For the scheduling scenario here, the posi-

tion of each gene in 𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖,𝑗𝑗 is the task number, and the value of each gene in 𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖,𝑗𝑗 is 

the VMs’ number, thus the dimension of a 𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖,𝑗𝑗 is the number of tasks in a workflow. The range 

of genes in 𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖,𝑗𝑗 is determined by the number of resource available to run the tasks. Fig.3 rep-

resents a workflow with 8 tasks and 5 VMs available. The fitness function is used to determine how good a 
decision solution is, which is calculated by the optimizing objective total execution cost 𝑇𝑇𝑇𝑇𝑇𝑇 and the con-
straint total execution time 𝑇𝑇𝑇𝑇𝑇𝑇. The calculation of 𝑇𝑇𝑇𝑇𝑇𝑇 and 𝑇𝑇𝑇𝑇𝑇𝑇 for a chromosome are explained in next 
section. 

The 𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚  in 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2  represent the crossover and mutation probability coefficients, 
which is defined by the binary encoding. The range of 𝜔𝜔1 is (0,1], and we use the first 7 genes to represent 
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the coefficient 𝜔𝜔1 . The value of 𝜔𝜔1  in 𝑐𝑐hro𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  is calculated as 𝜔𝜔1 = 26+24+22+1
128

= 0.6640625. 

The range of 𝜔𝜔2 is also (0,1], and we use the latter 7 genes to represent the coefficient 𝜔𝜔2  And the value of 

𝜔𝜔2 is calculated as 𝜔𝜔2 = 25+23+1
128

= 0.3203125.  

The 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,𝑗𝑗 is the evolution decision solutions to match the task with resource to minimize the 

total execution cost 𝑇𝑇𝑇𝑇𝑇𝑇 and satisfy the constraint total execution time 𝑇𝑇𝑇𝑇𝑇𝑇. The𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 adapts the 
crossover and mutation probabilities for solution evolution. 

5.2 TEC and TET Calculation 

To address the workflow scheduling problem, we need to estimate the running time of workflow ap-
plication with a specific task-VM mapping schedule firstly and calculate the cost accordingly. The total 

execution cost TEC and the total execution time TET of a 𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖,𝑗𝑗  in 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,𝑗𝑗 is shown in 

Algorithm 1. The k-th position value of 𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖,𝑗𝑗(𝑘𝑘)  represents that task k is associated 

with𝑉𝑉𝑉𝑉𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑖,𝑗(𝑘𝑘). In𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,𝑗𝑗, a chromosome is a task-resource match.  

Firstly, we initial the VMs state matrix 𝑉𝑉𝑉𝑉 and the task state matrix𝑇𝑇𝑇𝑇.Aset of workflow tasks T and a 

set of VMs 𝑉𝑉𝑉𝑉����� are inputted. Then we estimate the execution time 𝑅𝑅𝑅𝑅𝑡𝑡𝑖
𝑉𝑉𝑉𝑉𝑡𝑖  of each workflow task 𝑡𝑡𝑖𝑖(𝑡𝑡𝑖𝑖 ∈ 𝑇𝑇) 

on every type of VM 𝑉𝑉𝑉𝑉𝑖𝑖(𝑉𝑉𝑉𝑉𝑖𝑖 ∈ 𝑉𝑉𝑉𝑉�����)according Eq.1, and transfer time 𝑇𝑇𝑇𝑇𝑒𝑒𝑖,𝑗 between tasks is calculated 

according Eq.2.  

The starting time value 𝑆𝑆𝑆𝑆𝑡𝑡𝑖 has two cases. If the task has no parent tasks, it can start as soon as the VM 

assigned to the task is idle. Otherwise, the task starts after the parent tasks finished and the output data 
transferred. Furthermore, if the VM is still busy, the starting time has to be delayed until the VM enable. 
And in our algorithm, if two tasks allocated on the same VM have the same start time, the VM will process 

the task with smaller size. The ending time value ETti is calculated by Eq.4 based on the starting time and 

execution time 𝑅𝑅𝑅𝑅𝑡𝑡𝑖
𝑉𝑉𝑉𝑉𝑡𝑖 . After a task has been scheduled, we need to update the VS and the TS  to set the 

task ti as scheduled and the time period between 𝑆𝑆𝑆𝑆𝑡𝑡𝑖  and 𝐸𝐸𝐸𝐸𝑡𝑡𝑖 as busy for 𝑉𝑉𝑉𝑉𝑡𝑡𝑖. The process continues 

until all tasks having been scheduled. 
 

ALGORITHM 1 TEC AND TET ESTIMATION 
Input: a set of workflow tasks T, a set of VMs 𝑉𝑉𝑉𝑉�����, and a 𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑘𝑘 ,𝑗𝑗 in 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖1,𝑗𝑗 
Output: TEC and TET 
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1.  Initial VMs state matrix 𝑉𝑉𝑉𝑉 and task state matrix 𝑇𝑇𝑇𝑇. 
2.Calculate execution time RT[|𝑇𝑇| × |𝑉𝑉𝑉𝑉�����|]; 
Calculate transfer time TT[|𝑇𝑇| × |𝑇𝑇|]; 
3. For i=1:|𝑇𝑇| 

If 𝑇𝑇𝑇𝑇(𝑇𝑇(𝑖𝑖)) is unscheduled 

3.1. 𝑡𝑡𝑒𝑒=𝑇𝑇(𝑖𝑖),𝑉𝑉𝑉𝑉𝑒𝑒𝑖=𝑣𝑣𝑣𝑣𝑐𝑐ℎ𝑒𝑒𝑜𝑜𝑚𝑚𝑜𝑜𝑓𝑓𝑜𝑜𝑚𝑚𝑒𝑒𝑘,𝑗(𝑒𝑒) 

3.2. If𝑡𝑡𝑒𝑒 has no parents 

𝑆𝑆𝑆𝑆𝑒𝑒𝑖 = 𝐿𝐿𝐿𝐿𝐿𝐿𝑉𝑉𝑉𝑉𝑡𝑖
; 

Else 

𝑆𝑆𝑆𝑆𝑒𝑒𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚 ( 𝑚𝑚𝑚𝑚𝑥𝑥
𝑒𝑒𝑎∈𝑝𝑝𝑚𝑚𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒(𝑒𝑒𝑖)

(𝐸𝐸𝐸𝐸𝑒𝑒𝑎 + 𝑇𝑇𝑇𝑇𝑒𝑒𝑎,𝑖), 𝐿𝐿𝐿𝐿𝐿𝐿𝑉𝑉𝑉𝑉𝑡𝑖
 ); 

End 
3.3. For each child task 𝑡𝑡𝑐𝑐 of 𝑡𝑡𝑒𝑒 

If𝑡𝑡𝑐𝑐 is mapped to a VM different to 𝑉𝑉𝑉𝑉𝑒𝑒𝑖 
𝑇𝑇𝑇𝑇(𝑖𝑖) = 𝑇𝑇𝑇𝑇(𝑖𝑖) + 𝑇𝑇𝑇𝑇(𝑖𝑖, 𝑐𝑐) 

End 
End 

3.4.𝑅𝑅𝑅𝑅𝑒𝑒𝑖
𝑉𝑉𝑉𝑉𝑡𝑖 = 𝑅𝑅𝑅𝑅(𝑡𝑡𝑒𝑒 ,𝑉𝑉𝑉𝑉𝑒𝑒𝑖); 

3.5.𝐸𝐸𝐸𝐸𝑒𝑒𝑖=𝑅𝑅𝑅𝑅𝑒𝑒𝑖
𝑉𝑉𝑉𝑉𝑡𝑖 + 𝑇𝑇𝑇𝑇(𝑖𝑖) 

3.6.update  𝑉𝑉𝑉𝑉,and 𝑇𝑇𝑇𝑇, set the time period [𝑆𝑆𝑆𝑆𝑒𝑒𝑖 ,𝐸𝐸𝐸𝐸𝑒𝑒𝑖] for 𝑉𝑉𝑉𝑉𝑒𝑒𝑖 is busy, set 𝑇𝑇𝑇𝑇(𝑇𝑇(𝑖𝑖)) as scheduled. 
End 

End 
4.Calculate TEC according Eq.5; 
5. Calculate TET according Eq.6; 

 

5.3 Initial population 
For a scientific workflow, the execution time of the tasks in the Critical Path makes more influence on 

the total execution time of a workflow, while the financial execution cost of these tasks is a small part of 
the total execution cost. So allocating these tasks to the high performance VMs will decrease the total exe-
cution time greatly, while just have a little impact on the total financial execution cost. 

The diversity of initial population impacts the performance of GA greatly, but most of GAs generate 
the initial population randomly. In order to improve the solution quality and convergence speed, we gener-
ate one fifth of the initial population based on Critical Path (CP) [7] and assign these tasks in CP to the 
VMs with high processing capacity. The tasks in other one fifth of the initial population are allocated to the 
VMs which have the lowest price. The rest of the population is produced in random. 

Fig.4 shows the framework of 𝐶𝐶𝐶𝐶𝐶𝐶2 . We firstly initialize two types of populations, where  
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 is used to adapt crossover and mutation probabilities for 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1 to find decision so-

lutions. In this paper, the evolution of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 is an unconstrained optimizing problem which do need 
penalty function, while 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1 uses an adaptive penalty function to transform the constrained Work-
flow scheduling problem as an unconstrained optimizing one. The initial population scheme used in 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1  is depicted in Section 5.3, and the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2  adopts the random method. Each sub-

population 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,𝑗𝑗 in the  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1 will evolve for 𝐺𝐺1iterations simultaneously, and the best 𝑀𝑀2 

individuals from the 𝑀𝑀2  sub-populations will be used to assess the corresponding individual in the 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2. The 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 will evolve for 𝐺𝐺2iterations to find the best crossover and mutation prob-
ability factor and the best decision making solution. 

6. Performance Evaluation 

To evaluate the performance of 𝐶𝐶𝐶𝐶𝐶𝐶2 in addressing the problem of scientific workflow scheduling in 

Clouds, we use the WorkflowSim framework supported by CloudSim to simulate a cloud environment. The 
simulated workflows are four famous scientific workflows: Epigenomics, Montage, Inspiral and Cyber-
shake[22][23], which are widely applied for performance measurement of scheduling algorithms in the 
WorkflowSim [30]. Each of these workflows has different structures as seen in Fig.5 [10].  

We use related approaches for constrained optimization problem, such as  the Random, HEFT [24],the 
genetic algorithm[10] and the PSO for deadline-constrained Cloud scientific workflow scheduling [9], as a 
baseline to evaluate our approach. 

The Random is an algorithm that assigns the ready tasks to an idle VM randomly. The Heterogeneous 
Earliest Finish Time (HEFT) is a scheduling algorithm that gives higher priority to the workflow task 
which has higher rank value. This rank value is calculated by utilizing average execution time for each task 
and average communication time between resources of two successive tasks, where the tasks in the CP 
have comparatively higher rank values. Then, it sorts the tasks by the decreasing order of their rank values, 
and the task with a higher rank value is given higher priority. In the resource selection phase, tasks are 
scheduled in the order of their priorities, and each task is assigned to the resource that can complete the 
task at the earliest time. We set |𝑇𝑇𝑥𝑥| as the size of task 𝑇𝑇𝑥𝑥 and R as the set of resources (VMs) available 

with average processing power|𝑅𝑅| = ∑ |𝑅𝑅𝑖𝑖| 𝑛𝑛�𝑛𝑛
𝑖𝑖=1  , and the average execution time of the task is defined as 

𝐸𝐸(𝑇𝑇𝑥𝑥) = |𝑇𝑇𝑥|
|𝑅𝑅| . 

Let Txy as the size of data to be transferred between task 𝑇𝑇𝑥𝑥  and  𝑇𝑇𝑦𝑦, and β be the bandwidth between 

each VM. Thus, the average data transfer time for the task is defined as 𝑇𝑇𝑇𝑇𝑥𝑥,𝑦𝑦 = 𝑇𝑇𝑥𝑥𝑥𝑥/𝛽𝛽.𝐸𝐸(𝑇𝑇𝑥𝑥) and 𝑇𝑇𝑇𝑇𝑥𝑥,𝑦𝑦 are 

used to calculate the rank of a task. Rank value is calculated as: 
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𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑇𝑇𝑥𝑥) = �
𝐸𝐸(𝑇𝑇𝑥𝑥)𝑇𝑇𝑥𝑥                           𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

𝐸𝐸(𝑇𝑇𝑥𝑥) + 𝑚𝑚𝑚𝑚𝑚𝑚
𝑇𝑇𝑦∈𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑇𝑇𝑥) (𝑇𝑇𝑇𝑇𝑥𝑥,𝑦𝑦 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑇𝑇𝑦𝑦))𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒（16） 

A workflow is represented as a DAG, and the rank values of the tasks in HEFT are calculated by trav-
ersing the task graph in a breadth-first search (BFS) manner in the reverse direction of task dependencies 
(i.e., starting from the exit tasks). The HEFT algorithm generates schedules based on VMs and tasks and 
does not vary with constraints.  

In our experiments, we model an IaaS provider offering a single data center and five types of VMs. The 
VM configurations are based on current Amazon EC2 offerings and are presented in Table 2. We set pro-
cessing capacity of each type of VMs based on the work of Ostermann et al. [25]. 

The experiments are conducted by using 4 different deadlines. These deadlines lie between the slowest 
and the fastest runtimes. The slowest runtime is obtained by using a single VM with the average processing 
capacity of all VMs to execute all tasks. And the fastest runtimes is obtained by assigning the highest pro-
cessing capacity VM to the ready tasks. To estimate each of the four deadlines, the difference between the 
fastest and the slowest times is divided by 10 to get an interval size. The first deadline is the slowest 
runtime minus 1 interval sizes to the fastest deadline, as to the second one, we minus 4 interval sizes. The 
third is the fastest runtime adding 2 interval sizes to the slowest deadline and the last one is the fastest 
runtime adding 1 interval sizes. 

For the testing, the parameters of CGA2 are set as follows:𝑀𝑀1 = 200,𝐺𝐺1 = 100,𝑀𝑀2 = 50,𝐺𝐺2 = 20. To 

compare the results, we consider the average workflow total execution cost and total execution time after 
running each experiment for 30 times. All the experiments are performed on computers with Inter Core i5-
4570S CPU (2.9GHz and 8G RAM). 

6.1 Deadline Constraint Evaluation  
In this section, we analyze the algorithms in terms of meeting the user’s defined deadlines. We have 

compared the deadline meeting percentages for each scientific workflow under different deadline shown as 
the Fig.6. 

For the Epigenomics workflow, HEFT meets all of the deadlines. Random algorithm meets Deadline 1 
and 2 with 10 percent and 3.3 percent respectively, and completely fails to meets Deadline 3 and 4. GA and 
PSO meet Deadline 1 and Deadline 2 with 100 percent, but when the constraints become strict, the rates 
are less and less. For Deadline 3, the constraint meeting rates for the two evolutionary algorithms are 93 
percent and 73.3 percent respectively, and for Deadline 4, the rats are 26.7% and 13.3%. As to our pro-

posed CGA2 algorithm, when the constraints become stricter, 𝐶𝐶𝐶𝐶𝐶𝐶2 algorithm can still find excellent solu-

tions in terms of constraints meeting. The deadline meeting rates for first 3 deadlines are 100%, and80% 
for the last deadline constraint. The results for Montage application again show that HEFT meets all of the 
deadlines and it is much better than that of other algorithms. In Montage, Random algorithm obtains simi-
lar results to those obtained in Epigenomics, it meets all deadline constraints in the lowest rates. And the 
GA and PSO based algorithms perform well just when the deadline is relaxed like in the Deadline 1 and 

Deadline 2. 𝐶𝐶𝐶𝐶𝐶𝐶2can still find excellent solutions in terms of constraints meeting when the constraints be-
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comes stricter. The meeting rates in different constraints are 100%, 100%, 100%, and 60%. 
The results of meeting rate for Inspiral and Cybershake are much like that of the above two workflows. 

The Random algorithm could hardly get feasible solutions under all constraints while the HEFT gets 100% 
meeting rates under all constraints. As to the 3 evolutionary approaches, they perform similarly under the 
first two relaxed constraints, while our proposed algorithm obviously performs much better than the other 
two evolutionary algorithms. A possible explanation for these results revolves the fact that: HEFT always 
assigns tasks with VMs that make the end time at a minimum level, and it considers the entire workflow 
rather than focusing on only unmapped independent tasks at each step to assign priorities to tasks. But it 
gives no concern to the cost and constraints. Random algorithm assigns tasks with VMs randomly which is 
very hard to satisfy user’s constraints. As to two evolutionary algorithms GA and PSO, they handle the 
constraints optimizing problem simply which just give a static penalty function or even exclude the solu-
tions which violate the constraints in the evolutionary process, and it would lead to a premature conver-
gence or a false direction to the infeasible region. 

6.2 TET Evaluation 
As shown in Fig.7, we measured the average of total execution time TET (also called as makespan) for 

each workflow under different constraints (red line is the TET constraint). We can see that, in the Epige-
nomics workflow, the HEFT approach has the lowest average makspan under every deadline constraints, 
and the Random has the worst performance. The GA and the PSO have a good performance in the relaxed 
constraints like Deadline 1 and Deadline 2. And when the constraints become stricter, they perform poorly. 

As to our proposed 𝐶𝐶𝐶𝐶𝐶𝐶2, it shows a better performance than both the GA and the PSO, especially in the 

strict constraints. In the Montage workflow case, the HEFT still has the best average makespan value while 
the Random is the worst in terms of total execution time. In the Deadline 1 and Deadline 2, the mean of 

total execution time(TET) for the GA, PSO and 𝐶𝐶𝐶𝐶𝐶𝐶2 are less than deadlines, while the average TET for 

these algorithms in the last constraints are above the deadline values. 

In the Inspiral and Cybershake workflows, our proposed algorithm𝐶𝐶𝐶𝐶𝐶𝐶2 still has better TET results 

comparing with the other two evolutionary algorithms. These results are in line with those analyzed in the 
deadline constraint evaluation section, from which we were able to conclude that, HEFT algorithm can ob-
tain a lowest total execution time value for workflows, and Random algorithm is not efficient in meeting 
the deadlines, and the normal GA and PSO can’t find excellent solutions when the constraints become 

stricter. On the contrary, 𝐶𝐶𝐶𝐶𝐶𝐶2 exhibits a larger makespan variation which is expected as it can find excel-

lent solution for constrained optimizing problem in a very large and chaotic search space. 

6.3 TEC Evaluation 
The average total execution costs generated from the above algorithms for each of the workflows are 

displayed in Fig. 8. We also give the mean of TET and deadlines meeting rates obtained in the former sec-
tion, as the algorithms should be able to generate a cost-efficient scheme but not at the expense of a long 
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execution time. There is unavailable for an algorithm to run on the lower cost without meeting the dead-
lines. The mean of TEC, the mean of TET, and the meeting rate for each workflow under different con-
straints are presented in Table 3.  

For the Epigenomics workflow, HEFT total execution time is still the lowest one for the 4 different 
constraints, but its total execution cost is higher than evolutionary algorithms. In these experiments, 𝐶𝐶𝐶𝐶𝐶𝐶2 
get the lowest cost under each deadline which shows the optimizing capacity of our proposed algorithm is 
better than other previous evolutionary algorithms especially under the strict deadlines. From the table we 
can also find that when the constraints become stricter, the solutions obtained by the GA and PSO are not 
only fail to meet deadlines but also get much more cost. It shows that an inferior penalty function would 
lead the populations to premature and infeasible sections. 

In the Montage workflow, HEFT total execution time is still the lowest for the 4 different constraints, 
but its total execution cost is higher than evolutionary algorithms. A possible explanation for this might be 
that evolutionary algorithms lease VMs with lower price in order to minimize the total execution cost. 
What’s more, the tasks are relatively small in Montage workflow, which means that the machines in the 
HEFT’ scheme are only running for a small amount of time but charged for the full billing period, and 
choosing a higher processing capacity VM means much more cost. 

Among the above algorithms complying with the deadline constraint, GA and PSO can obtain the low 
cost schedules on relaxed deadline, but when the constraints become strict, the solutions generated by them 

are very poor, while the 𝐶𝐶𝐶𝐶𝐶𝐶2 can still get excellent solutions in terms of the TEC meeting deadlines under 

strict constraints. From the results, it is clear that the evolutionary algorithms based approaches perform 

better than HEFT in terms of cost. And the 𝐶𝐶𝐶𝐶𝐶𝐶2 can get excellent solution without violating the con-

straints when the deadline becomes strict. 
TEC results of 5 algorithms in the Inspiral and Cybershake Workflow are similar to those of the previ-

ous workflows, which again show that 𝐶𝐶𝐶𝐶𝐶𝐶2 could always find the best solutions in terms of TEC, espe-

cially under the strict constraints. We can observe from Fig.8 (c) (d) that, the GA and PSO with static pen-
alty function have a rapid increase in terms of TEC when the constraints get stricter, while our algorithm is  
able to maintain the similar level. What’s more, even though the PSO with static penalty function could get 

a better TEC results than 𝐶𝐶𝐶𝐶𝐶𝐶2 in the relaxed constraints, it still could not get satisfied solutions in the 

strict constraints.  
From the above discussion, the following conclusions can be drawn from the experiments: the Random 

algorithm fails to meet deadlines in most cases whereas HEFT could get the lowest makespan which al-
ways assign highest processing capacity VMs to ready tasks. While comparing with HEFT, the evolution-
ary algorithms are capable of generating cheaper schedules and hence outperform HEFT in terms of cost 

optimization. And compared to GA and PSO with static penalty functions, our proposed algorithm CGA2 

can handle the constrained optimization problem of scientific workflow scheduling in Clouds better, and is 
still able to find feasible solutions under strict user’s deadline requirements. 

7. Conclusion and Future Work 
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In this paper, a co-evolutionary genetic algorithm with adaptive penalty function (𝐶𝐶𝐶𝐶𝐶𝐶2) for constrained 

scientific workflow scheduling in Clouds is proposed.The common drawback of existing evolutionary al-
gorithms is the necessity of defining problem-specific parameters of penalty function for constrained opti-
mization problem. And these algorithms are also static and lead to premature convergence. In order to ad-
dress these problems, our proposed algorithm designs an adaptive penalty function without any parameter 
tuning and easy to implement. 

This approach could effectively exploit the information hidden in infeasible individuals which sets the 
proper penalty rule for the individuals at different stages of the evolutionary process. In addition, our pro-

posed algorithm 𝐶𝐶𝐶𝐶𝐶𝐶2applies an adaptive crossover and mutation probabilities based on the co-evolution 

and generates the initial population according to critical path which are efficient for preventing premature 
and improving deadline meeting for workflow scheduling. Experiments demonstrate that, our solution has 
an overall better performance than the state-of-the-art algorithms Random, HEFT, GA and 

PSO.The 𝐶𝐶𝐶𝐶𝐶𝐶2 succeeds with high rate as HEFT which aims to minimizing the makespan without consid-

ering the cost. Furthermore, 𝐶𝐶𝐶𝐶𝐶𝐶2could produce schedules with lower total executing cost and meeting the 

deadlines under strict constraints while GA and PSO could not succeed easily. 
Our future work will use multi-objective evolutionary algorithm to solve the cloud resource scheduling 

problem, and will take into account the load balance and task failures. Meanwhile, we will extend the re-
source model to consider the data transfer cost between data centers. 
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TABLE 1   Notations 
Notation Description 

𝑉𝑉𝑉𝑉𝑒𝑒 Virtual machine i 
𝑃𝑃𝑉𝑉𝑉𝑉𝑖  processing capacity for 𝑉𝑉𝑉𝑉𝑒𝑒 
𝐶𝐶𝑉𝑉𝑉𝑉𝑖  cost per unit of time for 𝑉𝑉𝑉𝑉𝑒𝑒 
RT𝑒𝑒𝑖

𝑉𝑉𝑉𝑉𝑖  running time of task 𝑡𝑡𝑒𝑒 executed by 𝑉𝑉𝑉𝑉𝑒𝑒 
𝑠𝑠𝑒𝑒𝑖 the size of task 𝑡𝑡𝑒𝑒 
𝑇𝑇𝑇𝑇𝑒𝑒𝑖,𝑗 the transfer time between a parent task 𝑡𝑡𝑒𝑒and 

child task 𝑡𝑡𝑗𝑗 
d𝑒𝑒𝑖
𝑜𝑜𝑜𝑜𝑒𝑒 the output data size of task 𝑡𝑡𝑒𝑒 
𝛽𝛽 the bandwidth between each VM 
𝑇𝑇𝑇𝑇𝑇𝑇 the total execution cost 
𝑇𝑇𝑇𝑇𝑇𝑇 the total execution time 
𝑑𝑑𝑊𝑊  the workflow’s deadline constraint 
𝑆𝑆𝑆𝑆𝑒𝑒𝑖 the starting time of task 𝑡𝑡𝑒𝑒 
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𝐸𝐸𝐸𝐸𝑒𝑒𝑖 the ending time of task 𝑡𝑡𝑒𝑒 
𝐿𝐿𝐿𝐿𝐿𝐿𝑉𝑉𝑉𝑉𝑡𝑖

 the lease ending time of 𝑉𝑉𝑉𝑉𝑒𝑒𝑖, also the time 
that 𝑉𝑉𝑉𝑉𝑒𝑒𝑖 is idle 

 
 

TABLE 2.  Types of VMs Used in the Experiments 
Name EC2 Units Processing 

Capacity 
Cost per 

Hour 
m1.small  1 44 $0.03 

m1.large 4 176 $0.12 

m1.xlarge 8 352 $0.24 

c1.medium 5 220 $0.06 

c1.xlarge 20 880 $0.44 

 
 

TABLE 3.Performance Comparing of Algorithms under Different Constraints 
Workflow Algorithm Deadline 1  Deadline 2  

Mean 
TEC 

95%CI 
TEC 

Mean 
TET 

Meeting 
rate 

Mean 
TEC 

95%CI 
TEC 

Mean 
TET 

Meeting 
rate 

 Random 100.35 [40.2,160.5] 98475 10% 100.35 [40.2,160.5] 102099 3.3% 

 HEFT 35.12 [35.12,35.1] 13916 100% 35.10 [35.12,35.12] 13916 100% 

Epigenomics GA 22.73 [12.9,32.5] 20743 100% 32.98 [12.5,54.5] 25892 100% 

 PSO 21.15 [9.2,33.1] 36140 100% 41.55 [8.1,85.1] 31170 100% 

 CGA2 17.95 [7.2,28.7] 20919 100% 20.38 [10.7,20.1] 28404 100% 

 Random 52.56 [24.4,80.7] 1233.3 90% 52.56 [24.38,80.74] 1233.3 40% 

 HEFT 18.65 [18.7,18.7] 173.45 100% 18.65 [18.65, 18.65] 173.45 100% 

Montage GA 4.03 [2.45,5.11] 1806.2 100% 3.98 [2.33,5.63] 1521.0 100% 

 PSO 13.7 [6.3,21.1] 1922 100% 16.21 [10.4,22.0] 1315.6 100% 

 CGA2 3.64 [2.43,4.85] 1362 100% 4.82 [3.05,6.60] 1082 100% 

 Random 52.56 [6.937.82] 32762.0 90% 52.56 [24.38,80.74] 32762 40% 
 HEFT 9.83 [9.83,9.83] 4783.56 100% 9.83 [9.83,9.83] 4783.5 100% 

Inspiral GA 4.96 [4.64,5.27] 8058.10 100% 5.33 [5.16,  5.50] 8189.0 100% 

 PSO 4.24 [4.13,4.35] 12900.0 100% 4.52 [4.40,4.65] 10610 100% 

 CGA2 4.94 [4.63,5.25]  8678.10 100% 5.54 [5.38, 5.69] 7129.7 100% 

 Random 9.8000 [9.38,10.22] 4130.90 13.3% 9.8000 [9.38,10.22] 4130.90 0% 
 HEFT 8.86 [8.86, 8.86] 601 100% 8.86 [8.86, 8.86] 601.00 100% 

Cybershake GA 4.31 [3.85,4.78] 1776.80 100% 4.6980 [4.11, 5.28] 1567.40 100% 

 PSO 3.41 [3.04,3.77] 2133.00 100% 3.7373 [3.45, 4.02]  1858.00 100% 
 CGA2 4.15 [3.91,4.39] 1767.50 100% 4.9487 [4.43, 5.47]  1483.70 100% 

 
Workflow Algorithm Deadline 3  Deadline 4 

Mean 95%CI Mean Meeting Mean 95%CI Mean Meeting 
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TEC TEC TET rate TEC TEC TET rate 

 Random 98.37 [40.2,160.5] 98475 0% 87.43 [40.2,160.5] 110509 0% 

 HEFT 35.12 [35.12,35.1] 13916 100% 35.12 [35.12,35.12] 13916 100% 

Epigenomics GA 46.98 [20.8,73.6] 20743 93.3% 97.69 [54.2,141.3] 22745 73.3% 

 PSO 80.28 [28.5,132.1] 36140 26.7% 124.16 [65.9,184.4] 76206 6.7% 

 CGA2 23.06 [15.2,30.9] 20919 100% 25.28 [11.7,38.8] 16807 80% 

 Random 52.56 [24.38,80.7] 1233.3 10% 52.56 [24.38,80.74] 1233.3 0% 

 HEFT 18.65 [18.65,18.7] 173.45 100% 18.65 [18.65, 18.65] 173.45 100% 

Montage GA 13.6 [8.64,18.62] 486.4 80% 21.65 [11.63,31.7] 779.5 20% 

 PSO 28.9 [16.8,40.1] 611.6 70% 41.6 [35.7,46.5] 1085.5 10% 

 CGA2 5.87 [4.05,7.69] 448.9 100% 18.9 [8.9,30.9] 435 60% 

 Random 52.56 [24.4,80.7] 32762.0 10% 52.56 [24.38,80.74] 32762 0% 
 HEFT 9.83 [9.83,9.83] 4783.5 100% 9.83 [9.83,9.83] 4783 100% 

Inspiral GA 9.99 [  9.25,10.73] 6233.3 93.3% 11.457 [10.0,12.9] 6803.7 33.3% 
 PSO 6.77 [6.42,7.13] 18650.0 73.3% 8.1353 [7.02,9.24] 28300 16.6% 

 CGA2 6.46 [6.21, 6.71] 6247.6 100% 6.6580 [6.31,7.00] 5504.5 96.7% 

 Random 9.8000 [9.38,10.22] 4130.90 0% 9.8000 [9.38,10.22] 4130 0% 
 HEFT 8.86 [8.86, 8.86] 601.00 100% 8.86 [8.86, 8.86] 601.00 100% 

Cybershake GA 6.4400 [6.19,6.68] 922.96 100% 10.796 [8.82,12.77] 922.96 86.7% 
 PSO 4.8933 [4.56,5.22] 1200.00 100% 25.001 [22.5, 27.47] 1200.0 33.3% 
 CGA2 6.3680 [6.04,6.69] 815.99 100% 7.4060 [6.84, 7.96] 815.99 100% 
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