
This is a repository copy of Safety-Critical Java: : level 2 in practice.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/106765/

Version: Accepted Version

Article:

Luckcuck, Matt, Wellings, Andy orcid.org/0000-0002-3338-0623 and Cavalcanti, Ana
orcid.org/0000-0002-0831-1976 (2016) Safety-Critical Java: : level 2 in practice.
Concurrency and Computation: Practice and Experience. pp. 1-27. ISSN 1532-0634

https://doi.org/10.1002/cpe.3951

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Safety-Critical Java: Level 2 in Practice

Matt Luckcuck, Andy Wellings and Ana Cavalcanti

16th September 2016

Abstract

Safety Critical Java (SCJ) is a profile of the Real-Time Specification for Java that
brings to the safety-critical industry the possibility of using Java. SCJ defines three
compliance levels: Level 0, Level 1 and Level 2. The SCJ specification is clear
on what constitutes a Level 2 application in terms of its use of the defined API,
but not the occasions on which it should be used. This paper broadly classifies
the features that are only available at Level 2 into three groups: nested mission
sequencers, managed threads, and global scheduling across multiple processors. We
explore the first two groups to elicit programming requirements that they support.
We identify several areas where the SCJ specification needs modifications to support
these requirements fully; these include: support for terminating managed threads,
the ability to set a deadline on the transition between missions, and augmentation
of the mission sequencer concept to support composibility of timing constraints.
We also propose simplifications to the termination protocol of missions and their
mission sequencers. To illustrate the benefit of our changes, we present excerpts
from a formal model of SCJ Level 2 written in Circus, a state-rich process algebra
for refinement.

1 Introduction

An international effort has produced a specification for a high-integrity real-time version
of Java: Safety-Critical Java (SCJ) [24]. SCJ is based on a subset of Java augmented by
the Real-Time Specification for Java (RTSJ) [38], which supplements Java’s garbage-
collected heap memory model with support for memory regions [37] called memory
areas.

The SCJ programming model is based on the notion of a mission. Each mission con-
sists of a set of periodic (PEH), aperiodic (APEH), and one-shot (OSEH) event handlers,
and no-heap managed real-time threads. The execution of a mission progresses through
an initialisation, execution, and cleanup phase (see Figure 1). A mission’s handlers and
threads are created and registered during its initialisation phase. A mission continues
to execute until one of its handlers, threads, or a peer mission requests termination,
causing control to flow into a mission cleanup phase. An application-defined mission
sequencer determines the sequence of missions to be executed.

SCJ restricts the RTSJ memory model to prohibit use of the heap, and defines a
policy for the use of the RTSJ’s immortal and scoped memory areas. Each managed
thread and event handler of the programming model described above has an associated
memory area, that holds temporary objects created during execution of that compo-
nent. When a managed thread terminates, and each time an event handler finishes its
handling of and event, the memory area is exited and all of the memory allocated for the
component’s temporary objects is reclaimed. An immortal memory area holds objects
throughout the lifetime of the program: they are never deallocated. The scoped memory

1

Start HaltMission

Cleanup

Mission

Execution

Select

Mission Initialization

Mission

MissionSequencer

Figure 1: Safety Critical Mission Phases (taken from [24])

area of a mission is cleared out at the end of each mission. Each release of a handler
has an associated per-release scoped memory area, cleared out at the end of the release.
In the case of a thread, the execution of its associated run() method is viewed as a
single release, and consequently, it is associated with its own local scoped memory area.
Additionally, during a release, a stack of temporary private scoped memory areas can
be used.

The SCJ language specification defines three compliance levels (Levels 0, 1 and 2),
which reflect three supported programming and execution models. The compliance levels
reflect increased levels of complexity in terms of the available programming features
and, therefore, of the supported programs, with direct impact on the effort required for
certification. It is accepted that the effort required to certify a program that exploits
the generality of Level 2 capabilities may be significantly greater than that required to
certify programs that use only the more limited capabilities of the lower compliance
levels.

The differences between the three compliance levels are summarised in Table 1. The
schedulable objects available at each level include those listed for that level and those
listed for the previous levels. While mission sequencers are schedulable objects and
are used at all compliance levels, they can only be registered to a mission at Level 2,
as we explain below. The Suspension column refers to the availability of features like
Object.wait(), Object.notify(), and Services.delay().

Execution
Model

Schedulable
Objects

Suspension Platform

Level 0 Cyclic Executive Periodic Event Handler No Single Processor

Level 1 Preemptive Prior-
ity
Scheduling

Aperiodic and One-
Shot
Event Handlers

No Multi-Processor

Level 2 Preemptive Prior-
ity
Scheduling

Mission Se-
quencers
and
Managed Threads

Yes Multi-
Processor
Global
Scheduling

Table 1: Comparison of SCJ Compliance Level Features

A Level 0 application’s execution model is essentially a cyclic executive. In this
model, only periodic handlers are supported; they are executed sequentially in a precise,
clock-driven time line [23]. A single mission sequencer controls the sequential execution
of one or more missions.

At SCJ Level 1, missions are controlled by a single mission sequencer. The available
schedulable objects are periodic, aperiodic, and one-shot event handlers. At Level 1,
schedulable objects are executed concurrently by a preemptive priority-based scheduler;
any access to shared data has to be performed by synchronized methods to avoid race
conditions and to assure that the compiler generates code that forces that changes made

2

to shared variables by one thread to propagate to all other threads that share access
to those same variables. A notable restriction of the Level 1 programming model is
that use of Object.wait() and Object.notify() is prohibited. Arbitrary use of such
methods complicates the ability to perform schedulability analysis.

At Level 2, missions are executed sequentially by a top-level mission sequencer, as
with Level 1. In addition, each mission may register nested mission sequencers during
its initialisation phase. Once these nested mission sequencers begin running, they each
execute a sequence of child missions, independently of the top-level mission sequencer.
Computation in a Level 2 mission can be performed by periodic, aperiodic, and one-
shot handlers, and no-heap managed real-time threads. Each child mission has its own
mission memory, distinct from its parent’s mission memory. A Level 2 application may
use Java suspension features.

It is clear that those applications that can be scheduled using cyclic-executive tech-
niques should be implemented at Level 0. Furthermore, applications that can use simple
analysable fixed-priority scheduling should use Level 1. Hence, the required scheduling
techniques are a primary indicator of whether or not Level 0 should be used. However,
Level 2 also targets fixed-priority scheduling, so this cannot be used to decide between
using Level 1 or Level 2.

To understand the purpose of Level 2, it is necessary to discover the generic application-
level programming requirements for which Level 2 functionality is necessary. In the
current version of the specification, this is not provided in the rationale for the three
compliance levels.

We broadly classify the additional functionality provided at Level 2 into three groups:

1. nested mission sequencers;

2. managed threads: including the use of the Object.wait(), Object.notify(),
HighResolutionTime.waitForObject() and Services.delay() methods; and,

3. global scheduling across multiple processors.

We explore the first group in Section 2, showing how they provide support for two
example applications: a Space Shuttle, which has several modes of operation, with mode-
specific schedulable objects and persistent schedulable objects running throughout all
modes; and a Train Control system, which has multiple independent subsystems, each
implemented using a nested mission sequencer. Programming several modes of operation
is possible at Level 1, but combining this behaviour with tasks running throughout all
modes (without restarting that task in each mode) is only possible at Level 2. Moreover,
programming multiple subsystems is not possible at Level 1, due to nested mission
sequencers being unavailable.

In Section 3 we focus on the second group of features above, examining the benefits of
the ManagedThread class and presenting three motivating scenarios that show where they
are useful: non-standard release profiles, suspension-based waiting, and encapsulation
of local state.

The availability of global scheduling only at Level 2 reflects the fact that the state
of the art in multiprocessor schedulability analysis is still advancing [12]. Future safety-
critical systems may be able to execute on multiprocessor platforms supported by new
analysis techniques. We, however, do not address global scheduling in this paper.

We identify several areas where the SCJ specification needs modifications in order
to fully support the programming requirements identified in Sections 2 and 3; these
are summarised and expanded on in Section 4. The added functionality of Level 2

3

warrants a more formal description of the programming model and its required run-
time support. In particular, the starting and termination of nested mission sequencers,
and their associated missions, is much more complex than at Levels 0 and 1. In Section
5, we present a formal model of the termination protocol and show that significant
simplification to this aspect of the specification can be achieved with a simple change to
the API. Related work is given in Section 6, and we draw our conclusions in Section 7.

2 Nested Mission Sequencers

The ability to construct applications composed of nested mission sequencers is, perhaps,
the most important aspect to be considered when choosing between Levels 0 or 1 and
Level 2. In this section we identify two software architectural patterns that require the
support of nested mission sequencers. We also sketch an example application for each
of the patterns. We call these two patterns the Multiple-Mode Application Pattern and
the Independently Developed Subsystem Pattern.

2.1 The Multiple-Mode Application Pattern

Overview

This pattern captures the typical architecture of systems that have to operate in multiple
modes. Each mode consists of multiple persistent activities with well defined release
frequencies and deadlines. In addition to these per-mode activities, there may also be
persistent concurrent activities, which execute in all modes. Well known schedulability
analysis techniques can be used to guarantee the timing properties in the steady-state
situations of execution in each mode. Analysis techniques also exist for handling the
transitions between modes, but only on a single processor [36, 30].

Architecture Components

The components that characterise this pattern are shown in Figure 2. Tasks represent
concurrent activities. A mode changer encapsulates several modes, and each mode
encapsulates several mode-specific tasks. Only one mode per mode changer is active at
any one time. There may also be persistent tasks, which are required to operate during
all modes. The mode changer and any persistent tasks are controlled by a coordinator.
Mode changes are typically requested by tasks from the currently active mode.

In terms of SCJ, a mode changer can be conveniently implemented as a mission
sequencer, and each mode as a mission. The tasks can be realised as SCJ schedulable
objects. The coordinator component also has a natural correspondence with a mission,
often the main mission, which registers the persistent tasks and the mode changer, and
controls their operation.

Example Application

An example application that uses this pattern is an idealised Space Shuttle1, as illus-
trated in Figure 3. It has three modes, each associated with a phase of its opera-
tion. Each mode has several schedulable objects that are only active during that mode
– only two are shown for each mode in Figure 3. In addition to the mode-specific
schedulables, there are two persistent schedulables shown, EnvironmentMonitor and

1The code for this example can be found at http://www.cs.york.ac.uk/circus/hijac/case.html

4

Coordinator

Mode ChangerTask

Mode

Task

Figure 2: Multiple-Mode Operations Pattern

ControlHandler, which are active throughout all the modes.

MainMission : Mission

ModeChanger : MissionSequencer

EnvironmentMonitor :

PeriodicEventHandler
ControlHandler :

AperiodicEventHandler

LaunchMode:

Mission

CruiseMode:

Mission

LandMode:

Mission

LaunchMonitor:

PeriodicEventHandler

LaunchHandler:

AperiodicEventHandler

CruiseMonitor:

PeriodicEventHandler

CruiseHandler:

AperiodicEventHandler

LandMonitor:

PeriodicEventHandler

LandHandler:

AperiodicEventHandler

Figure 3: Space Shuttle with Moded Operations

Adequacy of SCJ Support

Using missions to support individual modes of operation and mission sequencers to
support the mode-change controllers has two main advantages. The first is that encap-
sulating each mode in a mission enhances the modularisation of the SCJ program and
the traceability of its structure to its architectural model. This is important when each
mode is a significant software component in its own right.

The second advantage is that SCJ supports a well-defined (if somewhat complicated
– see Section 5) process for mission termination, where schedulables can complete their
current release before the mission completes. This is usually what is required when
mode change requests are planned events. (Planned mode changes occur at well defined
points in a system’s operation. In contrast, unplanned mode changes usually occur as a
result of error conditions being detected. Such errors may be anticipated, but the time
of their occurrence can not be predicted. Hence the time at which a mode change is
required cannot be predicted.)

On the other hand, in adopting the multiple-mode application pattern in the context
of SCJ, there are issues of timing that need to be considered. First of all, in order to

5

execute a new mode, it is necessary to create all the new objects (that are to reside
in the mission memory) during the initialization phase of the mission (mode). Hence,
for unplanned mode changes or applications that require fast and predictable planned
changes, there may be some efficiency or latency concerns.

In addition, there is no automatic single release time for all the schedulable objects
in the application. The schedulable objects in the initial mode start at a different time
from the persistent schedulable objects. To create a single start time, it is necessary to
use absolute-time offsets for all periodic handlers.

For timing analysis, the mission sequencer, implementing the mode changer, must
be viewed as an aperiodic activity whose minimum inter-arrival time is equal to the
minimum time between mode change requests. Its deadline represents any time con-
straints on the mode change operation. As an SCJ mission sequencer is a managed
event handler, it only has a priority; it does not have any release parameters. These
must be captured outside of the SCJ program and used in any schedulability analysis.
We discuss this concern further in Section 4.

Finally, it is not easy to provide the runtime scheduling needed to support composi-
tional time analysis of the application, as SCJ does not support hierarchical scheduling.
SCJ schedules persistent schedulable objects in competition with mode-specific schedu-
lable objects. Hence, the whole application must be analysed in each mode along with
each mode transition. We discuss this issue in Sections 2.2 and 4.3 below.

2.2 The Independently Developed Subsystem Pattern

Overview

Assembling systems that are composed of independently developed subsystems, each
encapsulating related behaviours, is an important approach to developing systems that
are more complex than those typically developed for Level 1. The ability to create nested
mission sequencers at SCJ Level 2 is the key to supporting this approach to constructing
systems.

Architecture Components

The software architecture that characterises this pattern is shown in Figure 4. The sub-
systems are all controlled by a coordinator. Subsystems may contain other subsystems.
Typically, each subsystem is, or can be, independently developed and contains several
tasks that perform related behaviours.

In terms of SCJ each subsystem can be decomposed into a mission sequencer and
a single mission that manages the tasks within that subsystem. Each task can then
be implemented by an appropriate managed schedulable: mission sequencer, thread, or
handler. In this setting the coordinator component corresponds naturally to a mission,
often the main mission, that registers the mission sequencers of each subsystem.

Example Application

A good example of this pattern is the railway system described by Hunt and Nilsen [20]:

“Collision avoidance in rail systems is a representative safety-critical applica-
tion. A common approach to the challenge of avoiding train system collisions
divides all tracks into independently governed segments. A central rail traf-
fic control system takes responsibility for authorizing particular trains to
occupy particular rail segments at a given time. Each train is individually

6

Coordinator

Subsystem

Task

Figure 4: The Independently-Developed Subsystem

responsible for honouring the train segment authorizations that are granted
to it. Note that rail segment control addresses multiple competing concerns.
On the one hand, there is a desire to optimize utilization of railway resources.
This argues for high speeds and unencumbered access. On the other hand,
there is a need to assure the safety of rail transport. This motivates lower
speeds, larger safety buffers between travelling trains, and more conservative
sharing of rail segments.”

The example considers the structure of the on-board software (illustrated in Figure 5),
which supports the following requirements:

• maintain reliable and secure communication with the central rail traffic control
authority — the CommunicationService subsystem;

• monitor progress of the train along its assigned route — the NavigationService
subsystem;

• control the train’s speed in accordance with scheduled station stops, rail segment
authorizations, local speed limit considerations, and fuel efficiency objectives —
the TrainController subsystem;

• infrastructure support for maintaining global time — the TimeServices subsystem.

In the implementation described in [20], each of these subsystems is realised as a nested
mission sequencer registered to the main mission (TrainMission), and each subsystem
controls a single mission that registers the subsystem-specific managed schedulables.
There are multiple tiers of nested mission sequencers within the subsystems. Each
tier represents further subsystems that can be developed independently. For brevity,
Figure 5 only shows two of the subsystem-specific managed schedulables and omits the
deeper tiers of nested mission sequencers.

Adequacy of SCJ Support

Although the encapsulation provided by missions is ideal for structuring subsystems, as
illustrated above there are issues that need to be addressed when adopting this approach.
The first is that in order to compose a system from many subsystems (missions), each
of these subsystems (missions) must be controlled by its own mission sequencer. This is
natural if each mission has multiple modes of operation, but can become cumbersome
otherwise.

7

TrainMission : Mission

CommunicationsServices :

MissionSequencer

TimeServices :

MissionSequencer

NavigationServices :

MissionSequencer

CommsMission :

Mission

NavigationMission :

Mission

TrainControlMission :

Mission

NavigationOversight :

ManagedThread

GPSDriver :

ManagedThread

TrainControl :

MissionSequencer

TimeServicesMission :

Mission

Figure 5: Railway System with Multiple Subsystems

The second issue has already been mentioned in Section 2.1. When a system is
composed of subsystems, there is no automatic common release time for all the schedu-
lable objects. If required, this has to be programmed explicitly. For multiple nested
sequencers, this can become cumbersome because the system start time needs to be
passed down to all schedulable objects in the system.

Whilst the above limitations can be seen as minor, the third limitation, which we
discuss next, is more significant. Neither SCJ nor the RTSJ directly support hierar-
chical scheduling. Hence it is difficult to achieve decomposability of timing constraints
when subsystems are independently developed. The RTSJ does support the notion
of processing groups, which allow several schedulable objects to share a CPU budget,
but these are too general and difficult to use in a multiprocessor environment [6, 39].
Hierarchical scheduling techniques for single processor and partitioned multiprocessor
systems are well established [11] and techniques are beginning to emerge for globally
scheduled multiprocessor systems [5, 12]. The lack of such a facility in SCJ severely
limits its use in supporting the timing analysis of applications composed according to
the independently-developed subsystem pattern. We return to this issue in Section 4.3.

The final issue with the functionality of SCJ, in relation to this programming pat-
tern, is that the API supports a request to terminate a mission sequencer. The intention
of this facility is to allow a schedulable object within a mission to request not only its
mission to be terminated, but also the whole sequence of missions (of which it is part) to
be terminated. The concern with the facility is that it can be misused by a schedulable
to terminate an arbitrary mission sequencer. This complicates the semantics of the ter-
mination protocol needed to support mission termination and breaks the encapsulation
of the mission concept. We return to this issue in Sections 4.4 and 5.

3 Using Managed Threads

There are several motivations for supporting managed threads in SCJ Level 2 applica-
tions. The first is to serve the needs of schedulable objects that do not have a standard
release profile. The second is to allow suspension-based waiting for input and output
operation completion. The final motivation is to allow more encapsulation of state
information. We consider each of these, in turn, in this section.

8

3.1 Non-Standard Release Profiles

It is impossible to anticipate every possible scenario in which a schedulable object might
need to be released. Here, we consider three common scenarios and discuss the diffi-
culties of implementing them at Level 1. We choose one of these to illustrate how
implementation using Level 2 is possible.

A Periodic Activity Released by an Event

In SCJ, a periodic activity is either released immediately when it is started, or released
after an absolute or relative delay from when it is started. There is no possibility of
releasing a periodic activity via notification from another schedulable object or, indeed,
an interrupt. However, it can be desirable for the initial release of a periodic activity
to be triggered by a notification from another schedulable object, the absence of such
a notification, or an interrupt. For example, the implementation of a task controlling a
mechanical system that requires periodic updates but is started by an aperiodic button
press can benefit from such a release pattern.

The above discussion suggests that the Level 1 support for periodic event handlers
is not flexible enough to cope with anything other than simple time-released periodic
activities. Simply introducing the Object.wait() and Object.notify() methods into
Level 2, to allow a periodic handler to wait for a notification, is not sufficient. The
problem is that deadline monitoring of event handlers starts from when the handler is
first released. In SCJ, deadlines cannot be dynamically changed, so it is not possible to
set an initial deadline and then change it after the notification has occurred.

The introduction of managed threads at Level 2, on the other hand, allows these
more general release patterns to be addressed, as managed threads allow programmers
to implement their own release mechanisms. We consider, for example, the periodic
managed thread released by software notification illustrated in Figure 6, which shows
an abstract extension of the ManagedThread class. The firstRelease method (lines
18-23) is called during the mission to indicate that the periodic activity should now
start. The abstract work method declared on line 35 must be overridden to provide the
functionality to be called each period. The runmethod (lines 38-47) is final and waits for
the initial release before calling the work method periodically. This example illustrates
the added flexibility that is available at Level 2; the periodic thread in Figure 6 can not
be programmed at Level 1.

Another example of a more complicated release pattern that can only be programmed
in SCJ at Level 2 is the thruster control system described by Wellings [38, Page 235].
Here, an astronaut activates the thruster and supplies a duration for the engine “burn”.
The control of the engine itself requires a periodic activity to avoid the mechanical drift
of valves. This requires an activity that is released by an event, executes periodically for
a certain duration (determined either by time itself or by another event), and then waits
to be started again. For the same reasons as those described above for an event-released
periodic activity, the only way this release pattern can be supported in SCJ is with
managed threads using Object.wait() and Object.notify().

On the other hand, it should be noted that managed threads are a simplified version
of the RTSJ’s no-heap real-time thread, with the following restrictions: there is no
automatic release mechanism (that is, no support for waitForNextPeriod) and there is
no mechanism to add a deadline. Furthermore, in SCJ the per-release memory area is
created when the thread starts and cleared when the thread terminates. Consequently,
if needed, developers have to program their own support for more sophisticated memory
management.

9

1 public abstract class PeriodicThread extends ManagedThread {

2

3 private AbsoluteTime nextRelease; // the next release time of this thread

4 private AbsoluteTime nextDeadline; // the next deadline of this thread

5 private final int period;

6 private final int deadline;

7 private DeadlineMissHandler deadlineMissDetection;

8 private Mission myMission; // this thread ’s controlling mission

9 private boolean hadFirstRelease = false;

10

11 public synchronized void firstRelease () {

12 hadFirstRelease = true;

13 notify ();

14 nextRelease = Clock.getRealtimeClock (). getTime(nextRelease);

15 nextDeadline.set(nextRelease.getMilliseconds () + deadline);

16 deadlineMissDetection.scheduleNextReleaseTime(nextDeadline);

17 }

18

19 private synchronized boolean waitFirstRelease () {

20 while (! hadFirstRelease){

21 try { wait (); }

22 // or HighResolutionTime . waitForObject (this , timeout)

23 // if a timeout is also required

24 catch(InterruptedException ie) { // mission is to be terminated

25 return false;

26 }

27 }

28 return true;

29 }

30

31 protected abstract void work ();

32 // override this to provide the function of the thread

33

34 public final void run() {

35 if (waitFirstRelease ()) {

36 while (! myMission.terminationPending ()) {

37 nextRelease.add(period ,0);

38 work ();

39 nextDeadline.add(period ,0);

40 deadlineMissDetection.scheduleNextReleaseTime(nextDeadline);

41 Services.delay(nextRelease); // waitForNextPeriod

42 }

43 }

44 }

45 }

Figure 6: A Periodic Schedulable Object Released by Software Notification

10

Consumers in a Producer-Consumer System

Another common release pattern is where a producer schedulable object generates data
that must be processed by a consumer schedulable object. Typically this data may come
in bursts, and the consumer should process all the data as quickly as possible and block
when there is no data available. These requirements cannot be met at Level 1, since
it does not support a queue of outstanding release events for aperiodic event handlers.
Level 2 allows this release pattern to be programmed using managed threads.

Background Activities: Run as Fast as You Can

There are occasions where background activities are required to run as fast as possible.
This is the case, for example, of a logging task that is required to process data from
application logs whenever the scheduler allows it access to the processor. There is
no notion of release events for these activities (other than their initial start). These
activities can be programmed with Level 1 functionality using either an aperiodic event
handler that is released only once, or a one-shot event handler with no start wait time.
Both of these options, however, are a misuse of these mechanisms. Although there is
no negative consequence for this misuse, a managed thread is a better abstraction to
support this requirement.

3.2 Suspension-based Waiting for IO where Busy-Waiting is Inappro-

priate

In many systems, a device driver busy-waits for its associated device input (or output)
to complete. This is because the expected delay is small and context switching away
from the driver is considered inefficient. There are ways to integrate this delay into the
scheduling of the driver (see [7, Section 14.6]), and allowing the driver to delay when it
has no other activity to perform may also be appropriate. On the other hand, when this
delay is a relatively significant amount of time, it is necessary to allow the system to
schedule some alternative activities. Since it is not possible to have a suspension-based
delay at Level 1, this requirement can only be implemented at Level 2.

3.3 Encapsulation of State Information

Another characteristic that differentiates managed threads from event handlers is their
use of memory. An event handler has its private memory area cleared at the end of
each release, which means that state that must persist across releases must be saved in
an outer memory area. A managed thread, however, only has its memory area cleared
when it exits its run() method (that is, it terminates). This means that data can be
stored locally and preserved over successive application-implemented ‘releases’ of the
thread.

Of course, the effect of these two approaches is the same. The thread’s memory
area can last for as long as the memory area of its controlling mission, which is where
persistent data used by an event handler is normally stored. However, this ability to
encapsulate state is important from a software engineering perspective, since storing
data that is private to a schedulable object in the mission memory of its controlling
mission makes this data more widely visible than it should be.

As an example, we consider several schedulable objects that log their local state
changes into local bounded buffers. When a buffer becomes full (which may take several
releases of its associated schedulable object), the data is copied into a single global

11

1 Runnable R = new Runnable () {

2 public void run() { work (); }

3 };

4

5 public final void run() {

6 if (waitFirstRelease ()) {

7 while (! myMission.terminationPending ()) {

8 nextRelease.add(period ,100);

9 ManagedMemory.enterPrivateMemory(privateMemorySize , R);

10 nextDeadline.add(period ,100);

11 deadlineMissDetection.scheduleNextReleaseTime(nextDeadline);

12 Services.delay(nextRelease);

13 }

14 }

15 }

Figure 7: Augmented Periodic Schedulable Object

buffer in mission memory, which another schedulable object uses to write the system
state changes to disk. If the logging schedulable objects are event handlers, the local
buffers cannot be stored in their per-release memory areas, as such areas are cleared at
the end of each of their releases. They need to be stored in the mission memory. Using
managed threads, the local buffers can be stored in the per-release memory areas, as
these are not cleared until their associated managed threads terminate. In addition, the
local buffers do not become exposed to access by other schedulables.

Application-implemented releases, such as those programmed in Figure 6, can also
be augmented to use a nested private memory area for objects that can be cleared at
the end of each application-implemented release. This is illustrated in Figure 7, which
just shows the augmented run() method (and an associated runnable) of lines 38-47 of
Figure 6.

4 Revisiting the SCJ Level 2 Support

Sections 2 and 3 have explored some of the application requirements where the use
of Level 2 functionality is desirable. Here, we review the issues identified as potential
causes of problems, and explore changes that can be made to the SCJ specification to
avoid these problems.

4.1 Managed Thread Termination

In SCJ, a managed thread terminates when it returns from its run() method. In Sec-
tion 3 we illustrate how this simple release pattern can be adapted, using Level 2 fea-
tures, to provide more complicated release patterns. Figure 6 shows the example of a
periodic thread that is first released by software notification using the Object.wait()

method (on line 18). With this approach, however, if our periodic thread is released and
is waiting for its software notification when its controlling mission begins termination,
then the thread may not finish its current release – its run() method may remain ac-
tive. More generally, this applies to any schedulable object that is using the suspension
features available at Level 2; if they are waiting when their controlling mission begins
termination, then their release may not finish.

SCJ [24] defines the following activities to be performed on receipt of a mission
termination request:

• invoke this mission’s terminationHook() method;

12

• invoke signalTermination() on each managed schedulable object that is regis-
tered for execution within this mission;

• disable all periodic event handlers associated with this mission so that no further
firings occur;

• disable all aperiodic event handlers, so that no further firings are honoured;

• clear the pending release event (if any) for each event handler so that the event
handler can be effectively shut down following completion of any event handling
that is currently active;

• wait for all of the managed schedulable objects associated with this mission to
terminate their execution;

• invoke the ManagedSchedulable.cleanUp() method for each of the managed
schedulable objects associated with this mission; and,

• invoke the cleanUp() method associated with this mission.

We note that this list does not require invoking the interrupt() methods of all the
managed schedulables, which would cause all blocked managed schedulables to wake
up with an exception and hence expedite termination. This has to be programmed by
applications using the Mission.terminationHook() method, and can be inconvenient
when the mission has many schedulable objects.

To aid the termination of managed threads and schedulables that are suspended
when a termination request is received, we propose that either the SCJ infrastructure
interrupts all schedulable objects associated with the mission or that all the schedulable
objects associated with the mission are informed of a pending termination request. The
latter proposal can be achieved via a new method (terminationSignalled()), which
each managed schedulable object must implement. The intention of this method is
to allow the programmer to manually interrupt those schedulable objects that may be
blocked when mission termination is signalled.

4.2 Deadlines on Mission Sequencers

As discussed in Section 2.1 an SCJ mission sequencer does not have any release parame-
ters. Therefore, it cannot have an associated deadline or deadline-miss handler. Systems
that support multiple modes of operations often have deadlines associated with the mode
changes. Hence, at Level 2 it is appropriate to allow some form of deadline-miss handler
to execute if the mode change does not occur promptly.

Adding aperiodic release parameters to mission sequencers seems to undermine the
mission programming model, particularly for sequencers that support a single non-
terminating mission. Instead, what we propose is to add the methods shown in Fig-
ure 8 to the MissionSequencer class. These methods identify deadline-miss handlers
for mission termination and start. We note that, since mission changes can also occur
in Level 1, these facilities might also prove useful in that context.

4.3 Support for Compositional Timing Analysis

Section 2.2 identifies a role for mission sequencers as a mechanism that can support
the composition of safety-critical systems from independently-developed subsystems (or
components). We represent a subsystem in SCJ with a mission sequencer controlling

13

1 /**

2 * As for Mission. requestTermination

3 *

4 * In addition , the SCJ infrastructure will set a timer that will fire if mission

5 * termination (including any cleanup) has not completed by the

6 * deadline. On expiry of the timer , the infrastructure will release the aperiodic

7 * event handler passed as a parameter.

8 *

9 * The timer will be cancelled if it has not fired when the mission terminates .

10 */

11 @SCJAllowed(Level_1)

12 public final void requestTerminationOfCurrentMission(AbsoluteTime deadline ,

13 AperiodicEventHandler deadlineMiss);

14

15 /**

16 * As for Mission. requestTermination

17 *

18 * In addition , the SCJ infrastructure will set a timer that will fire if next mission

19 * has not started by the deadline. On expiry of the timer , the

20 * infrastructure will release the aperiodic event handler passed as a parameter .

21 *

22 * The timer will be cancelled if it has not fired when the new mission starts.

23 *

24 * If there is no new mission , the timer is cancelled when the call to getNextMission

25 * returns null.

26 */

27 @SCJAllowed(Level_1)

28 public final void requestMissionChange(AbsoluteTime deadline ,

29 AperiodicEventHandler deadlineMiss);

Figure 8: Proposed New Methods for the MissionSequencer Class

a single mission, which controls that subsystem’s schedulable objects, as detailed in
Section 2.2. Hence, we consider the mission sequencer as the top of the subsystem.

Hierarchical scheduling (and its associated schedulability analysis) is a well estab-
lished technique that facilitates composition when components have real-time attributes
(such as deadlines). Unfortunately, hierarchical scheduling is supported by neither SCJ
nor the RTSJ. This is possibly because of the lack of support by real-time operating
system vendors. We propose incorporating two elements of hierarchical scheduling into
SCJ to improve its support for independently-developed subsystems and components:
CPU budgets, to implement execution-time servers; and multi-level priorities, to isolate
the scheduling of subsystems.

In the proposed approach, constructing a system made of subsystems can be achieved
broadly in three steps. First, each subsystem is allocated an execution-time server, which
is given a capacity, a priority order, and a replenishment period. These parameters need
to be assigned carefully to obtain good schedulability [10]. Next, the priority ordering of
the schedulable objects in each subsystem must be determined. Finally, an integration
step assigns concrete priorities to the schedulable objects based on their priority ordering
and the priority order of their server.

The schedulable objects within a subsystem are only scheduled for execution (in
priority order) when their execution-time server server would be scheduled at the top
level (and has available capacity). Once the parameters of the execution-time servers and
the schedulables are set, the program needs to be analysed to determine schedulability
at both the system and subsystem levels. We note that there is a relationship between
the priorities of the execution-time server and of the subsystem’s schedulable objects.

In the rest of this section we describe the integration of our proposal into SCJ. We
consider only two tiers in the program hierarchy here, for brevity.

14

4.3.1 CPU Budgets

The first aspect of hierarchical scheduling we require is that each subsystem is allocated
a budget, which is consumed whenever one of its schedulable objects is executing, and
a period after which its budget is replenished. When a subsystem’s budget has been
totally consumed, all of its associated schedulable objects are suspended until its next
replenishment occurs. In the RTSJ, this functionality can be supported by processing
groups, if all the schedulable objects run on the same CPU.

Implementations of the RTSJ that support processing groups ensure that members of
a group, collectively, are not be given more CPU time per period than their group’s bud-
get. When supported, the RTSJ implements the ProcessingGroupParameters class,
which is associated with each schedulable object in the processing group. This allows the
RTSJ’s schedulable objects to share a budget while retaining their individual priorities,
deadlines, and periods.

Because processing groups support the requirements for compositional timing anal-
ysis, one possible solution is for SCJ to implement the following restricted version of the
RTSJ ProcessingGroupParameters class, where the deadline of the processing group
is equal to its replenishment period.

1 package javax.safetycritical;

2

3 public class ProcessingGroupParameters {

4 public ProcessingGroupParameters (HighResolutionTime start ,

5 RelativeTime replenishmentPeriod , RelativeTime budget){

6 ...

7 }

8 ...

9 }

However, this technique inherits the limitation that the missions encapsulated within a
mission sequencer need to execute on the same processor.

4.3.2 Simulating Multi-Level Priorities

The second aspect of hierarchical scheduling that we require is multi-level priorities,
which can be simulated in SCJ by manipulating the priorities of mission sequencers and
schedulable objects. We propose:

• using the priority of each mission sequencer to define a priority range: from the
priority of this mission sequencer to the priority of the next highest priority mission
sequencer, and;

• transposing the priorities of all the schedulable objects in this subsystem into this
range, while maintaining their original priority order, to ensure that they only run
when their subsystem has the highest priority of all the subsystems.

This priority manipulation is performed statically, before the program is executed, in the
integration step mentioned above. It may be the case that mission sequencer’s priorities
must be changed during integration to accommodate the schedulable objects. This is
allowed as long as the priority order of the mission sequencers is maintained.

For example, we consider below a simple two-subsystem application using rate-
monotonic scheduling. The parameters of the execution-time servers of each subsystem
are shown in Table 9.

15

Period (ms) Budget (ms)

Server 1 100 40

Server 2 50 15

Figure 9: Execution-Time Server Parameters

At the top level, the execution-time server the subsystems associated with Server1 has a
replenishment period of 100 milliseconds and a budget of 40 milliseconds. The execution-
time server of the subsystem associated with Server2 has a replenishment period of 50
milliseconds and a budget of 15 milliseconds. The top-level is schedulable when the
priority of Server 2 is greater than the priority of Server 1.

Now, we suppose that the subsystem associated with Server 1 contains three schedu-
lable objects, S1, S2, and S3, which require a priority ordering where S3 has a higher
priority than S2, which has a higher priority than S1. During system integration, the
priorities of the servers and schedulables could be assigned so that the priority of Server 2
is greater than that of Server1 plus 3 in order to allow the priorities of the schedulable
objects to be assigned between those of the two servers. An example of the priorities
that can be assigned is shown in Table 10.

Schedulable Priority

Server 1 10
S1 10
S2 11
S3 12

Server 2 20

Figure 10: Execution-Time Server and Schedulable Priorities

This concrete priority assignment simulates multi-level priorities, because the schedula-
bles of the subsystem associated with Server 1 are not able to run if Server 2 is executing.

4.3.3 Incorporation into SCJ

As detailed above, to support CPU budgets, SCJ needs to implement processing
groups, and SCJ can already support multi-level priorities, by manipulating the priorities
of an application’s schedulable objects and mission sequencers. To aid integration of
these two aspects of hierarchical scheduling into SCJ applications, a new subclass of
mission sequencer can be added to encapsulate the concerns of a subsystem, as shown
in the example below.

1 public class Subsystem extends MissionSequencer{

2 public Subsystem (PriorityParameters pri , StorageParameters storage ,

3 ProcessingGroupParameters params , int priRange){

4 ...

5 }

6 ...

7 }

The constructor above takes a ProcessingGroupParameters object, as described in
Section 4.3.1. To encapsulate the information needed for the priority manipulation, de-
scribed in Section 4.3.2, the values of pri (which is the priority of this mission sequencer)

16

and of pri + priRange define the prioirity range for schedulable objects encapsulated
by this subsystem.

4.4 Mission Sequencer Termination

In Section 2.2, we argue that allowing arbitrary schedulables to request the termination
of an arbitrary mission sequencer violates the encapsulation supported by missions. We
propose that schedulable objects are only allowed to request that their controlling mis-
sion is terminated. The mission itself then has the responsibility of deciding whether to
request its sequencer to terminate. This gives a more structured approach to termina-
tion.

We propose removing the requestSequencerTermination() method, which allows
a request to terminate a mission sequencer, to enforce this more structured termination
policy. Instead, we recommend that the mission cleanup phase indicates whether its
sequencer should continue with the next mission or terminate. For that, we propose that
Mission.cleanUp() return a boolean value, which is passed to the mission sequencer
to determine if the mission sequencer should continue or terminate.

We investigate the impact of this change in the next section. As the termination
protocol is one of the more complex features of SCJ Level 2 programs, we consider
formal models of the SCJ termination protocol for both the current specification and
for the protocol that we propose here.

5 Formalisation of Level 2

In this section we present: a formal model of the current termination protocol as pre-
sented in the SCJ draft specification [24], in Section 5.2; a formal model of the termi-
nation protocol incorporating our proposed changes, in Section 5.3; and a comparison
of these two models, in Section 5.4. Our models are written in the state-rich process
algebra Circus, for which a model of SCJ Level 1 already exists [40]. In Section 5.1 we
give a brief overview of the Circus notation.

With these models we show that the current termination protocol is more compli-
cated than necessary. Indeed, it was the process of formally modelling SCJ Level 2 that
first illuminated the complexities of the mission sequencer termination protocol. These
complications only become apparent at Level 2 because of its capacity to nest mission
sequencers arbitrarily deeply, which means that mission sequencers can be terminated
by schedulables both above and below themselves in the program’s hierarchy at any
point during the execution phase.

5.1 Circus Introduction

Circus [8] combines elements from CSP [19], Z [34], and a refinement calculus [25] to
allow modelling of both state and patterns of interaction. Figure 11 sketches the BNF
description of the syntax of Circus. Below, we describe the elements of the syntax
pertinent to the discussion of our formal model. A comprehensive account of Circus can
be found in [27].

Circus programs, defined in Figure 11 by the syntactic category Program, are formed
by a sequence of Circus paragraphs. Each Circus paragraph, defined in Figure 11 as
elements of CircusPar, may be either a Z paragraph (the Par category), a channel dec-
laration, a channel set declaration, or a process declaration. The syntactic category N

contains the valid Z (and Circus) identifiers.

17

Circus programs use bi-directional channels to allow their processes to communicate;
we discuss the different types of communications later in the section. All of the channels
used in a Circus program must be declared. Channel declarations are defined by the
CDecl syntactic category in Figure 11. Here, Exp is the category of Z expressions. If a
channel takes any parameters, their types must be declared. For convenience, channels
my be collected into a channel set – defined by the CSExp category. Channel sets allow
easy specification of the channels used to interact with a process.

Each Circus process has a name and a body (process N =̂ ProcDef) and may take
parameters (Decl • ProcDef). In our model, this is used where, for example, the process
modelling a mission or a mission sequencer takes a parameter representing its unique
identifier. Hence, for example, processMissionFW =̂ mission : MissionID • . . . de-
clares the mission process with a parameter mission of type MissionID .

The body of a Circus process (begin PPar∗ state SchemaExp PPar∗ • Action end)
is delimited by the begin and end keywords; it may contain a state, which is modelled
using a Z schema; and some actions, modelled using a free combination of Z state
operations, constructs of a simple imperative language, and CSP constructs (PPar∗).
While Z schemas can be used to define data operations over the state of a Circus process
using predicates, assignments to variables can also be made directly (N+ := Exp+, from
the Command category in Figure 11).

A Circus process always has a main action at the end of the process after a •, that
dictates the combination of Z schemas and CSP actions that define the behaviour of
the process; these actions may reference other local actions for the purpose of structure.
Both the state and actions of a Circus process are local to that process. This makes
Circus processes similar to classes in object-oriented programming, where a class has
some local variables and methods.

CSP has many operators that are adopted in Circus, which all belong to the syntactic
category CSPAction in Figure 11. Table 2 provides a description of the operators in this
category that we use in our model, some of which are omitted in Figure 11. We describe
these in more detail below to support the following discussion of our model.

Action Syntax Description

Skip Skip A simple operator that terminates

Simple Prefix c −→A Simple synchronisation with no data

Prefix c.x −→A Synchronisation with some data x

Input Prefix c?x −→A Synchronisation with a value bound to x

Output Prefix c!x −→A Synchronisation outputting the value of x

External Choice A @ B Offers a choice between two actions A and B

Sequence A ; B Executes A then B in sequence

Parallelism A J nsa | cs | nsb K B Parallelism, synchronising on the channels in c

Interleaving A J nsa | nsb K B Parallelism with no synchronisation between

Iterated Interleaving 9 x : S • A(x) Interleaving of all actions A(x) where x ∈ S

Table 2: Syntax of Circus operators derived from CSP

A simple operator is Skip, which terminates and does nothing else. A prefix c−→A
waits for a communication on the channel c and then proceeds to behave like the action
A. If a channel has a parameter then this must be provided. The parameter can be
included as either an input (c?x −→A), an output (c!x −→A), or added to the channel
name to indicate a specific communication on that channel (c.x −→A). This latter form
is often used in our models to restrict an action to synchronise on a channel only if

18

Program ::= CircusPar∗

CircusPar ::= Par | channel CDecl | channelset N =̂ CSExp | ProcDecl

CDecl ::= SimpleCDecl | SimpleCDecl; CDecl
SimpleCDecl ::= N+ | N+ : Exp | [N+]N+ : Exp | . . .

CSExp ::= {| |} | {|N+ |} | N | CSExp ∪ CSExp | CSExp ∩ CSExp

| CSExp \ CSExp

ProcDecl ::= process N =̂ ProcDef | . . .

ProcDef ::= Decl • ProcDef | Proc . . .

Proc ::= begin PPar∗ state SchemaExp PPar∗ • Action end

. . .

NSExp ::= { } | {N+} | N | NSExp ∪ NSExp | NSExp ∩ NSExp

| NSExp \ NSExp

PPar ::= Par | N =̂ ParAction | nameset N =̂ NSExp

ParAction ::= Action | Decl • ParAction

Action ::= | Command | N | CSPAction . . .

CSPAction ::= Stop | Chaos | Pred & Action | Action ⊓ Action

| Action \ CSExp| ; Decl • Action . . .

Comm ::= N CParameter∗ . . .

CParameter ::= ?N | ?N : Pred | !Exp | .Exp

Command ::= N+ := Exp+ | if GActions fi | var Decl • Action

| val Decl • Action . . .

GActions ::= Pred−→ Action | Pred−→ Action @ GActions

Figure 11: Partial BNF Syntax of Circus

19

it is parametrised by the identifier of the Circus process to which it belongs. A related
operator is sequential composition ; , which connects any two processes, instead of just a
channel communication and a process like the prefix operator −→. Hence A; B executes
the action A until it terminates and then continues on to execute B .

The external choice operator @ allows an action to offer its environment the choice
of two different channel communications. Hence c1 −→ A @ c2 −→ B proceeds to A
if there is a communication on c1 or B if there is a communication on c2. Circus

also contains a simple conditional statement as shown in the definition of the syntactic
category Command in Figure 11. It takes a familiar if. . . then. . . else form. Hence if (x =
TRUE)−→ A 8 (x = FALSE)−→ B fi performs the action A if x = TRUE and the
action B if x = FALSE .

Two actions A and B may be placed in parallel: A J nsa | cs | nsb K B , specifies a
synchronisation set of channels cs over which they both have to agree to communicate,
and name sets describing the variables that each side of the parallelism may alter that
must be disjoint to avoid write conflicts. Hence, in the execution of AJ∅ | {| a, b |} | ∅KB ,
A and B perform their actions in parallel with each other, but they must both agree to
communicate on the channels a and b at the same time; further, the use of the empty
set (∅) indicates that neither A nor B can alter any variables.

5.1.1 SCJ in Circus

A formal model of SCJ Level 1 has been produced [40] to allow the translation of
arbitrary SCJ programs into Circus in order to facilitate analysis. The Circus models
are composed of a model of the infrastructure classes of SCJ – the ‘Framework Model’
– which remains the same and is reused for each translation, and a model of the code
provided by the application – the ‘Application Model’ – which changes for each new
program translated. The Framework Model encapsulates the unchanging aspects of any
SCJ program, whereas the Application Model is generated afresh each time to model a
specific SCJ Level 1 program.

A Circus model of SCJ Level 2 is in development, based on the approach taken by
the Level 1 model; therefore, it has a Framework and an Application component.

The Level 2 model has Circus processes for each of the main infrastructure classes in
SCJ, and each object in the program is represented by its own instance of the relevant
Circus process. Generally speaking, each Circus process retains the name of the SCJ
class it models, suffixed with “FW ” for framework processes and “App” for application
processes.

The methods of each of the objects that we model are represented by Circus actions.
Ordinarily, a call to a method is modelled by two channels: a channel modelling the call
to the method, suffixed by Call ; and a channel modelling the return from the method,
suffixed by Ret . For example, mission sequencers need to know that their current mis-
sion’s initialize() method has completed before continuing. The action modelling
the initialize() method, therefore, starts with a synchronisation on initializeCall and
terminates with a synchronisation on initializeRet . However if, in our model, the caller
of the method does not require that the method returns before it continues, then a call
to that method is modelled by a single channel.

Figure 12 shows the processes that model the SCJ infrastructure interacting within
the Framework Model and some of the communications between the Framework and
Application models. For brevity, omitted communication channels are represented by

20

Framework Processes

SafeletFW
TopLevelMissionSequencerFW MissionFW

SchedulableMissionSequencerFW

ManagedThreadFW

AperiodicEventHandlerFW

start_toplevel_sequencer

PeriodicEventHandlerFW

OneShotEventHandlerFW

start_mission

done_mission

requestTermination

initializeRet

signalTerminationCall

signalTerminationRet

start_mission

done_mission

signalTerminationCall

signalTerminationRet

cleanupSchedulableCall

cleanupSchedulableRet

signalTerminationCall

signalTerminationRet

cleanupSchedulableCall

cleanupSchedulableRet

signalTerminationCall

signalTerminationRet

cleanupSchedulableCall

cleanupSchedulableRet

done_toplevel_sequencer

Application Processes

...

... ...

...

...

...

...

getNextMission Call

getNextMission Ret

cleanup SchedulableCall

cleanup SchedulableRet

cleanupMission Call

cleanupMission Ret

Figure 12: Level 2 Model Structure

ellipses, the three types of event handlers are represented by the single component at
the bottom right of the figure, and all application processes are represented by the single
component shown at the top of the figure. Because a mission sequencer can be used
in two contexts at Level 2 – both as a mission sequencer at the top of the program
hierarchy and as a schedulable object nested inside a mission – this class is modelled by
two processes: one for the top-level mission sequencer, TopLevelMissionSequencerFW ;
and one for a schedulable mission sequencer, SchedulableMissionSequencerFW . This
simplifies both processes because they each only have to be involved in communications
relevant to their context. The MissionFW and the processes representing the schedu-
lable objects may have multiple instances in one model. Each of the SCJ methods that
we model is represented by a CSP action in the relevant Circus process.

5.2 Model of the Current Termination Protocol

The current termination protocol requires very complex models of the mission sequencer
process. This holds for both the TopLevelMissionSequencerFW and the SchedulableMissionSequencerFW .
Complexity arises because mission sequencers may be terminated at arbitrary times dur-
ing their execution. In this section we describe our model of the protocol and explain
the source of its complexity.

5.2.1 Top Level Mission Sequencer

The TopLevelMissionSequencerFW process has one parameter, sequencer , which is the
identifier of this mission sequencer process, and two state components: currentMission,
which holds the identifier of the mission this sequencer is currently executing; and
terminating , which is a boolean value that records if this mission sequencer has been
asked to terminate. The GetNextMission action models the getNextMission() method

21

and is shown below.

GetNextMission =̂
getNextMissionCall . sequencer−→
getNextMissionRet . sequencer ?next−→
currentMission := next ;
StartMission;
if terminating = FALSE −→

GetNextMission
8 terminating = TRUE −→

Skip

It communicates with the application model using the channels getNextMissionCall and
getNextMissionRet to get the identifier of the next mission that this mission sequencer
should execute. This identifier is stored in the variable currentMission. Then the
StartMission action is called; it uses the start mission channel to start the current
mission. This action is defined as follows.

StartMission =̂
if currentMission 6= nullMissionId −→



start mission . currentMission−→
initializeRet . currentMission−→


RequestSequenceTermination
J{terminating} | {| end termination |} | ∅K(

done mission . currentMission−→
end termination . sequencer −→ Skip

)







8 currentMission = nullMissionId −→
terminating := TRUE ; Skip

fi

Once the current mission enters its execution phase (indicated by the communication on
the initializeRet channel) the RequestSequenceTermination action is offered in parallel
with a communication on the done mission channel, which is used by the current mission
to indicate that it has terminated.

The parallelism here specifies that RequestSequenceTermination and the communi-
cations in the brackets below the parallel operator synchronise on end termination, that
RequestSequenceTermination alters the terminating variable, and the behaviours below
the parallel operator do not alter any variables.

Once a communication on done mission occurs, StartMission waits for the action
RequestSequenceTermination to be ready to engage in end termination; this ends both
sides of the parallelism and control returns to theGetNextMission action. GetNextMission
then checks the value of the variable terminating , which is set

in the RequestSequenceTermination action shown in Section 5.2.3, to determine
whether it should recurse or exit.

5.2.2 Schedulable Mission Sequencer

The SchedulableMissionSequencerFW process represents a mission sequencer nested
within a mission; it is slightly more complicated than the TopLevelMissionSequencerFW .

22

It has a sequencer parameter and a currentMission state component, like the top-
level mission sequencer process. Instead of terminating it has two state components:
terminatingAbove, which indicates if this mission sequencer’s controlling mission has
asked it to terminate, and terminatingBelow , which indicates if this mission sequencer’s
current mission (or one of its managed schedulables) has asked it to terminate. Two
variables are required because we have to treat the requests for termination differently,
depending on their source. With two variables, we can model the different protocols
separately.

Here, the GetNextMission action behaves identically to that used in the process
TopLevelMissionSequencerFW (Section 5.2.1) aside from the conditional statement be-
low, which checks both terminatingAbove and terminatingBelow to handle the possibility
of the nested mission sequencer being asked to terminate from above or below itself in
the program hierarchy.

if terminatingAbove = FALSE ∧ terminatingBelow = FALSE −→
GetNextMission

8 terminatingAbove = TRUE ∨ terminatingBelow = TRUE −→
Skip

The StartMission action of the SchedulableMissionSequencerFW , shown below, con-
tains a parallelism of three actions that offer the choice of waiting for its control-
ling mission to signal its termination (handled by the SignalTermination action), the
RequestSequenceTermination action (which we discuss in Section 5.2.3), and waiting for
its current mission to communicate its termination on done mission.

StartMission =̂
if currentMission 6= nullMissionId−→


start mission . currentMission−→
initializeRet . currentMission−→





SignalTermination
J{terminatingAbove} | {| end terminations |} | terminatingBelowK
RequestSequenceTermination




J{terminatingAbove, terminatingBelow} | {| end terminations |} | ∅K


done mission . currentMission−→
end terminations . sequencer−→
Skip










8currentMission = nullMissionId−→
terminating := TRUE

fi

The SignalTermination action below handles the interaction with the controlling mission
of this nested mission sequencer when it indicates that this mission sequencer should

23

terminate.

SignalTermination =̂


(
end terminations . sequencer −→ Skip

)

@


signalTerminationCall . sequencer−→
terminatingAbove := TRUE ;
requestTermination . currentMission−→
signalTerminationRet . sequencer−→
Skip




; end terminations . sequencer−→
Skip




The SignalTermination action handles the nested mission sequencer being termi-
nated from above and the done mission communication handles the nested mission se-
quencer’s current mission telling it to terminate from below. The RequestSequenceTermination
action handles the nested mission sequencer being told to terminate its sequence of mis-
sions by a managed schedule. We discuss this action next.

5.2.3 Request Sequence Termination

The RequestSequenceTermination action, shown below, waits for a communication on
the requestSequenceTermination channel. After this, the value of terminating is set
to TRUE and the mission is queried to see if it is active and has not been asked to
terminate already – using the channels terminationPending and missionActive. If these
conditions are met, the action communicates on requestTermination, which tells the
current mission to begin terminating. Then RequestSequenceTermination recurses, so
that subsequent calls to requestSequenceTermination() in the SCJ application can
be handled, and so that the action can be terminated using end termination.

RequestSequenceTermination =̂





requestSequenceTermination . sequencer−→
terminating := TRUE ;
terminationPending . currentMission ?missionTerminating−→
missionActive . currentMission ?missionIsActive−→


if missionTerminating = FALSE ∧ missionIsActive = TRUE −→
requestTermination . currentMission−→
Skip

8missionTerminating = TRUE ∨ missionIsActive = FALSE −→
Skip

fi




; RequestSequenceTermination




@(
end termination . sequencer −→ Skip

)




24

In the SchedulableMissionSequencerFW process, the RequestSequenceTermination ac-
tion differs only in that, where terminating is set to TRUE , the variable terminatingBelow
is altered instead. This is to handle the schedulable mission sequencer being terminated
from a schedulable that is above it in the program hierarchy using SignalTermination, or
below it, using RequestSequenceTermination. This can be seen in the excerpts presented
in Section 5.2.2 where SignalTermination sets terminatingAbove and GetNextMission
checks both of these variables.

5.2.4 Clean Up

Our model of a mission uses three actions to model its three phases of operation: initial-
isation, execution, and clean up. As soon as one phase ends, the mission transitions to
the next phase. Hence, the mission’s Cleanup action begins directly after its Execute ac-
tion has finished. First, the CleanupSchedulables action is called, which iterates over the
set schedulables and executes the cleanUp() application method using synchronisations
on the cleanupSchedulableCall channel followed by the cleanupSchedulableRet channel
for each schedulable using its identifier s as a parameter. The interleave operator (9) is
used to interleave all of the clean up phases.

CleanupSchedulables =̂

9 s : schedulables •
cleanupSchedulableCall . s−→
cleanupSchedulableRet . s −→ Skip

Once the clean up of each managed schedulable registered to this mission has com-
pleted, the Cleanup action executes the cleanUp() method of the mission itself using
the cleanupMissionCall and cleanupMissionRet channels. Afterwards, the Finish action
is executed; it informs the mission’s application process to terminate (end mission app)
and then uses done mission to inform the mission’s controlling mission sequencer that
is has finished.

Finish =̂
end mission app .mission−→
done mission .mission −→ Skip

This model captures the termination protocol as it currently stands. While the model
is tractable, we argue that the same functionality can be achieved with a simpler ter-
mination protocol. In Section 5.3 we describe our model of the termination protocol
including our proposed changes.

5.3 Model of Proposed Changes to Termination Protocol

This section describes a new model for the SCJ termination protocol incorporating
our proposed changes. As explained in Section 4.4, we propose the removal of the
requestSequenceTermination() method to prevent mission sequencers from being ter-
minated by arbitrary schedulables. To enforce an organised termination of mission se-
quencers we propose that the mission.cleanUp() method return a boolean value which

25

is passed to the mission sequencer to determine if the mission sequencer should continue
or terminate.

In adapting our model to our proposed protocol, the state of both flavours of mission
sequencer process have been altered. In the TopLevelMissionSequencerFW process,
terminating has been replaced with continue. In the SchedulableMissionSequencerFW
process, both the terminatingAbove and terminatingBelow variables have been replaced
with continueAbove and continueBelow . These variables indicate to the sequencer that
it should continue executing its sequence of missions (if they are both TRUE).

If continue is FALSE , or either continueAbove or continueBelow is FALSE in the case
of the SchedulableMissionSequencerFW , then the mission sequencer does not execute
any more missions. In the SchedulableMissionSequencerFW the variable ContinueBelow
holds the return value from the current mission that is communicated to the mis-
sion sequencer at the end of the cleanup phase on the done mission channel – in the
TopLevelMissionSequencerFW process this value is held in the continue variable. The
SchedulableMissionSequencerFW ’s continueAbove variable is only changed during the
SignalTermination action, which handles the mission sequencer’s controlling mission
requesting it to terminate.

Removing the RequestSequenceTermination action is a clear simplification of the
model; the requestSequenceTermination channel is no longer needed and is removed from
the model entirely. Besides this, the actions (in the model of the current termination
protocol) that use the RequestSequenceTermination action are also simplified in our new
model. We give more details of these simplifications in the following three sections.

5.3.1 Top Level Mission Sequencer

The StartMission action in the TopLevelMissionSequencerFW process is simplified in
comparison to the previous version in Section 5.2.1, as can be seen from the excerpt
presented below.

StartMission =̂
if currentMission! = nullMissionId −→


start mission . currentMission−→
done mission . currentMission ? continueReturn−→
continue := continueReturn ; Skip




8 currentMission = nullMissionId −→
continue := FALSE ; Skip

fi

This action simply starts the current mission using the start mission channel and then
waits for it to terminate and communicate on the done mission channel.

5.3.2 Schedulable Mission Sequencer

The StartMission action in the SchedulableMissionSequencerFW process (which models
a nested mission sequencer) is shown below. It is necessarily more complex than that of
the TopLevelMissionSequencerFW process, but still simpler than the previous version
in Section 5.2.2.

26

StartMission =̂
if currentMission! = nullMissionId −→



start mission . currentMission−→
initializeRet . currentMission−→


SignalTermination
J∅ | {| end terminations |} | {continueBelow}K


done mission . currentMission ? continueReturn−→
continueBelow := continueReturn;
end terminations −→ Skip










8 currentMission = nullMissionId −→
continueBelow := FALSE ;
Skip

fi

After the mission has been initialised (indicated by the initializeRet channel) this ac-
tion proceeds to a parallelism that offers SignalTermination to handle this mission se-
quencer’s controlling mission being terminated and a communication on done mission
that indicates that the mission sequencer’s current mission has terminated.

5.3.3 Clean Up

To model Mission.cleanUp(), which now returns a boolean value, the MissionFW
process’s cleanupMissionRet channel takes a boolean parameter.

Cleanup =̂
CleanupSchedulables;
cleanupMissionCall .mission−→
cleanupMissionRet .mission ? continueSequencer−→
Finish(continueSequencer)

This value is communicated to the MissionSequencer process via the done mission
channel. This channel is the means of communication that allows a mission to inform
its controlling mission sequencer of its completion, and, as revised, also communicates
continuation information.

Finish =̂
end mission app .mission−→
done mission .mission ? continueSequencer−→
Skip

When the MissionSequencer receives the boolean value from done mission, it stores
it in the variable continue, which is checked by the GetNextMission action after the
StartMission action finishes. This variable is used to decide whether theMissionSequencer
should continue its execution and get another mission or terminate. This minor addition
to the model presents little extra complexity, while supporting our proposal to simplify
the termination protocol significantly.

Section 5.4 compares the two termination protocols in more detail, using our formal
models.

27

5.4 Comparison of Termination Protocols

The current termination protocol allows any schedulable object to call the method
requestSequenceTermination() (the Circus action for which is presented in Sect. 5.2.3)
of any mission sequencer in the program, regardless of its place in the hierarchy. The
mission sequencer that receives this call informs its current mission to terminate. This is
captured in the excerpt in Sect. 5.2.3 by the communication on the requestTermination
channel, which indicates to the mission that is should terminate. The mission, once it
is instructed to terminate, passes this on to its schedulables – at least one of which may
have called the requestSequenceTermination() method of the mission sequencer in
the first place. This creates a needless cycle of termination requests.

In the new termination protocol that we propose, the instigation of termination
still begins in a schedulable object, but this request is only passed up one tier at a
time. For example, if a reason to terminate the application is detected by a schedulable
object, this is passed to its controlling mission – by setting some flag in the mission for
example. Once it has terminated, the mission communicates this request for termination
to the mission sequencer controlling it, during the mission’s clean up phase. This is
captured in our models by the communication on the done mission channel of the
boolean parameter continueSequencer to the MissionSequencer process that controls
the mission. In this way, the request for termination passes up the program hierarchy,
with each tier terminating before the next tier begins handling its termination.

This prevents the situation present in the current protocol in which a schedulable
object that initially discovers the need for termination is requested to terminate later
when the termination request cascades back down from the mission sequencer it had
called requestSequenceTermination() on initially. Our new approach does create a
small amount of programmer overhead, since the programmer must ensure that schedu-
lable objects can inform their controlling mission that it should return false from its
cleanUp() method. A simple way to remove this small overhead is for the default
implementation of Mission.cleanUp() to return false.

We note that even in the new termination protocol, the schedulable object that
discovers the need for termination triggers the termination of its controlling mission
and then is asked to terminate itself. To avoid this, the schedulable objects can be pro-
grammed to check for the termination of their controlling mission periodically and begin
to shut themselves down; this is in fact the only way to terminate a ManagedThread.
Another solution is to have the schedulable that discovers the need for termination to
terminate itself after it has triggered the termination of its controlling mission.

Our changes have a subtle effect on the termination order of the objects in the
program. As an example, we consider a program with two nested subsystems. With
the current protocol, a schedulable object within one of them may call the method
requestSequenceTermination() on the top-level mission sequencer and begin a cascade
of termination requests that leads to the nested sub-systems terminating in parallel. In
the same situation, using the new termination protocol, the termination requests must
pass up the hierarchy from the schedulable object that initiates termination to the top-
level mission sequencer. This means that the subsystem that contains the schedulable
object that requested termination has to terminate before the request for termination
passes to the top-level mission and the termination of the other subsystem – and any
schedulable objects started by the top-level mission – begins.

In summary, the requestSequenceTermination() method complicates the SCJ ter-
mination protocol by allowing arbitrary termination of mission sequencers. Our models,
while tractable, are complex when modelling this feature of the language at Level 2.

28

With our proposed changes incorporated, our models become much simpler and are
easier to analyse. Our proposed changes to the SCJ termination protocol represent a
positive simplification of the language while retaining the ability to terminate a mission
sequencer from the application.

In order to show how far our proposed changes simplify the model of SCJ, we have
constructed two specifications based on a simple example program. This program con-
tains a single mission, controlling two managed threads that share a one-place buffer in
the mission’s memory. One specification uses the model of the current framework and
the other specification uses the model of the new framework, with our proposed changes.
Both of these specifications have been translated to CSPm, the machine-readable ver-
sion of CSP, in order to utilise the Failures Divergences Refinement checker (FDR) [17]
to model check the specifications. Because CSP does not have a notion of state in the
same way that Circus does, the CSP versions of our models use state processes to model
the reading of and assignments to variables that Circus allows, which means that the
CSP models have more states than the Circus versions.

The results obtained are from running a check for divergence-freedom while hiding
any channels relating to the state processes. The model of the current framework shows
4,539,021 states, whereas the model of the new framework shows only 249,869 states.
Our proposed changes decrease the number of states in the model by 94.5% in compar-
ison to the original model. Such a decrease in the number of states in our model shows
a simplification that is useful, both for further modelling efforts and for programmer
understanding of the SCJ paradigm.

6 Related Work

There have been previous efforts to provide safe language subsets for safety-critical
systems, similar to the intent of Safety-Critical Java (SCJ). MISRA C [26] is a restricted
subset of standard C that originated in the automotive industry, but now now provides
guidelines for the use of C in other critical systems.MISRA C has gained wide popularity
in aircraft, medical systems, and other critical software domains [18].

Several subsets of Ada have been developed since the language was first defined.
One of the most widely used is SPARK Ada, which highly restricts the amount of
language features available to the programmer. The intent is to reduce the risk of failures
resulting from errors in programs. This is balanced by ensuring that the language has
the right level of abstraction to provide the expressive power needed to hide the details
of implementations. SPARK also acknowledges the desire for safety-critical programs
to be verifiable and restricts the language with this objective [2]. SPARK has become
one of the most popular choices for high-integrity real-time systems.

The Ravenscar [13] profile is another subset of Ada. It has a similar level of com-
plexity to SCJ Level 1. It aims to aid program reliability – defined as predictable and
consistent functioning. The control flow of a program is divided into two phases: initial-
isation and execution. All concurrent entities are allocated in the initialisation phase
and they are started at the beginning of the execution phase. The concurrent enti-
ties in a Ravenscar program may only be periodic or sporadic; aperiodic entities are
not supported. These concurrent entities are scheduled by a pre-emptive priority-based
scheduler.

Drawing on the restrictions of the Ravenscar profile, the Ravenscar-Java profile [21]
was created to improve the reliability of Java-based systems using the Real-Time Spec-
ification for Java (RTSJ). The RTSJ is the basis for SCJ Programs written in the
Ravenscar-Java profile conform to the RTSJ standard, with extra restrictions to ensure

29

the program adheres to the Ravenscar rules. Other Java profiles have been proposed:
for example that by Schoeberl et al. [33], who also considers the possibility of missions
as application modes of operations [32].

As far as we are aware, other than the work by Hunt and Nilsen [20], there has been
no previous work that has considered how components should be implemented cleanly
in SCJ. There have been several approaches suggested for the RTSJ – see [29] as an
example and for a review of related approaches. Most of these projects either focus on
the functional aspects of component declaration and system composition, or they focus
on the use of the RTSJ’s memory areas.

There have been attempts to integrate the OSGi Java-based framework [28] with
the RTSJ, but again little attention has been given to the composition of timing con-
straints. The notable exception is the work by Richardson and Wellings [31], which
considers real-time admission control of components within a Real-Time OSGi frame-
work. They recognise the limitation of the RTSJ’s processing groups. To achieve the
same effect as hierarchical scheduling of execution-time servers they use a combination
of processing groups, priority scaling and periodic timers. Essentially each server’s pri-
ority is represented by a range of the RTSJ’s priorities. A component allocated to a
server must use this range when assigning priorities to its schedulable objects. The cost
overrun handler that can be assigned to a processing group changes the priorities of
its associated schedulable objects to a background priority. A separate periodic event
handler is created whose release coincides with the replenishment period. This resets the
schedulable objects to their original priorities. Effectively, this approach can be used to
implement a sporadic-server. It forms the basis of the approach that we have proposed
in Section 4.3 for SCJ.

Other formalisations of languages for safety-critical systems exist. Blazy and Leroy [3]
present a formal semantics of the C subset, Clight. Ellison and Rosu [14] present an
executable formal semantics of C, which allows model checking of the translated C pro-
gram. Tews et al. [35] provide a formal semantics of a subset of C++. This semantics
is embedded in the Prototype Verification System (PVS) prover and a prototype trans-
lator tool allows the translation of program code to the PVS semantics. Automatic
translation from safety-critical programming languages is part of our agenda for future
work.

The memory model of SCJ is based upon that of the RTSJ. Engel has produced a
formalisation of a restricted version of the RTSJ memory model [15, 16] to prove the
absence of runtime errors caused by misuse of the memory model. This formalisation
is implemented with the KeY theorem prover [1]. The restricted memory model Engel
considers is similar to, but much less restrictive than, that used in SCJ. This indicates
that Engel’s approach may be capable of being adapted to model the SCJ memory
model. Our model does not cover the memory model of SCJ, which is formalised in [9].

Brooke et al [4] use CSP – one of the components of Circus – to model the semantics
of the real-time extension to Eiffel, SCOOP. This follows a similar direction to our work,
but since SCJ is a more restricted language, the CSP model in [4] is more complex due
to the generality it supports.

Kalibera et al [22] present a technique to allow the model checking of SCJ Level 0 or 1
programs. They extend the Java PathFinder tool with a scheduling algorithm that allows
it to explore the possible schedulings of an SCJ program. Their approach is concerned
with scheduling errors, assertion failures, and scheduling dependant memory access er-
rors. While that work actually focusses on SCJ, our approach is more general and allows
the checking of a wider range of program properties.

30

7 Conclusions

SCJ Level 2 has received little public scrutiny. Most papers address SCJ either Level 0 or 1.
Whilst it is clear from the SCJ language specification what constitutes a Level 2 ap-
plication (in terms of its use of the defined API), it is far from clear the occasions on
which Level 2 should be used. This paper has explored some of the scenarios in which
applications cannot be easily implemented at Level 1 and, therefore, Level 2 support is
required. In doing so, we have found no redundant features of Level 2. For each feature
(only available at Level 2) we have presented good examples that require use of that
feature.

Our studies also reveal some deficiencies in the features provided at Level 2. The
lack of convenient support for terminating managed threads is not controversial and is
probably just an omission in the current SCJ specification.

It could be argued that the inability to set a deadline on the transition between
missions is not necessary for safety-critical systems as static analysis should have deter-
mined whether deadlines can be met. However, we note that SCJ does support detection
of deadline misses on managed schedulable objects at Levels 1 and 2.

The need to enrich the mission sequencer concept to support composibility of timing
constraints is, perhaps, very controversial as it requires the monitoring of CPU-time
usage. Although this is supported by the POSIX standard via sporadic process servers,
we are not aware of any implementation of the approach when the threads within the
process can execute in parallel.

SCJ support at Level 2 needs to be more complex than at Level 0 or Level 1. The
protocol that supports the termination of missions and their sequencers is more complex
than is necessary and allows programs to break through the mission hierarchy in an
uncontrolled fashion. We have proposed simplifications of the protocol that reinforces
the hierarchical nesting of mission sequencers.

8 Acknowledgements

This research reported in this paper is funded by the UK EPSRC under grant EP/H017461/1.
Wellings is a member of the Java Community Process JSR 302 Expert Group, which is
tasked with developing the Safety-Critical Java Specification. We would like to thank
the other members of the Expert Group for their contributions and feedback on some of
the ideas expressed in this paper. No new primary data were created during this study.

References

[1] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager, and P. Schmitt. The Key Tool. Software
& Systems Modeling, 4(1):32–54, 2005.

[2] J. Barnes. High Integrity Software: The SPARK Approach to Safety and Security.
Addison-Wesley Longman Publishing Co., Inc., 2003.

[3] S. Blazy and X. Leroy. Mechanized semantics for the clight subset of the c language.
Journal of Automated Reasoning, 43(3):263–288, 2009.

[4] P. J. Brooke, R. F. Paige, and J. L. Jacob. A csp model of eiffel’s scoop. Formal
Aspects of Computing, 19(4):487–512, 2007.

31

[5] A. Burmyakov, E. Bini, and E. Tovar. The generalized multiprocessor periodic
resource interface model for hierarchical multiprocessor scheduling. In Proceedings
of the 20th International Conference on Real-Time and Network Systems, pages
131–139. ACM, 2012.

[6] A. Burns and A. Wellings. Processing group parameters in the Real-time Specifi-
cation for Java. In On The Move to Meaningful Internet Systems 2003: OTM 2003
Workshops, pages 360–370. Springer, 2003.

[7] A. Burns and A. J. Wellings. Real-time systems and programming languages: Ada
95, real-time Java, and real-time POSIX. Addison Wesley, 2009.

[8] A. Cavalcanti, A. Sampaio, and J. Woodcock. A refinement strategy for Circus.
Formal Aspects of Computing, 15(2-3):146–181, 2003.

[9] A. L. C. Cavalcanti, A. Wellings, and J. C. P. Woodcock. The Safety-Critical Java
memory model formalised. Formal Aspects of Computing, 25(1):37–57, 2013.

[10] R. Davis and A. Burns. An investigation into server parameter selection for hier-
archical fixed priority pre-emptive systems. In 16th International Conference on
Real-Time and Network Systems (RTNS 2008), 2008.

[11] R. I. Davis and A. Burns. Hierarchical fixed priority pre-emptive scheduling. In
Real-Time Systems Symposium, 2005. RTSS 2005. 26th IEEE International, pages
10–pp. IEEE, 2005.

[12] R. I. Davis and A. Burns. A survey of hard real-time scheduling for multiprocessor
systems. ACM Computing Surveys (CSUR), 43(4):35, 2011.

[13] B. Dobbing and A. Burns. The Ravenscar Ttasking Profile for High Integrity Real-
Time Programs. Ada Lett., XVIII(6):1–6, 1998.

[14] C. Ellison and G. Rosu. An executable formal semantics of c with applications. In
Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’12, pages 533–544, New York, NY, USA, 2012.
ACM.

[15] C. Engel. Deductive verification of rtsj programs. In Proceedings of the 2nd Junior
Researcher Workshop on Real-Time Computing (JRWRTC 2008), 2008.

[16] C. Engel. Deductive verification of safety-critical Java programs. PhD thesis, Karl-
sruhe Institute of Technology, 2009.

[17] T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A. Roscoe. Failures Diver-
gences Refinement (FDR) Version 3, 2013.

[18] L. Hatton. Safer language subsets: an overview and a case history, MISRA C.
Information and Software Technology, 46(7):465 – 472, 2004.

[19] C. A. R. Hoare. Communicating Sequential Processes. Commun. ACM, 21(8):666–
677, Aug. 1978.

[20] J. Hunt and K. Nilsen. Safety-Critical Java: The mission approach. In M. T.
Higuera-Toledano and A. J. Wellings, editors, Distributed, Embedded and Real-time
Java Systems, pages 199–233. Springer US, 2012.

32

[21] J Kwon. Ravenscar-Java: Java Technology for High Integrity Real-Time Systems.
PhD thesis, The University of York, 2006.

[22] T. Kalibera, P. Parizek, M. Malohlava, and M. Schoeberl. Exhaustive testing of
safety critical java. In Proceedings of the 8th International Workshop on Java
Technologies for Real-Time and Embedded Systems, JTRES ’10, pages 164–174,
New York, NY, USA, 2010. ACM.

[23] C. D. Locke. Software architecture for hard real-time applications: cyclic executives
vs. fixed priority executives. Real-Time Systems, 4(1):37–53, 1992.

[24] D. Locke, B. S. Andersen, B. Brosgol, M. Fulton, T. Henties, J. J. Hunt, J. O.
Nielsen, K. Nilsen, M. Schoeberl, J. Tokar, J. Vitek, and A. Wellings. Safety
Critical Java Specification, Version 0.95. Technical report, JSR 302, 6 December
2012.

[25] C. Morgan. Programming from Specifications. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1990.

[26] Motor Industry Software Reliability Association. MISRA C:2012: Guidelines for
the Use of the C Language in Critical Systems. Technical report, Motor Industry
Research Association, 2013.

[27] M. Oliveira, A. Cavalcanti, and J. Woodcock. A UTP semantics for circus. Form.
Asp. Comput., 21(1-2):3–32, 4 Dec. 2007.

[28] OSGi Alliance. Osgi service platform core specification, 2014.
http://www.osgi.org/Specifications/HomePage.

[29] A. Plsek, F. Loiret, and M. Malohlava. Component-oriented development for Real-
Time Java. In M. T. Higuera-Toledano and A. J. Wellings, editors, Distributed,
Embedded and Real-time Java Systems, pages 265–292. Springer US, 2012.

[30] J. Real and A. Crespo. Mode change protocols for real-time systems: A survey and
a new proposal. Real-Time Systems, 26(2):161–197, 2004.

[31] T. Richardson and A. Wellings. RT-OSGi: Integrating the OSGi framework
with the Real-Time Specification for Java. In M. T. Higuera-Toledano and A. J.
Wellings, editors, Distributed, Embedded and Real-time Java Systems, pages 293–
322. Springer US, 2012.

[32] M. Schoeberl. Mission modes for safety critical Java. In Proceedings of the 5th
IFIP WG 10.2 international conference on Software technologies for embedded and
ubiquitous systems, SEUS’07, pages 105–113, Berlin, Heidelberg, 2007. Springer-
Verlag.

[33] M. Schoeberl, H. Søndergaard, B. Thomsen, and A. P. Ravn. A Profile for Safety
Critical Java. In ISORC, pages 94–101. IEEE Computer Society, 2007.

[34] J. M. Spivey. The Z notation: a reference manual. Prentice Hall International
(UK) Ltd., 1992.

[35] H. Tews, T. Weber, and M. Völp. A formal model of memory peculiarities for
the verification of low-level operating-system code. Electronic Notes in Theoretical
Computer Science, 217:79–96, 2008.

33

[36] K. W. Tindell, A. Burns, and A. J. Wellings. Mode changes in priority preemptively
scheduled systems. In Real-Time Systems Symposium, 1992, pages 100–109. IEEE,
1992.

[37] M. Tofte and J.-P. Talpin. Region-based memory management. Information and
Computation, 132(2):109–176, 1997.

[38] A. Wellings. Concurrent and Real-Time Programming in Java. John Wiley
& Sons, 2004.

[39] A. Wellings and M. Kim. Processing group parameters in the Real-time Specifica-
tion for Java. In Proceedings of the 6th international workshop on Java technologies
for real-time and embedded systems, pages 3–9. ACM, 2008.

[40] F. Zeyda, L. Lalkhumsanga, A. Cavalcanti, and A. Wellings. Circus Models for
Safety-Critical Java Programs. The Computer Journal, page bxt060, 2013.

34

	Introduction
	Nested Mission Sequencers
	The Multiple-Mode Application Pattern
	The Independently Developed Subsystem Pattern

	Using Managed Threads
	Non-Standard Release Profiles
	Suspension-based Waiting for IO where Busy-Waiting is Inappropriate
	Encapsulation of State Information

	Revisiting the SCJ Level 2 Support
	Managed Thread Termination
	Deadlines on Mission Sequencers
	Support for Compositional Timing Analysis
	CPU Budgets
	Simulating Multi-Level Priorities
	Incorporation into SCJ

	Mission Sequencer Termination

	Formalisation of Level 2
	Circus Introduction
	SCJ in Circus

	Model of the Current Termination Protocol
	Top Level Mission Sequencer
	Schedulable Mission Sequencer
	Request Sequence Termination
	Clean Up

	Model of Proposed Changes to Termination Protocol
	Top Level Mission Sequencer
	Schedulable Mission Sequencer
	Clean Up

	Comparison of Termination Protocols

	Related Work
	Conclusions
	Acknowledgements

