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Abstract—Recent advances in the type and variety of sensing technologies have led to an extraordinary growth in the volume of data

being produced, and led to a number of streaming applications that make use of this data. Sensors typically monitor environmental or

physical phenomenon at pre-defined time intervals or triggered by user defined events. Understanding how such streaming content

(the raw data or events) can be processed within a time threshold remains an important research challenge. We investigate how a

cloud-based computational infrastructure can autonomically respond to such streaming content, offering Quality of Service guarantees.

In particular, we contextualise our approach using an Electric Vehicles (EVs) charging scenario, where such vehicles need to connect

to the electrical grid to charge their batteries. There has been an emerging interest in EV aggregators (primarily intermediate brokers

able to estimate aggregate charging demand for a collection of EVs) to coordinate the charging process. We consider predicting EV

charging demand as a potential workload with execution time constraints. We assume that an EV aggregator manages a number of

geographic areas, and a pool of computational resources of a cloud computing cluster to support scheduling of EV charging. The

objective is to ensure that there is enough computational capacity to satisfy the requirements for managing EV battery charging

requests within specific time constraints.

Index Terms—Elastic resource provisioning, autonomic systems, feedback control.

✦

1 INTRODUCTION

With the technological development in sensing technologies,
there has been an increase in the volume (and velocity)
of data becoming available and in the number of indus-
trial and commercial applications utilizing such data. These
sensors continuously monitor environmental or physical
phenomenon, such as humidity, pressure, temperature, and
energy consumption, and they stream their raw data mea-
surements to a main location through the network for com-
putation and analysis. Depending on the complexity of the
sensors or instruments involved, data rates and generation
timelines can vary significantly across these different types
of infrastructures. Often, applications need to analyze such
data in a streaming fashion within a time threshold (dead-
line). Based on their latency requirements, these streaming
applications can be classified in two main types, namely low
latency and medium to high latency: (i) Low latency appli-
cations require response times in the order of milliseconds
and typically handle hundreds or thousands of events per
second, where each event is processing using a simple func-
tion – e.g. in financial streams, intrusion detection, fraud
detection. In contrast, (ii) medium to high latency applications
have response times in the order of seconds, minutes, or
even hours, their workloads are typically coarse-grained

and more complex, hence requiring more computational
resources, often executed as batch processes. We can find
examples of these in areas such as surveillance and moni-
toring [1], smart-traffic management, energy management in
smart building [2], geo-spatial imaging processing [3], and
data analysis of electricity meter data to support demand
estimation & prediction [4]. When a provider manages a
number of such applications with a shared, elastic com-
puting infrastructure, understanding how such streaming
content can be processed within some time threshold, so that
the number of computational resources can be minimised
remains an important challenge. More specifically, a slack
can be identified, when the (estimated) time required for
processing is less than the processing time required in a
Service Level Agreement (SLA) – and may be defined as the
difference between the deadline (established in the Service
Level Agreement (SLA)) and the actual processing time.
Data elements from different applications can be buffered
by the provider for the given time slack, before starting
the processing to reduce resource usage overheads (such as
reducing storage space at the destination) Our focus in this
paper is on medium-to-high latency applications. Specifi-
cally, we focus on battery charging of Electric Vehicles (EVs)
as our driving leitmotiv scenario. Nevertheless, we believe
that our findings can be generalized and applied to many
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contexts that share similar requirements and characteristics.
Nowadays, there is a growing market share of EVs over

conventional Internal Combustion Engine (ICE) powered
vehicles, due to political, socio-economical and ecological
factors. According to the UK Committee on Climate Change,
the British Government should aim for 1.7 million EVs on
British roads by 2025 [5]. In such a context, EVs will have
to be connected to power networks in order to re-charge
their batteries. In the future development of Smart Grids,
some of these applications will be managed by new market
players along with the utility companies and Distributed
Network Operators (DNOs). One example is the EV ag-
gregator, which will be acting as a broker between utilities
and EV customers. Aggregators are anticipated to purchase
electricity from the power market, and to sell it to the
EV customers for re-charging their batteries. This activity
involves a number of energy management activities such
as planning & scheduling of charging, day-ahead demand
forecast, estimating potential “triad” periods, or real-time
monitoring and control of energy consumption. KiwiPower1

is an example of an aggregator company currently operating
in the UK.

According to recent studies [6], by 2030, in case the
charging of EV batteries is left uncontrolled, a significant
increase in the electricity demand peaks is to be expected [6].
A controlled charging process of EVs involves gathering all
the charging requests from a particular area of the electricity
network, and establishing a charging schedule such that
system power losses are minimized and electrical and user
constraints are met. The existing proposals for controlled EV
battery charging can be classified into two main approaches:
(i) centralized approaches [7], [8], [9], which accomplish all the
computations required for a given region at a central node.
However, due to the size of data from smart meters and
subsequent processing required, these approaches are not
feasible for real-time control; (ii) distributed approaches [10],
[11], [12], that accomplish computations at different granu-
larities (e.g. at the EV level, or at a geographic area level) in
order to alleviate the workload of the coordinator node. As
reported in [13], centralised approaches are not effective for
real-time control at large-scales, due to the large volume of
smart metering data and processing required. On the other
hand, to the best of our knowledge, the existing distributed
approaches have ignored computational resource management,
i.e., the dynamic (de-) allocation of computational resources
as charging demand varies to ensure that estimates can be
calculated within a particular time interval. In a dynamically
chaging context, one-off, statically generated estimates are
likely to be inaccurate and unuseful.

In this paper, we propose an approach that combines
cloud computing and queueing theory to manage the provi-
sioning of computational resources to meet the requirements
of EV aggregators in an efficient and automated manner.
We achieve this by predicting demand when the density of
EVs and the data they generate grow (in an unpredictable
manner). Specifically, we consider the scenario where an EV
aggregator is in charge of a large number of areas and can
access a pool of computational resources. In general terms,
charging requests for each area arrive at the EV aggregator

1. http://kiwipower.co.uk

which, in turn, has to compute charging schedules for each
area periodically. The overall time threshold (deadline) for
each schedule lasts for a whole electrical control period
(until the next requests for an area arrive) and, typically,
the processing time for undertaking scheduling is less than
this overall control period. Our objective is to optimize the
number of computational resources (e.g., number of Virtual
Machines (VMs) within a cloud system) allocated, so that
data elements are processed, on average, within the pre-
specified time threshold, using a minimal number of VMs.
For such an objective, the data elements of a given data stream
are buffered at a queue for the maximum time (time slack)
that, together with the processing time, does not violate the
deadline on average.

Our approach uses reactive and proactive/predictive
controllers to achieve dynamic and elastic management of
computational resources to enable efficient and timely cal-
culation of such a schedule. Based on feedback control and
making use of system properties derived from queueing the-
ory, the reactive controller dynamically adapts the number
of VMs to meet the SLA for an aggregator. Since, in practice,
information about waiting time of data elements may not
always be available or may be very difficult to obtain, we
decided to make use of Little’s law (LL) for deriving waiting
time from arrival rate and queue (buffer) size. In other
words, the controller reacts by (de-)allocating resources on
changes of the queue size, leading to an indirect control of
the time slack. It should also be noted that although LL
has been widely studied for infinite times and stationary
conditions, recent studies show that it also holds under
finite times and non-stationary conditions [14].

A purely reactive controller can be self-adaptive to varia-
tions in workload, but it assumes no knowledge of the work-
load itself. Hence, due to resource management constraints
in cloud systems, e.g. provisioning overheads of VMs, provi-
sioning actions are not instantaneous and, in consequence, a
reactive controller may have limited benefit when workload
fluctuates. This may lead to poor performance, i.e. oscilla-
tions over the target and over reactions, even predisposing it
to sub-optimal use of resources. Thus, the reactive controller
is improved by incorporating predictive capabilities that
would help to establish a baseline for the number of compu-
tational resources required, using historical data. However,
the two controllers acting independently need to coordinate
their actions, in the context of provisioning actions with
some time delay: the action of the predictive controller
may need a time interval to take effect, but it might also
be inaccurate (due to an incorrect estimate of workload).
Although there are a number of existing hybrid (reactive–
predictive) autonomic controllers [15], [16], to the best of
our knowledge, they do not consider coordination policies
among the reactive and predictive functionalities, which
are mandatory for accurate performance in real practice.
We propose a coordination policy to guarantee that both
controllers (reactive and predictive) cooperate towards the
objective. We implemented our controller on top of the
CometCloud system in a federated Cloud scenario and
validated it using data from the ECOTality Electric Vehicle
project [17]. The key contributions of this paper include:

1) A novel approach, to the best of our knowledge, that
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can elastically adapt the computational resources
allocated by an EV aggregator to follow the fluc-
tuating EV charging demand.

2) Design and implementation of the proposed ap-
proach using queueing theory and autonomic tech-
niques, realised using a combination of both predic-
tive and reactive controllers.

3) A coordination policy that influences the subse-
quent resource management, ensuring that the pre-
dictive and reactive controllers are aware of each
other and work together towards the same goal.

4) Experimental validation of our approach using the
federated CometCloud system (able to dynamically
add additional computation resources on-demand,
across multiple sites), using (real) data for EV charg-
ing demands obtained from the ECOTality project.

In Section 2, an overview of Little’s Law is given as well
as its use in practice. The controlled EV charging process
is described in Section 3. Its computational requirements
are described in Section 4. The reactive and predictive
controllers are described in Sections 5.2 & 5.1, respectively.
In Section 6, the performance of the approach is validated
experimentally using the CometCloud system Related work
is compared to this proposal in Section 7. Conclusions
drawn are discussed in Section 9.

2 BACKGROUND: LITTLE’S LAW

A queueing system comprises [14] a number of discrete
objects often called items, arriving at some rate within a
system. The stream of arrivals enters the system, joins one
or more queues, eventually receives a service, and exits
in a departure stream. In general terms, services perform
operations over items, which involve an amount of time
(e.g., for computing – we typically call such an action,
processing, and to the amount of time it takes, processing
time). Little’s Law (LL) is a mathematical relationship be-
tween three variables: the average number of items in a
queueing system (L) equals the average arrival rate of items
(λ), multiplied by the average waiting time of an item (W ).
Thus, L = λ ∗W .

Although Little’s Law was originally proposed for infi-
nite intervals and stationary conditions for the distribution
of the system variables, it has been shown to hold under
a number of conditions, including finite intervals of time.
This provides significant value for engineering design and
operational problem solving [14]. Next, we summarize LL
theorems [14].

Theorem 1. (from [14]) Little’s Law Over [0, T ]. LL.1. For a
queueing system observed over [0, T ] that is empty at 0
and at T and has 0 < T < ∞, L = λ ∗W holds.

A number of important observations for practical consid-
eration can be obtained from the previous theorem. First, LL
holds for finite intervals of time and under non-stationary
conditions. This is key in practice, as the probability dis-
tribution of arriving items may be non-stationary. In a
computing system, for instance, the arrival of data elements
to a computing system can be subject to sudden data bursts

or spikes. Analogously, performance of computational re-
sources can also be subject to sudden variations – e.g., unex-
pected performance degradation or failures. Second, LL also
holds independent of the queue discipline. Furthermore, a
generalisation of LL.1 is also proposed in [14] by eliminating
the restriction of zero starting and ending queues in the
interval [0, T ].

Theorem 2. (from [14]) Little’s Law over [0, T ]. LL.2. For a
queueing system observed over [0, T ] that has 0 < T <
∞, L = λ ∗W holds.

In addition to the remarks derived from LL.1, LL.2 also
ensures that LL holds when the queueing system is not
empty at the beginning or at the end of the interval of
time. Nevertheless, the conservation of items still needs to
be guaranteed for LL to be held – i.e. there are no lost items.
Using LL.2, we can estimate the average waiting times, but
as it is pointed out in [18], this simple indirect estimator
tends to be significantly biased when arrival rates are time-
varying and service processing times are relatively long.
Surrogate estimators are also proposed in [18] for such cases.

2.1 Traffic Intensity and Queueing Time

An important concept in Queueing Theory is that of traffic
intensity, which is the ratio of the incoming and outgoing
rates in a queueing system.

Definition 1. Given a multi-server queueing system, its
traffic intensity, denoted as ̺, is:

̺ =
λ

cµu

(1)

where λ is the average arrival rate of items, c is the num-
ber of server instances, and µu is the average throughput
per server. In order for a system with a finite number of
servers to be stable, its traffic intensity must be 0 ≤ ̺ < 1
. Nevertheless, this is not the case when considering an
infinite number of servers. In that case, the system will
always have enough servers, and we are then more inter-
ested in the number of busy servers and their utilization.

Our approach assumes that we always have enough
resources, which is analogous to having an infinite number
of resources. We make use of the traffic intensity for deriving
the number of computational resources (server instances in
the definition) required during the execution. Additionally,
we also characterize the average time that each data element
of a data stream spends on the queue. The focus here is
primarily to consider the total number of active resources
(and how these could be activated/de-activated over time).

Definition 2. The average time T items spent within a
queueing system can be characterised by

T = W + S (2)

where W is the average time a data item spends waiting
for a resource in the queue, and S the average processing
time for a data item.
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3 THE EV CHARGING PROCESS

The distributed controlled charging process that we are
considering in this paper is described in [12]. It consists
of two activities enacted concurrently: (i) the scheduling
(initialization) activity and (ii) the operational activity en-
acted periodically with an established control frequency –
expected to be at 15 to 30 minute intervals for most Smart-
Grid scenarios. The overall time required for charging an
EV battery is a multiple of these intervals (e.g. in residential
areas, the whole charging process an EV can require over 6
hours).

3.1 The Scheduling Period

We consider the optimization problem proposed in [12],
which focuses on deriving the optimal solution for schedul-
ing EV charging requests within a geographic area. At the
beginning of each scheduling activity, an EV connected to a
charging point sends to the aggregator the following infor-
mation: (i) the actual state of charge (SoC), (ii) the desired
SoC at the end of the charging session, (iii) the connection
duration, (iv) the on-board battery charger efficiency, (v)
the charging power rate and (vi) the EV battery charging
efficiency.

On the other hand, the aggregator also receives the
loading capacity limits (i.e. maximum electrical load at a
particular point) contained in the energy network as a limits
matrix, and the electricity prices for each scheduling activity
from the Distribution System Operator (DSO). Then, for
each area, the aggregator needs to compute the following
mixed integer optimization objective function:

min. Z =

Tf∑

t=T

N∑

n=1

Evnt
∗ pt (3)

where T is the time interval associated with a particular
operational activity, Tf is the final operational activity, N is
the total number of EVs managed within an area, EVnt

is
the energy in kWh supplied to EV n during activity t, and
pt is the electricity price at hour t in £/kWh. This equation
is subject to a number of constraints (see [12] for details),
which enforce that the electricity distribution constraints
are not violated and the owners’ demands are satisfied.
With such a scheduling, the aggregator can monitor the
evolution of EVs’ SoC and deal with possible changes in
user preferences (for example the change in departure time
or in the final SoC requirements). Finally, a schedule for an
area is sent along with curtailment factors of the following
operational activity to the DSO. The curtailment factors are
used by the DSO in order to decide which EVs charging
should be curtailed in case of an emergency.

3.2 The ECOTality dataset

ECOtality, Inc., is an electric transportation and storage tech-
nologies company, and it is the parent company of ECOtality
North America (formerly eTec), Innergy Power Corporation,
Fuel Cell Store, and ECOtality Australia Pty Ltd. ECOtality
North America manages The EV Project [17], which is one
of the largest electric vehicle infrastructure demonstration
projects, with a budget of over $230 million, equally funded
by the US Department of Energy, and ECOtality and its

partners. This project focuses on examining the various
activities and situations involving EV drivers’ behavior and
charging infrastructure use [17], [19]. For all these reasons, it
can be considered as one of the most realistic deployments
available.

Data gathered by the EV Project is reported on a quar-
terly basis, and accessible online 2. A charging event is
defined in the EV Project as the period when a vehicle is
connected to a charging unit, during which period some
power is transferred [17], [19]. For a Smart Grid manage-
ment purpose, smart meters at charging points transfer
data packets continuously during the power transfer at the
beginning of each scheduling period (i.e. hourly, subject to
specific regulations). Data gathered from charging events
at the EV Project include probability distributions for the
hourly average usage of charging points, the aggregated
hourly charging demand, the average energy requested per
charging event, the average recharging time, etc. By the
2nd Quarter of 2013, over 2.9 million charging events had
been recorded by the EV Project from project participants in
the US driving vehicles enrolled in it: approximately 8,300
Nissan Leaf, Chevrolet Volts, and Smart ForTwo EVs [17],
[19]. These EVs made use of an infrastructure that consisted
of nearly 8,200 Residential electric vehicle supply equipment
(EVSE) charging stations, over 3,750 Commercial (publicly
available, workplace, and fleet) EVSE charging stations, and
87 DC Fast Chargers (DCFC). For data privacy reasons, each
dataset provided aggregate values for an entire participating
electricity network area in the US, namely residential, pri-
vate non-residential, and public.

Based on this data, we are interested in the statistics that
provide us evidence on when and where EV drivers are likely
to request charging, and the duration of this process. Before
The EV Project began collecting data, common wisdom had
been that 80% of charge events for a typical driver would
be at home [17]. Data collected at the EV Project seems to
validate this [17]: The percentage of home charging for all
regions appeared to stabilize at about 74% of all events for
the Leaf and 80% for the Volt. Another important statistic
given by the EV project is that EVs averaged 1.1 charging
events (or requests) per day. For the Volt driver, the average
was 1.5 charging events per day. Although Volt drivers
charge their vehicles more often, they tend to charge at
home.

These statistics from the ECOTality project are also co-
related to the use of the charging points at the infrastructure.
In this sense, considering only residential areas, Figures 1a
the availability distribution of charging points for week-
days. In the y-axis, it shows the maximum and minimum
percentage of charging units connected (for charging) across
time. The behavior is highly associated with the arrival and
departure times of the EVs at their homes, but it is also
influenced by the electricity tariff, in this case, the minimum
electricity demand is observed at 06:00 approximately. This
is directly related to the hours that many EV owners are
going to their work and therefore stop the charging process.
The opposite is happening at night because the EV owners
prefer to charge their EVs at the hours with a lower tariff. On
the other hand, the case of commercial areas can be seen in

2. http://avt.inl.gov/evproject.shtml
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(a) Weekdays in Residential Areas (b) Weekdays in Commercial Areas

Fig. 1: Aggregated Charging Availability

Figure 1b, which depicts charging availability distribution
at the charging points for weekdays, respectively for all
regions.

From Figure 1a, it can be observed that data flows
generated for the EV charging processes in a residential
area are quite regular, i.e. min. and max. values are close
to each other. EV charging at commercial areas is very
irregular and bursty, as can be seen from Figure 1b, which
can make any prediction of the expected computational
resource demand to support such prediction difficult. Based
on the assumptions in [17] for Smart metering needs, and
for an anticipated number of c.1.7M million EVs in the
UK by 2025 [5], overall data flow volumes between 30TB
to 40TB will be generated on a “total EV population per
annum” basis. Similar figures are expected for the use of
smart meters within the EV scenario described in [20].

4 COMPUTATIONAL CAPACITY STRATEGY

With the purpose of distributing energy, the electric power
networks are arranged into different areas. An aggregator
will be in charge of multiple electrical areas, having each area
a potential number of connected EVs (each area supports up
to a fixed maximum number of points for EVs to charge
their batteries). Periodically (i.e. expected to be at 15 to
30 minute intervals), an aggregator will need to process a
charging schedule for each area, prior to enacting the oper-
ational activity (i.e. actual EV battery charging operation),
as described in Section 3.1: We define an input data item to
be all the charging requests received for a given area. Our
focus in this paper is on managing computational resources
for the scheduling stage and to improve efficiency of use
of such resources. For such a purpose, the aggregator will
need a shared pool of computational resources, as depicted
in Figure 2.

The objective for the EV scenario is to guarantee cer-
tain Quality of Service (QoS) response time or deadline
on average, while minimizing the operational costs derived
from using computational resources. The established QoS
means that there will be some areas whose scheduling will
be under / above the deadline. Ideally, one may want to
reduce as much as possible the dispersion of completion
time, so that most of areas have their schedules as close as
possible to their deadline.On the other hand, a direct way
of reducing costs is by minimizing the number of resources
used for processing each charging request or job. For such a
purpose, we propose to take advantage of the slack time of
a job – the period for which the computation of such a job
can be delayed without causing a QoS deadline violation. In

this problem, the slack time of a job is the deadline minus
the estimated execution time and its associated overheads
(e.g., data transfer time). Using the slack time to delay the
processing of a job requires being able to measure the actual
time a job is waiting to be processed. Direct monitoring
of the waiting time can be challenging in distributed com-
puting systems, and as a result, we use LL to derive the
waiting time from the queue size of pending jobs. Since
slack can vary depending on the incoming charging requests
and/or their computational complexity, we need a solution
that can elastically adapt to these changes. In this way, we
can autonomously minimize costs while still satisfying the
required QoS levels.
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Fig. 2: System Model

5 ELASTIC RESOURCE MANAGEMENT

To achieve the previously described capacity management
strategy, we propose a reactive-predictive approach that can
elastically manage the computational resources allocated at
EV charging stations, as shown in Figure 2. On one hand,
a predictive controller allows us to anticipate the future
demand based on historical knowledge of the workload –
thereby establishing a baseline plan for an entire electri-
cal scheduling activity. With such a behavior, we alleviate
current (systems) implementation overheads when setting
up a new VM. On the other hand, a reactive controller
allows us to perform online monitoring and analysis of the
workload to dynamically adapt to (unexpected) changes in
both the workload and the resources. Next, we model the
two controllers that implement the strategies.

5.1 Predictive Controller

Various techniques have been developed to predict EV
charging demand [21], [22] and their results show signif-
icantly high success prediction rates. For each scheduling
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period T, our controller takes as inputs: (i) the predicted EV
demand (any of the cited techniques can be used for this),
(ii) computational cost of the scheduling algorithm, and (iii)
historical information of VM performance, as input – and
outputs the baseline number of VMs required for period T.
Analysis and Capacity Planning: for deriving the number
of computational resources, the controller makes use of the
traffic intensity, Eq. 1. By setting traffic intensity to 1 and
solving for the number of computational resources, c, we
obtain the number of VMs that can maintain the size of the
queue without variation:

ĉT =
λ̂T

ˆµuT

(4)

where λ̂T is the estimated average input rate of data items,
ˆµuT

is the estimated average output rate (throughput) per
machine, and ĉT is the estimated number of computational
resources (VMs) for period T . It should be highlighted
that setting traffic intensity to 1 does not lead to system
instability, because our approach assumes that we always
have enough resources available. We are just interested in
the number of active resources and in switching them on
and off depending on demand. An accurate prediction of
computational resources, therefore, depends on λ̂T and ˆµuT

.
In the particular scenario of EVs, the input rate λ̂T is

typically constant, as it depends on the charging control
periods (T can be typically fixed periods of 15 minutes). The
value ˆµuT

depends on (i) the predicted EV demand, (ii) the
scheduling algorithm, and (iii) the actual VM performance.
In this case, as the predicted EV demand, we make use of
the Support Vector Machine based EV demand technique
described in [22]. As the scheduling algorithm, we make use
of the optimization problem from Section 3.1. Finally, the
values for ˆµuT

can be derived by building a performance
knowledge for the type of VM. Such a mapping requires
a previous experimentation that can be accomplished by
running the algorithm with the historical records from ECO-
Tality workload.

5.2 Reactive Controller

The reactive controller implements an autonomic MAPE
(monitoring, analysis, planning and execution) loop [23].
Monitoring: the following system variables are monitored:
(i) queue size L, which is the control output; (ii) the arrival
rate for a data stream λ; and (iii) the processing time of
each data element, which allows us to calculate S. These
variables are recorded and computed every time a job
enters or leaves the system to ensure our knowledge base is
always up to date. Additionally, we have variables that are
calculated periodically, which allow the reactive controller
to take operational decisions. This includes the process
of applying LL (based on average estimates), and allows
the controller to act on L (average number of jobs in the
queue) rather than on W (average wait time of a job in the
queue). Average values may increase the response time of
the reactive controller to changes in the environment. In
order to mitigate the effects of long running averages and
allow the system to rapidly react upon changes (i.e. bursty
conditions of λ and unexpected performance of VMs), we
propose moving averages (based on a time window of data).

In a moving average only a subsequence, a window, of
a time series is considered for computing the average: older
values of the series are being discarded with the arrival of
new values. Thereby, the effect of long running averages is
limited. Nevertheless, it may be challenging to determine
the window size: if the window is too small, the derived
values for W may tend to be biased, especially in cases
where the processing time is too long. In contrast, if the
window is too big, then the same problem of arithmetic
averages appears. In our case, this issue is mitigated by the
use of a predictive controller that always keep a long term
view of the demand observed in the past as well as the
predicted one.

It is also worth highlighting that the performance vari-
ation of computational resources is considered implicitly in
our model by assuming the application can take an arbitrary
time to process a data element. Analysis: In this phase,
we analyze demand and utilization data to establish the
setpoint, i.e., the objective queue size L∗ that allows us to
minimize resource utilization while ensuring QoS require-
ments. We calculate the difference between the objective
queue size (L∗) and the monitored one (L*) to determine
if an action is required. We have two possible actions: (i)
remain idle, (ii) increase/decrease computational resources.

The average time any data element spends in the system
is given by: T = W + S, where W is the average queueing
time, and S is the average processing delay. We assume that
the Quality of Service (QoS) for a data stream involves the
processing of data elements within a deadline, δ, on average.
Therefore, in order to enforce QoS, the following must be
fulfilled: T = W + S ≤ δ.

As we are utilizing an elastic pay-as-you-go infrastruc-
ture, as a load balancing policy, we want to meet QoS
while minimizing the number of computational resources.
This policy is fully satisfied when on average Tmax =
Wmax + S = δ. Therefore, when Wmax = δ − S, we obtain
the maximum time slack, i.e. the maximum time on average
that a data element can spend in the queue without violating
the QoS. Alternatively, with Wmax and by applying LL,
we can obtain a reference setpoint, the maximum average
number of data elements in the queue, L∗:

L∗ = λWmax = λ(δ − S) (5)

It can be seen that L∗ depends on λ, the arrival rate, and
S, the average system processing time. Under variable and
unpredictable workload and performance times, L∗ is likely
to vary unpredictably. Thus, the challenge for the controller
is to make use of IaaS elastic actions, in order to maintain L∗
within its objective value. After the reference point is set, the
controller establishes upper and lower thresholds around it,
incorporating hysteresis in the reference setpoint to avoid
oscillatory behavior.
Capacity Planning: currently, we only consider horizontal
scaling, i.e. the controller can provision and de-provision
a discrete number of computational resources (VMs). We
assume that the infrastructure is constrained by the number
of concurrent VMs that can be provisioned – this number
is set by the infrastructure provider and influenced by the
number of physical machines and the number of VMs per
physical machine. However, we assume that we always
have enough resources. We also assume homogeneity in
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the computational resources and consideration of multiple
VM types, to achieve finer grain actions, is future work.
In our approach, we adaptively regulate the number of
provisioned VMs, c, such that the QoS of the data stream
is enforced. In order to find the number of active VMs
(c), we make use of the traffic intensity, ̺, (which defines
the relationship between input and output, as defined in
Section 2). Setting traffic intensity to 1, and solving for c, we
obtain the number of computational resources that enable
output rate to match the input, i.e. ⌈c⌉ = λ

µ
, with c ∈ N. As

we have a discrete number of resources, we round up to the
nearest integer.

Therefore, the actions for decreasing/ increasing the
waiting time corresponds to c+∆c and c−∆c, respectively,
where ∆c represents the increment in the number of VMs.
The lower the value of ∆c, the slower the reaction of the con-
troller. Ideally, the quickest reaction is desired, but if the con-
trol action is too large, it may lead to controller oscillations
and instability. Instability provoked by switching rapidly
and violently between different configurations (namely in
this case, over-provisioning and under-provisioning states).
Typically, the value of ∆c is experimentally determined.
Execution: as with the predictive controller, this phase inter-
acts with the middleware to make changes in the resource
allocation.

5.3 Coordination of Controllers

The coordination policy we propose here aims at blending
current knowledge (short-term view) and historical knowl-
edge (long-term view) to achieve our objective while in-
creasing the stability of our system. The proposed strategy
is summarized in Table 1 and it consist of two steps:
1) Establishing Baseline: prior to the beginning of a schedul-
ing period T , the predictive controller analyzes historical
data and predicts the computational demands for period T .
Once the predictive controller plans and executes an action,
the reactive controller is disabled for a time period p, so
that the action can influence system behavior (throughput).
For instance, in case the action involves the launching of
new VMs, there exist associated set up overheads and
subsequent processing delays. The disable period p must
be greater than or equal to delays introduced by such
overheads. The advantage of using the predictive controller
is that it can provision resources just-in-time, if planned
conveniently in advance, thereby mitigating VM set up
overheads.
2) Adjusting to the Unexpected: between period T and T + 1,
the reactive controller monitors the computational demand
as well as the throughput of the system to correct potential
deviations from the plan implemented by the predictive
controller. The reactive controller assumes no knowledge of
the workload and it bases all its decisions on the observed
data.

Whenever the reactive controller wants to take an ac-
tion, we consider two situations: a) said action is within
the boundaries of the predictive controller and is aimed a
correcting the observed behavior to ensure the predicted
baseline. In this case, we take said actions; and b) said
action contradicts the predictive controller. In this case, it is
better to ignore the reactive action and follow the predicted

one, as we consider that the predictions can be taken with
a higher degree of confidence, according to the prediction
techniques on the workload developed at [21], [22], or at
least the missed predictions will not have a big error.

6 EXPERIMENTAL VALIDATION

The controllers described in this paper were integrated
within the CometCloud system [24]. CometCloud is an au-
tonomic framework for enabling real-world applications on
software-defined federated cyberinfrastructure, including
hybrid infrastructures integrating public & private Clouds
and data-centers. The overarching goal of CometCloud is
to realize a software-defined federation with cloud abstrac-
tions that offer resources in an elastic and on-demand
way, supporting the batch execution model. The role of
the queues described in Section 5.2 is provided by Comet-
Cloud’s tuplespace – more details in [25].

6.1 Experiment Methodology

A set of experiments were used to validate our approach.
We consider a constant incoming data rate (λ) over time
(representing each data element all the charging requests of
a given area), and a variable workload based on the ECO-
Tality data [17]. We assume that the EV aggregator manages
a higher number of residential areas than commercial areas.
Therefore, the variation of demand can be mostly explained
by the behavior of EV owners and their habits as observed
in the ECOTality project: the arrival and departure times of
the EVs at their homes, also influenced by the electric tariff.
In that case, the minimum electricity demand is observed
at 06:00 approximately. This is directly related to the hours
that many EV owners leave for work and results in stopping
the charging process. The opposite is happening at night
because the EV owners prefer to charge their EVs at the
hours with a lower tariff. Based on such postulates, the
processing time S (i.e. S = 1

µ
) for the scheduling times

vary accordingly as shown in Figure 3. In order to reduce
the execution time of experiments, rather than considering
periods T of 15 minutes, we also consider that the QoS
established by the aggregator is such that each scheduled
task stays for 33.3 seconds in the system. This means that the
time a task can spend in the queue (W ) varies as S changes.
Moreover, the data produced in commercial charging areas
is bursty and unpredictable, generating deviations on the
expected demand. We analyze its influence by considering
different degree of missed prediction in our experiments.
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TABLE 1: Coordination Policy for the Controllers

Event Condition Action

Predictive contr. takes action a True Reactive contr. disabled
for period s

Reactive contr. takes action a Predictive contr.’s baseline outside Predictive contr. has priority
the boundaries of action a

Reactive contr. takes action a Predictive contr.’s baseline within Reactive contr. has priority
the boundaries of action a

We have deployed a testbed between the Universidad
de Zaragoza (Spain) and Rutgers University (USA). In this
testbed, we have the autonomic control layer at Zaragoza
and the resource management layer (CometCloud) at Rut-
gers. The computational resource layer in Zaragoza consists
of a single dedicated machine 2.6 GHz Intel Core i5 with 16
GB 1600 MHz DDR3. The computational resources located
at Rutgers include 32 dedicated machines within a cluster.
Each node has 8 cores, 6 GB memory, 146 GB storage
and a Gigabit Ethernet connection. The resources of our
cluster are offered using a cloud abstraction, enabling their
provision/de-provision on-demand. Since we have an HPC
cloud, the overhead of provisioning machines in this in-
frastructure is not significant and therefore not considered.
The measured latency on the internal network is 0.227ms
on average. The interconnection network overhead between
Zaragoza and Rutgers is 130 ms on average.

6.2 Experiments

We want to validate the performance of our hybrid con-
troller in comparison with a purely reactive controller in
different scenarios: (i) 100% accuracy of prediction and (ii)
different degrees of missed predictions. We have performed
a number of of experiments using a sliding window of
20 data values to calculate moving averages. In order to
validate our metrics, we have computed a baseline case
where the number of VMs required to maintain the queue
size (L) to zero are provisioned. In such a baseline, all
of the jobs meet the deadline (except at the initial time
as the system is empty), but the number of VM hours is
maximized. We compared such a baseline with the baseline
of our proposal, and we also measured the number of jobs
in our proposal that are not meeting the deadline.

6.2.1 Purely Reactive Controller vs Hybrid Controller

In the first experiment, we compare the performance of
our hybrid controller with a purely reactive controller. We
assume a perfect prediction of the required computational
resources (i.e. 100% hit). Since measuring the queue time for
each data element in our system can be non-trivial, we use
the number of elements in the queue and the arrival rate
to estimate the queue waiting time W (see Equation 5). By
using this information, the reactive controller can determine
the number of machines to allocate or release, see Section 5.
In these experiments, we allocate or release two VMs over
or under the equilibrium point (∆c) to increase or reduce
the queue size. Moreover, we consider that the system is not
empty at the beginning and has 12 VM instances, i.e. 2 VMs
over the equilibrium point. Additionally, we use a baseline
strategy that, unlike previous strategies, does not make use

of the slack. We call this strategy no slack. Figure 4 collects
the experimental results.

Figure 4a & 4d presents the results of our baseline exper-
iment. As before, we observe that the number of elements
in the queue tends to zero and the amount of allocated
machines is maximized. Figures 4b & 4e present the results
of the experiment for the purely reactive controller, whereas
Figures 4c & 4f present the results of the experiment for
the hybrid controller. Both graphs (Figures 4b & 4c) depict
how the queue waiting time evolves over time. We can
observe that the “W=L/λ” (W calculated using LL) and the
“Monitored W” (the actual measured W ) oscillate around
the “objective waiting time”, as expected by LL. It should
also be noticed that the waiting time W also evolves in
accordance with the processing time S from Figure 3.

We can also observe the evolution of the queue size over
time and the number of VMs involved. At the beginning,
the system needs to process the peak workload, then it
decreases at control period 25 (time 250s) and it gets its min-
imum workload by control period 60 (time 600s). Finally,
at control period 80, there is a huge peak in the workload
again to the peak at the end. Both controllers allocate and
de-allocate machines to achieve the objective waiting time.
Thus, when the workload decreases both de-allocate VMs
and react similarly. This is due to the fact that the action of
de-allocating VMs has no significant overhead and can take
place almost instantaneously. However, the most significant
difference between both controllers happens at control pe-
riod 80, when the workload goes from low to the peak. The
increase in the workload is poorly managed by the purely
reactive controller. In spite of the fact that the peak starts at
control period 80, it triggers action at control period of 90.
As we are utilizing average values, the consequence of this
is that in order to overcome high values of L for a period
of time, the reactive controller has to enforce low values of
L for a period of time to compensate, and this generates
significant oscillation. In contrast, the hybrid controller can
anticipate the event and lead to 14 VMs being launched
at control period 80, which are then maintained for some
time. As a consequence, the oscillation around the objective
L is much less compared to the hybrid controller. This arises
due to an overhead associated with allocating VMs and the
processing delay – thereby limiting instantaneous action.
Therefore, the behavior of the hybrid controller outperforms
that of the reactive controller because the hybrid controller
can anticipate future variations in the workload.

6.2.2 Hybrid Controller with Missed Predictions

We repeat similar experiments with the hybrid controller,
but introduce an error in predicting the number of required
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Fig. 4: Summary of experiment - Fixed Execution Time. Action is ± 2 VMs over the optimum.

VMs: a deviation of 20% over the resources required (Fig-
ures 5a & 5c) and a deviation of 20% under the resources
required 3 (Figures 5b & 5d). Analogously, we can observe
how “W=L/λ” (W calculated using LL) and the “Monitored
W” (the actual measured W ) oscillates around the objective
waiting time, as expected by LL. The waiting time W also
evolves in accordance with the processing time S from
Figure 3, and the hybrid controller allocates and de-allocates
VMs in order to achieve the set objective.

In these experiments, as before, we can also observe
the evolution of the queue size and the number of VMs
involved. It can be observed that the hybrid controller with
a perfect prediction performs better than with deviations
in the prediction of the required resources: The oscillations
around the target are smaller and few VMs are involved.
In contrast, in comparison with the purely reactive con-
troller, the hybrid controller still oscillates less even with
missed predictions. There are two potential reasons for such
behavior: (i) if the number of allocated VMs exceeds the
required number, then eventually they will be removed
(this can be seen, for instance, in Figure 5d between control
periods 20 to 40 – time 200s to 400s); (ii) if the number of
allocated VMs does not reach the required number, then
the performance (i.e. accuracy of prediction) will decrease.
The hybrid controller with 20% of missed prediction under
the actual required VMs performs reasonable well, as it is
setting up most of the required VMs beforehand. The worst
case scenario is that of the reactive controller, which delays
allocation of VMs in these instances.

3. It should be noted that the SVN-based energy demand prediction
technique presented in [22] shows a 4.6% Mean Absolute Percentage
Error. Based on our estimation of resources described in Section 5.1, we
are here, therefore, assuming a worst case scenario of 20% of deviation
in the number of VMs

6.3 Completion Time Analysis

In this Section, we analyze the completion time of the data
elements processed in each one of the experiments executed
before. In this paper, we proposed an approach to leverage
the slack of jobs (i.e. remaining of deadline minus execution
time and overheads), aiming at minimizing the amount
of resources provisioned to satisfy the workload given a
specific Service Level Agreement (SLA). In our case, we
chose that our SLA was to meet the data elements’ deadline
on average. Next, we evaluate two specific metrics: a) the
amount of resources used, and b) the SLA assurance. Fig. 6
collect these results.

In previous experiments, we observed oscillations
around the target value. We can observe now how the me-
dian completion time for the baseline approaches is typically
very far from the deadline. However, in the rest of the cases,
all our strategies show how the median completion time is
very close to the deadline. This means that when the slack is
not used, we are wasting a significant amount of resources.
Specifically, in our experiments, in comparison with the
baseline (no slack), our only reactive approach saved up to a
31 % of machine hours in the experiments (around 1.3 ma-
chine hours), whereas the hybrid controller saved between
up to 34 % in the experiments (up to 1.3 machine hours).
Additionally, the median of the data elements’ completion
time also tells us that the proposed SLA is satisfied. The
dispersion of the completion time is smaller for the hybrid
controller than for the purely reactive controller, which is
due to the predictive anticipation behavior that overcomes
the existing overheads. This means that the oscillations
around the target are reduced: The interquartile range for
the reactive controller is 30.41, whereas for the hybrid
controller ranges from 20.38 to 29.85. The hybrid controller
with a 100% of prediction success achieves the smallest in-
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Fig. 5: Hybrid Controller with missed predictions - Action is ± 2 machines over the optimum.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

No Slack
Only Reactive

RP 100Hit

RP Over 20

RP Under 20

T
im

e
(s

)

Deadline

(a) Job Completion Time

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

No Slack
Only Reactive

RP 100Hit

RP Over 20

RP Under 20

O
v
e

ra
ll 

M
a

c
h

in
e

 H
o

u
rs

(b) Overall Machine Hours

Fig. 6: Completion Time Analysis Summary.

terquartile range, whereas the hybrid controller with a 20%
of under deviation performs the worst. This is due to the fact
that the predictions lead to allocate fewer machines than
required, and therefore the anticipation is less successful
in this scenario. Finally, it is also worth highlighting that
our approach managed to complete around 50% of the jobs
within the deadline, and to enforce a small interquartile
range. Therefore, the values that are above the deadline
are delayed only a few seconds, which is acceptable for the
subsequent operational stage.

7 RELATED WORK

The two biggest fields in which LL has been applied are
operations management (OM), and computer science and
engineering (CSI) [14]. The approach has also been made
use of in various case studies, ranging from computer archi-
tecture to computer networks and distributed systems. The
most significant case studies from OM and CSI are described
in [14].

Significant literature also exists related to work in dead-
line based scheduling algorithms for multimedia applica-
tions in communication networks. In general terms, the

function of these scheduling algorithms is to select the ses-
sion whose head-of-line (HOL) packet is to be transmitted
next through the network. This process is based on the
QoS requirements. A survey that provides an overview
can be found in [26], [27]. In other words, these proposals
aim to evenly share the workload (packets) onto a shared
resource (the network). In contrast, in our approach, we
adapt the available computational capacity (resources) to
the workload. We achieve this by provisioning the number
of computational resources to a data stream in accordance
to predictions, and workload variations and resource per-
formance.

A number of studies developed autonomic policies and
mechanisms for elasticity in clouds. In [16], the AGILE sys-
tem provides medium-term resource demand predictions
for achieving enough time to scale up the computational
resources in advance, minimizing VM launching overheads.
In comparison to our approach, AGILE is application ag-
nostic and does not consider the characteristics of streaming
applications. For the NoSQL cluster scenario, TIRAMOLA
was presented in [28]. It can self-resize a NoSQL clus-
ter according to user-defined policies. Decisions on (de-
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)allocating VMs from a cluster are modeled as a Markov
Decision Process and taken in real-time. Autoflex [15] is
a service agnostic system for autonomic scaling of VMs
that combines both reactive and proactive approaches. A
purely reactive resource provisioning approach was pro-
posed in [29] under the YinzCam system, which provides
cloud-hosted service for real-time Web scores, news, etc. The
workload considered exhibits significant spikes. Hence, the
controller is designed so that the scaling up action is done
much faster than the scaling down. Again, this approach
is designed to enable service operations to be on-line and
responding without any time-slack. More recently, vertical
scalability was also studied in [30] by means of different
performance models that enable mapping performance to
capacity. Autonomic computing was studied to provide
opportunistic in-transit processing by taking advantage of
the estimated “slack” that is available at different stages of
a data-intensive workflow [31].

The increasing deployment of sensor network infrastruc-
tures has led to large volumes of data becoming available,
leading to new challenges in storing, processing and trans-
mitting such data [32]. For that reason, stream processing
frameworks such as Yahoo’s S4 [33], or IBM InfoSphere
Streams [34] provide streaming programming abstractions
to build and deploy jobs as distributed applications at scale
for commodity clusters and clouds. Nevertheless, even that
these systems support high input data rates, they do not
consider variability in workload and unexpected perfor-
mance of resources, which is our focus in this paper. In
some other approaches, the parallelism is extracted from
the data stream query operators they provide, Aurora [35],
Borealis [36] and Stream Cloud [37], which differs that in our
case, we explicitly exploit the parallelism by having multiple
data elements in execution. In this area, Spark has popular-
ized the idea of discretized streams to process streams as a
sequence of discrete micro-batches, which improves fault
recovery [38]. These micro-batches are dynamically allo-
cated across workers based on data locality and availability.
While Spark assumes a ready-to-use cluster of workers, our
autonomic approach intends to elastically provision and de-
provision machines to minimize the operational costs of
processing the streams.

Our work is closely related to three approaches. In [39],
the goal is to allocate resources dynamically from a cloud,
so that the processing rate can match the rate of data
arrival. They also consider variable transient input rates.
Our approach is more general, as such a case corresponds
in our approach to a scenario where the time slack is zero.
Moreover, we make use of a federation of heterogeneous
resources and we propose autonomic based mechanisms
and policies for the selection of resources. In [40], the
authors propose a workflow specification where each job
consists of one or more alternate implementations with
different non-functional properties, so that the system can
choose any of them dynamically at runtime. In this paper,
we have not considered dynamism at workflow-level, but
our dynamic provisioning of resources is accomplished in
a federation of heterogeneous resources. Finally, the work
in [41], [42], [43] consists of a sequence of nodes, where each
node has multiple data buffers and computational resources
– whose numbers can be adjusted in an elastic way. They

utilize the token bucket model for regulating data injection
rates into such nodes. As before, they do not consider time
slacks. Another important difference to our approach is that
instead of utilizing multiple nodes, we assume CometCloud
system as a coordination mechanism that can outsource the
computation when required.

Finally, the problem of detecting spikes in cloud work-
loads can be beneficial not only for the purpose in this
paper of resetting monitoring average values and start-
ing a new monitored period, but also for making proac-
tive resource management decisions. Indeed, unanticipated
changes in workload characteristics can potentially lead to
service slowdown and might end in service-failure due to
insufficient resource allocation. In [44], the authors investi-
gate methods for detecting spikes in cloud workloads. In
particular, they developed methods that make use of signal
processing techniques. Previous efforts have also been made
on modeling and characterizing workloads and spikes. The
work in [45] presents a detailed workload characterization
study of the 1998 World Cup Web site. In [46], the authors
analyze a number of real workload and data spikes and
from the results they propose and validate a model of
stateful spikes that allow them to synthesize volume and
data spikes, and that can be used for cloud providers.

8 DISCUSSION

The results presented in this paper show how our controller
is able to react to changes in the EV charging demand. We
have observed that when using our resource management
approach, the waiting time experienced by jobs oscillates
around the QoS target, which could lead to an inaccurate
or delayed estimate of EV demand. This could be because
(i) the number of VMs needed to achieve a desired waiting
time cannot be estimated accurately a priori, thus requiring
dynamic (de-) provisioning VMs, or (ii) when charging
demand changes, the controller has to deal with “inertia”
that delays the effect of our control actions. Such an “inertia”
is influenced by the effect that average values can have and
the actual processing time, which, once an action is taken,
delays the effect of the action on the queue size.

In order to eliminate or mitigate such effects, we pro-
pose the following strategies. If the waiting times over the
target are not acceptable, a higher number of VMs can be
provisioned based on the available slack, as explained in
Section 5. There is, therefore, a trade-off between operational
cost (number of VMs) and performance. In our experiments
we demonstrate how the maximum allowed slack can be
used to minimize the number of resources used, whereas
in [25] we show how a system would react when not
using slack at all. Another factor to take into account is the
effect of long running averages, which does not allow the
system to rapidly react. To address this issue, we propose
to reduce the data used to take operational decisions. Two
alternative approaches can be taken, viz., to reset average
values periodically or to compute moving averages. In this
work, we show how a moving average allows us to react in
a timely manner to changes in the workload while keeping
the system stable. Finally, the overheads involved in the
control actions can only be avoided by adding a predictive
controller. In this work, we were based our predictions on
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historical information. However, we also highlighted that
the coexistence of two autonomic controllers acting on the
same variable (number of VMs) leads to the establishment
of coordination policies, which if not defined carefully could
hinder performance.

9 CONCLUSIONS

In this paper, we propose an approach that optimizes the
computational resource management for distributed data-
driven applications. We validate our approach by managing
the computational demands of a distributed controlled EV
battery charging process within a single geographical level.
This scenario considers that an EV aggregator is in charge
of managing electricity demand over a large number of
areas, therefore requiring a pool of computational resources
to estimate charging demand. Resource management in the
context of this work involves dynamic allocation of VMs
and queueing theory. When the charging requests for each
area arrive at the EV aggregator, it computes a charging
scheduling for each area. This is achieved by means of a
controller that automatically allocates/deallocates VMs in
accordance with the number of EVs. The controller monitors
input rates and execution times, periodically computes the
target waiting times (queue sizes), and reactively regulates
allocated VMs accordingly to enforce computations in a
timely manner. Nevertheless, due to current maturity of
technologies, the cloud paradigm has to face significant
overheads in the VM (de-)provisioning process. Our con-
troller is also designed to leverage demand prediction mod-
els (e.g., based on historical records), so that it can anticipate
variations in the charging demand, deriving the number
of VMs required and, thus, minimizing the provisioning
overheads. A coordination policy has been proposed in
order to guarantee that both autonomic behaviors cooperate
towards achieving the desired objective. We implemented
our approach on top of the CometCloud system to support
Cloud federation and validated it using trace data of EV
charging demands from the ECOTality project.

Although we focused our computational findings on the
EV charging challenge, our approach can also be general-
ized to other medium to high latency applications in areas
such as surveillance and monitoring [1], smart-traffic man-
agement, or energy management in smart building [2]. In
all these domains, similar applications that share require-
ments can be found: data is received from sensors period-
ically, response times need to be in the order of seconds,
minutes, or even hours, and their workloads are typically
coarse-grained and more complex, hence involving more
computational resources, often executed as batch processes.
Currently, we are working on a more general predictor
model, based on time series analysis, suitable for a broader
range of applications. Moreover, we are exploring how
to consider other non-functional objectives such as energy
consumption.

ACKNOWLEDGMENT

This work was supported in part by: the Spanish Ministry of
Education, (Framework Program CEI Iberus – Universidad
de Zaragoza, for faculty staff, mobility call 2014), the Span-
ish Ministry of Economy (program “Programa de I+D+i

Estatal de Investigación, Desarrollo e innovación Orientada
a los Retos de la Sociedad” –TIN2013-40809-R), NSF via
grants numbers ACI 1339036, ACI 1441376. The research at
Rutgers was conducted as part of the Rutgers Discovery
Informatics Institute (RDI2).

REFERENCES

[1] A. Anjum, T. Abdullah, M. Tariq, Y. Baltaci, and N. Antonopoulos,
“Video stream analysis in clouds: An object detection and classi-
fication framework for high performance video analytics,” IEEE
Transaction on Cloud Computing, 2016 - to appear.

[2] I. Petri, O. Rana, Y. Rezgui, H. Li, T. Beach, M. Zou, J. Diaz-Montes,
and M. Parashar, “Cloud supported building data analytics,” in
CCGrid, 2014, pp. 641–650.

[3] C. Herath and B. Plale, “Streamflow programming model for data
streaming in scientific workflows,” in CCGrid, 2010, pp. 302–311.

[4] Y. Simmhan, B. Cao, M. Giakkoupis, and V. K. Prasanna, “Adap-
tive rate stream processing for smart grid applications on clouds,”
in Intl. workshop on Scientific cloud computing, 2011, pp. 33–38.

[5] F. McMorrin, R. Anderson, I. Featherstone, and C. Watson,
“Plugged-in fleets: A guide to deploying electric vehicles (EVs)
in fleets,” The Climate Group, Tech. Rep., February 2012.

[6] P. Papadopoulos, O. Akizu, L. Cipcigan, N. Jenkins, and E. Zabala,
“Electricity demand with electric cars in 2030: comparing Great
Britain and Spain,” Proceedings of the Institution of Mechanical
Engineers, Part A: Journal of Power and Energy, vol. 225, no. 5, pp.
551–566, 2011.

[7] E. L. Karfopoulos, C. E. Marmaras, and N. Hatziargyriou, “Charg-
ing control model for electric vehicle supplier aggregator,” in 3rd
IEEE ISGT Europe, 2012.

[8] E. Sortomme, M. Hindi, S. MacPherson, and S. Venkata, “Coor-
dinated charging of plug-in hybrid electric vehicles to minimize
distribution system losses,” Smart Grid, IEEE Transactions on, vol. 2,
no. 1, pp. 198–205, 2011.

[9] S. Deilami, A. Masoum, P. Moses, and M. A. S. Masoum, “Real-
Time Coordination of Plug-In Electric Vehicle Charging in Smart
Grids to Minimize Power Losses and Improve Voltage Profile,”
Smart Grid, IEEE Transactions on, vol. 2, no. 3, pp. 456–467, 2011.

[10] E. Karfopoulos and N. Hatziargyriou, “A multi-agent system for
controlled charging of a large population of electric vehicles,”
Power Systems, IEEE Transactions on, vol. 28, no. 2, pp. 1196–1204,
2013.

[11] P. Papadopoulos, “Integration of electric vehicles intro distribution
networks,” Ph.D. dissertation, Cardiff University, 2012.

[12] I. Grau, P. Papadopoulos, S. Skarvelis-Kazakos, L. M. Cipcigan,
N. Jenkins, and E. Zabala, “Management of electric vehicle bat-
tery charging in distribution networks with multi-agent systems,”
Electric Power Systems Research, 2014.

[13] E. L. Karfopoulos and N. D. Hatziargyriou, “A multi-agent system
for controlled charging of a large population of electric vehicles,”
Power Systems, IEEE Transactions on, vol. 28, no. 2, pp. 1196–1204,
2013.

[14] J. D. C. Little, “OR FORUM - little’s law as viewed on its 50th
anniversary,” Operations Research, vol. 59, no. 3, pp. 536–549, 2011.

[15] F. J. A. Morais, F. V. Brasileiro, R. V. Lopes, R. A. Santos, W. Satter-
field, and L. Rosa, “Autoflex: Service agnostic auto-scaling frame-
work for iaas deployment models,” in CCGrid, Delft, Netherlands,
2013.

[16] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes, “AGILE:
elastic distributed resource scaling for infrastructure-as-a-service,”
in ICAC’13, San Jose, CA, USA, 2013, pp. 69–82.

[17] S. Schey, “Q2 2013 report – the ev project,” ECOTality North
America, Tech. Rep., 2013.

[18] S.-H. Kim and W. Whitt, “Statistical analysis with little’s law,”
Operations Research, vol. 61, no. 4, pp. 1030–1045, 2013.

[19] R. Tolosana-Calasanz, J. Á. Bañares, O. F. Rana, C. Pham, E. Xydas,
C. E. Marmaras, P. Papadopoulos, and L. Cipcigan, “Enforcing
quality of service on opennebula-based shared clouds,” in 14th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting, CCGrid 2014, Chicago, IL, USA, May 26-29, 2014, 2014, pp.
651–659.

[20] J. Gao, Y. Xiao, J. Liu, W. Liang, and C. P. Chen, “A Survey
of Communication/Networking in Smart Grids,” Future Gener.
Comput. Syst., vol. 28, no. 2, pp. 391–404, Feb. 2012.



13

[21] E. Xydas, C. Marmaras, L. M. Cipcigan, N. Jenkins, S. Carroll,
and M. Barker, “A data-driven approach for characterising the
charging demand of electric vehicles: A uk case study,” Applied
Energy, vol. 162, pp. 763–771, 2016.

[22] S. Xydas, C. E. Marmaras, L. M. Cipcigan, A. Hassan, and N. Jenk-
ins, “Electric vehicle load forecasting using data mining methods,”
in Hybrid and Electric Vehicles Conference, IET. IET, 2013, pp. 1–6.

[23] M. Parashar and S. Hariri, “Autonomic computing: An overview,”
in Unconventional Programming Paradigms. Springer Berlin Hei-
delberg, 2005, pp. 257–269.

[24] J. Diaz-Montes, M. AbdelBaky, M. Zou, and M. Parashar, “Comet-
cloud: Enabling software-defined federations for end-to-end ap-
plication workflows,” IEEE Internet Computing, vol. 19, no. 1, pp.
69–73, 2015.

[25] R. Tolosana-Calasanz, J. Diaz-Montes, O. F. Rana, and M. Parashar,
“Extending cometcloud to process dynamic data streams on het-
erogeneous infrastructures,” in Intl. Conf. on Cloud and Autonomic
Computing (ICCAC), 2014.

[26] H. Fattah and C. Leung, “An overview of scheduling algorithms
in wireless multimedia networks,” Wireless Communications, IEEE,
vol. 9, no. 5, pp. 76–83, 2002.

[27] R. Guérin and V. Peris, “Quality-of-service in packet networks:
basic mechanisms and directions,” Computer Networks, vol. 31,
no. 3, pp. 169–189, 1999.

[28] D. Tsoumakos, I. Konstantinou, C. Boumpouka, S. Sioutas, and
N. Koziris, “Automated, elastic resource provisioning for nosql
clusters using TIRAMOLA,” in CCGrid, Delft, Netherlands, 2013.

[29] N. D. Mickulicz, P. Narasimhan, and R. Gandhi, “To auto scale or
not to auto scale,” in ICAC, San Jose, CA, 2013, pp. 145–151.

[30] E. B. Lakew, K. Cristian, H.-R. Francisco, and E. Erik, “Towards
faster response time models for vertical elasticity,” in IEEE/ACM
UCC, London, UK, 2014, pp. 560–565.

[31] V. Bhat, “Autonomic management of data streaming and in-
transit processing for data intensive scientific workflows,” Ph.D.
dissertation, Rutgers University, 2008.

[32] L. Golab and M. T. Özsu, “Issues in data stream management,”
SIGMOD Rec., vol. 32, no. 2, pp. 5–14, 2003.

[33] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
stream computing platform,” in IEEE Intl. Conf. on Data Mining
Workshops (ICDMW), 2010, pp. 170–177.

[34] A. Biem, E. Bouillet, H. Feng et al., “Ibm infosphere streams for
scalable, real-time, intelligent transportation services,” in ACM
SIGMOD Intl. Conf. on Management of Data, 2010, pp. 1093–1104.

[35] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Cetintemel, Y. Xing, and S. Zdonik, “Scalable Distributed
Stream Processing,” in 1st Conf. on Innovative Data Systems Research
(CIDR), Asilomar, CA, 2003.

[36] D. J. Abadi, Y. Ahmad, M. Balazinska et al., “The Design of the
Borealis Stream Processing Engine,” in 2nd Conf. on Innovative Data
Systems Research (CIDR), Asilomar, CA, 2005.

[37] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, and P. Val-
duriez, “Streamcloud: A large scale data streaming system,” in
IEEE Intl. Conf. on Distributed Computing Systems, 2010, pp. 126
–137.

[38] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Dis-
cretized streams: Fault-tolerant streaming computation at scale,”
in ACM Symp. on Operating Systems Principles, 2013, pp. 423–438.

[39] S. Vijayakumar, Q. Zhu, and G. Agrawal, “Dynamic resource pro-
visioning for data streaming applications in a cloud environment,”
in IEEE CloudCom, 2010, pp. 441–448.

[40] A. G. Kumbhare, Y. Simmhan, and V. K. Prasanna, “Exploit-
ing application dynamism and cloud elasticity for continuous
dataflows,” in SC’13, Denver, CO, USA, 2013.

[41] R. Tolosana-Calasanz, J. A. Bañares, and O. F. Rana, “Autonomic
streaming pipeline for scientific workflows,” Concurr. Comput. :
Pract. Exper., vol. 23, no. 16, pp. 1868–1892, 2011.

[42] J. Á. Bañares, O. F. Rana, R. Tolosana-Calasanz, and C. Pham,
“Revenue creation for rate adaptive stream management in multi-
tenancy environments,” in GECON, 2013, pp. 122–137.

[43] R. Tolosana-Calasanz, J. Á. Bañares, C. Pham, and O. F. Rana,
“Enforcing qos in scientific workflow systems enacted over cloud
infrastructures,” Journal of Computer and System Sciences, vol. 78,
no. 5, pp. 1300–1315, 2012.

[44] A. Mehta, J. Durango, J. Tordsson, and E. Elmroth, “Online spike
detection in cloud workloads,” in IEEE Intl. Conf. on Cloud Engi-
neering, IC2E, Tempe, AZ, USA, 2015, pp. 446–451.

[45] M. Arlitt and T. Jin, “A workload characterization study of the
1998 world cup web site,” IEEE Network, vol. 14, no. 3, pp. 30–37,
2000.

[46] P. Bodík, A. Fox, M. J. Franklin, M. I. Jordan, and D. A. Patterson,
“Characterizing, modeling, and generating workload spikes for
stateful services,” in 1st ACM Symposium on Cloud Computing

(SoCC), Indianapolis, Indiana, USA, 2010, pp. 241–252.


