
ar
X

iv
:1

60
6.

04
66

9v
2

 [c
s.

D
C

]
11

 J
an

 2
01

7
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper.2016;00:1–11
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Parallel Space Saving on Multi and Many-Core Processors

Massimo Cafaro1,2 ∗†, Marco Pulimeno1, Italo Epicoco1,2 and Giovanni Aloisio1,2

1University of Salento, Lecce, Italy
2CMCC Foundation - Euro-Mediterranean Centre on Climate Change, Lecce, Italy

SUMMARY

Given an arrayA of n elements and a value2 ≤ k ≤ n, a frequent item ork-majority element is an element
occurring inA more thann/k times. Thek-majority problem requires finding all of thek-majority elements.
In this paper we deal with parallel shared-memory algorithms for frequent items; we present a shared-
memory version of the Space Saving algorithm and we study itsbehavior with regard to accuracy and
performance on many and multi-core processors, including the Intel Phi accelerator. We also investigate
a hybrid MPI/OpenMP version against a pure MPI based version. Through extensive experimental results
we prove that the MPI/OpenMP parallel version of the algorithm significantly enhances the performance of
the earlier pure MPI version of the same algorithm. Results also prove that for this algorithm the Intel Phi
accelerator does not introduce any improvement with respect to the Xeon octa-core processor. Copyrightc©
2016 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Data Stream; Frequent Items; Multi-Core; Many-Core

1. INTRODUCTION

In this paper we deal with parallel shared-memory algorithms for frequent items. In data mining,
this problem is usually associated to two contexts, the on–line (stream) and the off–line setting, the
difference being that in the former case we are restricted toa single scan of the input. In practice,
this implies that verifying the frequent items that have been found in order to discard false positives
is not allowed, while in the latter case a parallel scan of theinput can be used to determine the actual
frequent items. Finding frequent items is also referred to as hot list analysis[1] or market basket
analysis[2].

In the context of data bases, the problem is usually called aniceberg query[3], [4]. The name
arises from the fact that the number of frequent items is often very small (the tip of an iceberg) when
compared to the large amount of input data (the iceberg).

Given an arrayA of n elements and a value2 ≤ k ≤ n, a frequent item ork-majority element is
an element occurring inA more thann/k times. Thek-majority problem requires finding all of the
k-majority elements.

For k = 2, the problem reduces to the well known majority problem [5] [6] [7]. The k-majority
problem has been solved sequentially first by Misra and Gries[8]. In their paper, it is shown how to
solve it in timeO(n log k). Besides being important from a theoretical perspective, algorithms for
this problem are also extremely useful in practical contexts such as, for instance, in all of the cases
(such as electronic voting) where a quorum of more thann/k of all of the votes received is required

∗Correspondence to: Facoltà di Ingegneria, Università del Salento, Via per Monteroni, 73100 Lecce Italy
†E-mail: massimo.cafaro@unisalento.it

Copyright c© 2016 John Wiley & Sons, Ltd.

Prepared usingcpeauth.cls [Version: 2010/05/13 v3.00]

http://arxiv.org/abs/1606.04669v2

2 M. CAFARO ET AL.

for a candidate to win; another good example is extracting essential characteristics of network traffic
streams passing through internet routers: the frequency estimation of internet packet streams [9] is
indeed an instance of thek-majority problem.

Another example is monitoring internet packets in order to infer network congestion [10], [11].
The problem also arises in the context of the analysis of web query logs [12], and is relevant
in Computational Linguistics, for instance in connection with the estimation of the frequencies
of specific words in a given language [13], or in all contexts where a verification of the Zipf–
Mandelbrot law is required [14], [15] (theoretical linguistics, ecological field studies [16], etc.). We
note that the class of applications considered here is characterized by the conditionk = O(1).

In this paper, after a brief technical introduction to the algorithm, we provide experimental results
obtained on one cluster node equipped with two octa-core Intel Xeon CPU E5-2630 v3 at 2.4 Ghz,
kindly provided by CINECA in Italy. Moreover, we also take into account the Intel MIC (Many
Integrated Cores) architecture as a target, and provide experimental results on the Intel Phi 7120P
accelerator.

Finally, we also implemented a hybrid parallel version of our algorithm exploiting MPI (Message-
Passing Interface) inter-node and OpenMP intra-node, and compare this version against a pure MPI
implementation on up to 512 cores.

The rest of the paper is organized as follows. In Section2 we give an overview of related work,
in Section3, we recall our algorithm and describe its shared-memory implementation. Next, we
provide extensive experimental results in Section4, and conclude the paper in Section5.

2. RELATED WORK

Thek-majority problem has been solved sequentially first by Misra and Gries [8]. Demaine et al.
[9] and Karp et al. [17] proposed independently optimal algorithms which, however, are identical to
the Misra and Gries algorithm.Frequent, the algorithm designed by Demaine et al. exploits better
data structures (a doubly linked list of groups, supportingdecrementing a set of counters at once in
O(1) time) and achieves a worst-case complexity ofO(n). The algorithm devised by Karp et al. is
based on hashing and therefore achieves theO(n) bound on average.

Cormode and Hadjieleftheriou present in [18] a survey of existing algorithms, which are classified
ascounteror sketchbased. All of the algorithms we have discussed so far belong to the former
class; notable examples of counters–based algorithms developed recently includeLossyCounting
[19] andSpace Saving[20] [21]. Among the sketch–based ones, we recall hereCountSketch[12]
andCountMin[22].

The problem of merging two data summaries naturally arises in a distributed or parallel setting,
in which a data set is partitioned between two or among several data sets. The goal in this context
is to merge two data summaries into a single summary which provides candidate frequent items for
the union of the input data sets. In particular, in order for the merged summary to be useful, it is
required that its size and error bounds are those of the inputdata summaries. A few years ago we
designed an algorithm [23] [24] for merging in parallel counter-based data summaries which are the
output of theFrequent[9] algorithm.

Recently, we have designed and implemented in MPI a ParallelSpace Saving algorithm [25] for
message-passing architectures. The availability of the latest Intel compilers (2017 release, v17),
supporting the OpenMP v4.x specification, led us to implement a corresponding shared-memory
version based on OpenMP v4. In particular, we exploit the OpenMP v4.x specification, which
introduces a new user’s defined reduction feature, allowingfor both faster and easier porting of
our previous message-passing based algorithm in the context of shared-memory architectures.

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2016)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

3

3. THE PARALLEL ALGORITHM

In this Section, we provide implementation details regarding the parallel algorithms we have
implemented. Before delving into details, we briefly recallhere the definition of frequent item,
which is based on a parameterk.

Given an inputarray A, with size(A) = n, a k–majority element (orfrequent item) is an
elementx whosefrequencyfA(x) (i.e., number of occurrences ofx in the arrayA) is such that
fA(x) ≥

⌊

n
k

⌋

+ 1.
We recall here a few basic facts related to the sequential Space Saving algorithm. The algorithm

uses exactlyk counters in order to solve thek-majority problem sequentially, and allows estimating
the maximum error committed when computing the frequency ofan item. Let denote byS[i].e and
S[i].f̂ respectively the iteme and its estimated frequencŷf monitored by theith counter of the
stream summaryS. When processing an item which is already monitored by a counter, its estimated
frequency is incremented by one. When processing an item which is not already monitored by one
of the available counters, there are two possibilities. If acounter is available, it will be in charge
of monitoring the item and its estimated frequency is set to one. Otherwise, if all of the counters
are already occupied, the counter storing the item with minimum frequency is incremented by one.
Then the monitored item is evicted from the counter and replaced by the new item.

The parallel version of the Space Saving algorithm exploitsa data parallel approach by
distributing a block of the input stream to each process. Theparallel algorithm works as follows. In
the initial domain decomposition, each process determinesthe indices of the first and last element
related to its block, by applying a simple block distribution, in which each process is responsible
for either ⌊n/p⌋ or ⌈n/p⌉ elements, wherep is the number of available processes. Then, each
process determines a local stream summary data structure storing its local candidates and their
corresponding estimated frequencies, by using the well-known sequential algorithm, shown in the
pseudocode of Algorithm1 as theSpaceSavingfunction call. An hash table is then built, storing the
local candidates as keys and their corresponding estimatedfrequencies as values. This hash table is
then sorted in ascending order by frequencies and used as input for the parallel reduction, whose
purpose is to determine global candidates. This step is carried out by means of theParallelReduction
function. When the reduction completes, the resulting summary containing the global candidates is
pruned (by removing all of the items below the threshold required for an item to be frequent) and
returned.

Algorithm 1 Parallel Space Saving.
Require: N , the input data stream array;n, the length ofN ; p, the number of processes;k, the

k-majority parameter
Ensure: an hash table containingk–majority candidate elements

1: procedure PARALLEL SPACESAVING (N , n, p, k)
2: r ← GETPROCESSRANK

3: left← ⌊r n/p⌋ ⊲ the index of the first element of the sub-array
4: right← ⌊(r + 1) n/p⌋ − 1 ⊲ the index of the last element of the sub-array
5: local← SPACESAVING (N , left, right, k) ⊲ determine local candidates
6: sort local by counters’ frequency in ascending order
7: global← PARALLEL REDUCTION(local, k, COMBINE)
8: if r == 0 then ⊲ the process with rank 0 holds the final result of the reduction
9: result← PRUNED(global, n, k)

10: end if
11: return result
12: end procedure

The parallel reduction uses our user’s definedcombineoperator to merge two stream summaries.
Thecombineoperator, shown as Algorithm2, works as follow. We determinem1 andm2, which
are the minimum of all of the frequencies stored respectively in S1 andS2. Since the hash tables are

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2016)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

4 M. CAFARO ET AL.

ordered,m1 andm2 are simply the frequencies stored in the first counter ofS1 andS2. Then, we
scan the first stream summary, and for each item inS1 we check if the item also appears inS2 by
calling thefind function. In this case, we insert the entry for the item inSC , storing as its estimated
frequency the sum of its frequencies appearing inS1 andS2. Otherwise, if the current item does
not belong toS2, we insert the entry for the item storing as its estimated frequency the sum of its
frequency and the minimum of all of the frequencies inS2.

We then scan the second stream summaryS2. Since each time an item inS1 which was also
present inS2 has been removed fromS2, now S2 contains only items that do not appear inS1.
For each item inS2 we simply insert the item inSC and we store as its estimated frequency the
sum of its frequency and the minimum frequencies of all of theitems inS1. Finally, the entries in
SC are sorted by the frequencies. Note that the combined streamsummariesSC contain exactly2k
counters which may monitor at most2k distinct items. However, we need to return at mostk items.
Therefore, only thek counters with the greatest frequencies are kept inSC . In [25] we proved that
the correctness and the error bounds are preserved by the parallel reduction.

Regarding the shared-memory version, we used OpenMP v4. Theinput dataset, an array ofn
elements, is partitioned amongt OpenMP threads by using a block-based domain decomposition,
in which each thread determines the indices of the first and last element related to its block, so that
each thread is responsible for either⌊n/t⌋ or ⌈n/t⌉ elements.

After declaring the user’s defined reduction, the algorithmworks exactly as described in [25]
for its message-passing based counterpart, with OpenMP threads executing in a parallel region the
sequential Space Saving algorithm [20] [21] on their own block of the input dataset, and producing
corresponding stream summaries which are then merged together using the user’s defined reduction
before exiting the parallel region.

Algorithm 2 Combine.
Require: S1, S2: hash tables ordered by counters’ frequency;k, thek-majority parameter
Ensure: an hash table, which is thecombined summarySC

1: procedure COMBINE(S1, S2, k)
2: m1 ← S1[0].f̂ ⊲ minimum of all of the frequencies inS1
3: m2 ← S2[0].f̂ ⊲ minimum of all of the frequencies inS2
4: let SC be an empty hash table
5: for each counter1 in S1 do
6: newcounter.item← counter1.item
7: counter2 ← S2.FIND(counter1.item)
8: if counter2 then
9: newcounter.f̂ ← counter1.f̂ + counter2.f̂

10: S2.REMOVE(counter2)
11: else
12: newcounter.f̂ ← counter1.f̂ +m2

13: end if
14: SC .PUT(newcounter)
15: end for
16: for each counter2 in S2 do
17: newcounter.item← counter2.item
18: newcounter.f̂ ← counter2.f̂ +m1

19: SC .PUT(newcounter)
20: end for
21: SC .PRUNE(k) ⊲ Selectk counters with the greatest frequencies and delete the others
22: return SC
23: end procedure

We also developed a hybrid MPI/OpenMP version, in which we take advantage of OpenMP
threads intra-node, and use MPI processes inter-node. In this version, the input array is initially

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2016)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

5

Table I. Design of experiments. The input stream sizen is expressed in billions, the number of Space Saving
countersk is expressed in thousands andρ denotes the skewness of the input data distribution.

Exp. Technology Varying n, k, ρ Processing
Elements

1 OpenMP (Xeon)
n = {4, 8, 16, 29} k = 2, ρ = 1.1

Thrs: 1, 2, 4, 8, 16k = {0.5, 1, 2, 4, 8} n = 8, ρ = 1.1
ρ = {1.1, 1.8} n = 8, k = 2

2
MPI/OpenMP vs
MPI (Xeon)

n = {4, 8, 16, 29} k = 2, ρ = 1.1
Cores: 1, 32, 64,
128, 256, 512

k = {0.5, 1, 2, 4, 8} n = 29, ρ = 1.1
ρ = {1.1, 1.8} n = 29, k = 2

3 OpenMP (MIC)
k = {0.5, 1, 2, 4, 8} n = 3, ρ = 1.1 Thrs: 15, 30, 60,

120, 240ρ = {1.1, 1.8} n = 3, k = 2

4
Xeon vs MIC
(MPI/OpenMP)

k = {0.5, 1, 2, 4, 8} n = 3, ρ = 1.1 Sockets: 1, 4, 8,
16, 32, 64ρ = {1.1, 1.8} n = 3, k = 2

partitioned among the MPI processes, and then each MPI process sub-array is partitioned again
among the available OpenMP threads. Once the subarray has been processed in the OpenMP parallel
region, and a corresponding output stream summary has been produced at the end of the parallel
region, this summary is then used as input for the MPI user’s defined reduction in which the MPI
processes’ summaries are merged together to produce the algorithm’s final output.

Finally, for the MIC version, we used the MPI/OpenMP versionin which we offload the execution
of the Space Saving algorithm and the subsequent parallel user’s defined reduction of the MPI
processes to the Intel Phi accelerator. I/O operations are instead executed on the CPU.

4. EXPERIMENTAL RESULTS

In this Section we report the experimental results we obtained carrying out several experiments on
the Galileo cluster machine at CINECA in Italy. This machineis a linux CentOS 7.0 NeXtScale
cluster with 516 compute nodes; each node is equipped with 2 2.40 GHz octa-core Intel Xeon CPUs
E5-2630 v3, 128 GB RAM and 2 16 GB Intel Phi 7120P accelerators(available on 384 nodes only).
High-Performance networking among the nodes is provided byIntel QDR (40Gb/s) Infiniband. All
of the codes were compiled using the Intel C++ compiler v17.

Let f be the true frequency of an item and̂f the corresponding frequency reported by an

algorithm, then the relative error is defined as∆f =
|f−f̂|

f
, and the average relative error is derived

by averaging the absolute relative errors over all of the measured frequencies.
Precision, a metric defined as the total number of truek-majority elements reported over the

total number of items reported, quantifies the number of false positives reported by an algorithm
in the output stream summary. Recall is the total number of true k-majority elements reported
over the number of truek-majority elements given by an exact algorithm. In all of theresults we
obtained 100% recall (since the algorithm is deterministic) and precision (owing to the use of the
Space Saving algorithm); for this reason, to avoid wasting space, we do not show here precision
plots. Rather, we present Average Relative Error (ARE) and runtime/performance plots since we
are interested in understanding the error behavior and the algorithm’s scalability when we use an
increasing number of cores of execution. TableI summarizes all of the experiments and in the next
sub-sections we present and discuss the results obtained.

4.1. Evaluation of the OpenMP version on the Intel Xeon

The first experiment aimed at analyzing the pure OpenMP parallel version of the code on 1, 2, 4,
8 and 16 Xeon cores. For this experiment we used 5 different synthetic input datasets with 1, 4,
8, 16 and 29 billion items derived from a zipfian distributionwith skew1.1 usingk = 2000 Space

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2016)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

6 M. CAFARO ET AL.

Saving counters. We also evaluated the scalability and ARE with different number of counters using
k = {500, 1000, 2000, 4000, 8000} and an input dataset made of 29 billion items with skew1.1.
Finally we executed the OpenMP parallel version with two different zipfian skew values1.1 and1.8
using 2000 counters and an input dataset of 29 billion items.

Figure 1 presents the Average Relative Error (ARE) we obtained in thefirst experiment. In
particular, Figures1a, 1band1cshow the ARE values when executing the OpenMP parallel version
on increasing number of cores and respectively with different numbers of Space Saving counters
(k), different sizes of the input stream (n) and different skews (ρ) of the input distribution. In all of
the cases, the ARE values are either zero or extremely low andclose to zero.

●
●

●

●

●

▲
▲

▲

▲

▲

✶
✶

✶

✶

✶

◆
◆

◆

◆

◆

+

+

+

+

+

1 2 4 8 16

0

2

4

6

8

10

12

14

Cores

A
R
E
(1
0

-

8
)

ρ=1.1, n=8B

k

● 500 ▲ 1000 ✶ 2000 ◆ 4000 + 8000

(a) Varyingk

●

●

●

●

●

▲ ▲
▲

▲

▲

✶ ✶ ✶
✶

✶

◆ ◆ ◆ ◆
◆

+ + + + +

1 2 4 8 16

0

20

40

60

80

Cores

A
R
E
(1
0
-
8
)

ρ=1.1, k=2000

n

● 1B ▲ 4B ✶ 8B ◆ 16B + 29B

(b) Varyingn

●

●

●

●

●

▲ ▲ ▲ ▲ ▲

1 2 4 8 16

0

2

4

6

8

Cores

A
R
E
(1
0
-
8
)

n=8B, k=2000

�

● 1�� ▲ ���

(c) Varyingρ

Figure 1. Average relative error expressed in10
−8-th of the pure OpenMP parallel version.

Figure2 depicts both the runtime and performance in term of scalability of the OpenMP version.
Indeed, in order to analyze the scalability of the parallel algorithm, instead of plotting speedup
and efficiency, we present plots using a logarithmic scale for both axes, in which we plot raw
execution times varying the number of cores [26]. For strong scaling, i.e., for a problem of fixed
size, a straight line with slope -1 indicates good scalability, whereas any upward curvature away
from that line indicates limited scalability. The dashed lines represent the ideal scalability for each
result set. TableII reports the numerical results in terms of running time and speedup.

Analyzing the plots we can observe that the OpenMP parallel version reaches a good scalability.
Even with small input datasets the parallel efficiency is greater than 75% and the efficiency raises up
to 92% for bigger input stream sizes (see Figure2b). This behaviour is expected and it is due to the
so-called Amdahl effect [27], increasing the problem size the speedup increases as well. The reason
is that, in general, the overhead component has lower computational complexity than the potentially
parallelizable part of a computation, so increasing the problem size the complexity of the potentially
parallelizable part dominates the overhead complexity andthe speedup increases as well.

The parallel scalability is also affected by the number of Space Saving counters used. In particular,
the scalability decreases when the counters increase due tothe reduction operator included in the
algorithm. The greater is the number of counters, the greater is the time taken for the reduction,
hence, the communication overhead grows (see Figure2a). Finally, the skew of the input distribution
does not affect significantly the parallel scalability (as reported in Figure2c); the input distribution
skew influences only the final set of k-majority items but it does not impact on the operations
computed by the algorithm. Figure3 depicts the fractional overhead which measures the ratio of
the overhead time (that includes thread spawning, synchronization, the reduction operator) over the
computational time. We measured the fractional overhead varying both the number of Space Saving
counters (Figure3a) and the input stream size (Figure3b). The results show that the computational
time decreases faster than the overhead when the number of threads increases, hence, the fractional
overhead increases too with the number of threads and this explains why the speedup decreases.

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2016)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

7

●

●

●

●

●

▲

▲

▲

▲

▲

✶

✶

✶

✶

✶

◆

◆

◆

◆

◆

+

+

+

+

+

1 2 4 8 16

20

50

100

200

Cores

R
u
n
n
in
g
T
im
e
(s
)

ρ=1.1, n=8B

k

● 500 ▲ 1000 ✶ 2000 ◆ 4000 + 8000

(a) Varyingk

●

●

●

●

●

▲

▲

▲

▲

▲

✶

✶

✶

✶

✶

◆

◆

◆

◆

◆

+

+

+

+

+

1 2 4 8 16

5

10

50

100

500

1000

Cores

R
u
n
n
in
g
T
im
e
(s
)

ρ=1.1, k=2000

n

● 1B ▲ 4B ✶ 8B ◆ 16B + 29B

(b) Varyingn

●

●

●

●

●

▲

▲

▲

▲

▲

1 2 4 8 16

10

20

50

100

200

Cores

R
u
n
n
in
g
T
im
e
(s
)

n=8B, k=2000

�

● ��	 ▲
��

(c) Varyingρ

Figure 2. Running time expressed in seconds of the pure OpenMP parallel version. The dashed lines
represent ideal behavior.

Table II. OpenMP: in each cell the running time (in seconds) and the speedup are reported.

Cores
Varyingn Varyingk Varyingρ

4B 8B 16B 29B 500 1000 2000 4000 8000 1.1 1.8

1
120.60 238.45 481.33 1047.10 279.63 244.56 238.45 258.01 277.79 238.45 190.08

1 1 1 1 1 1 1 1 1 1 1

2
61.39 123.20 241.81 443.13 131.30 124.34 123.20 130.25 141.37 123.20 96.23
1.96 1.94 1.99 2.36 2.12 1.96 1.94 1.98 1.96 1.94 1.97

4
33.84 69.02 135.80 247.76 72.41 69.00 69.02 70.95 76.24 69.02 52.79
3.56 3.45 3.54 4.22 3.86 3.54 3.45 3.63 3.64 3.45 3.60

8
19.15 38.00 74.82 138.36 40.54 38.49 38.00 39.47 42.13 38.00 29.47
6.29 6.28 6.43 7.56 6.89 6.35 6.28 6.53 6.59 6.28 6.44

16
9.74 19.46 38.77 71.00 21.24 19.62 19.46 20.28 21.72 19.46 15.11
12.37 12.25 12.41 14.74 13.15 12.45 12.25 12.71 12.78 12.25 12.57

● ● ● ●

●

▲
▲ ▲

▲

▲

✶

✶

✶

✶ ✶

◆ ◆ ◆

◆

◆

+ + + +

+

1 2 4 8 16

0.00

0.02

0.04

0.06

0.08

Cores

F
ra
c
ti
o
n
a
l
O
v
e
rh
e
a
d

ρ=1.1, n=8B

k

● 500 ▲ 1000 ✶ 2000 ◆ 4000 + 8000

(a) Varyingk

●

●

●
●

●

▲ ▲ ▲

▲ ▲

✶

✶

✶

✶

✶

◆ ◆

◆

◆

◆

+ + +

+

+

1 2 4 8 16

0.0

0.5

1.0

1.5

2.0

Cores

F
ra
c
ti
o
n
a
l
O
v
e
rh
e
a
d

ρ=1.1, k=2000

n

● 1B ▲ 4B ✶ 8B ◆ 16B + 29B

(b) Varyingn

Figure 3. Fractional overhead of the pure OpenMP version. The fractional overhead is the ratio of the
overhead time over the computational time.

4.2. Comparison between MPI and MPI/OpenMP parallel versions

In the second experiment we analyzed and compared the performance of the pure MPI parallel
version of the algorithm against the hybrid implementationbased on MPI/OpenMP paradigm.
Detailed results are presented in TablesIII andIV where the running time and speedup are reported

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2016)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

8 M. CAFARO ET AL.

when varying the number of cores and input parameters such asthe number of Space Saving
counters, the size of the input stream and the skew of the input distribution.

The hybrid version has been executed using 8 threads per MPI process, and each thread has been
mapped to a single core. Hence, the number of cores also corresponds to the total number of threads
spawned. The choice of 8 threads per process directly derives from the kind of processors available
on the parallel architecture; the processors are octa-coreXeon with hyperthreading (which is the
Intel implementation of SMT, Simultaneous Multi Threading) disabled.

The plots in Figure4 provide the performance comparison between the MPI and MPI/OpenMP
versions of the algorithm. We reported only two cases with different input stream sizes (8 and
29 billion items) with skew 1.1 and fixing 2000 counters. The performance of both versions
are comparable. The slight differences on the fractional overhead does not introduce significant
differences on the speedup between both versions. This can be explained owing to the fact that the
algorithm is compute intensive and the communication overhead can have a relevant impact on the
performance when using a high number of cores. The MPI version has a poor scalability on 512
cores, with a parallel efficiency which is around 50%. It is worth recalling here that in this case,
the input size (29 billion of items) is not enough to provide good scalability on 512 cores owing
to the Amdahl effect. With the hybrid parallel version we canachieve better performance with an
efficiency greater than 62% and in some cases reaching 85%.

●

●

●

●

●

●

▲

▲

▲

▲

▲

▲

1 3 64 128 2�� 5��

0.5

1

5

10

50

100

Cores

R
u
n
n
in
g
T
im
e
(s
)

n=4�� k=����� ρ=1.1

● MPI ▲ Hybrid

(a) Small stream size

●

●

●

●

●

●

▲

▲

▲

▲

▲

▲

1 32 64 128 256 512

5

10

50

100

500

1000

Cores

R
u
n
n
in
g
T
im
e
(s
)

n=29B, k=2000, ρ=1.1

● MPI ▲ Hybrid

(b) Big stream size

●

●

●

●

●

●

▲

▲

▲

▲

▲
▲

1 32 64 128 256 512
0.00

0.05

0.10

0.15

0.20

0.25

Cores

F
ra
c
ti
o
n
a
l
O
v
e
rh
e
a
d

n=��� k=���� ρ=1.1

● MPI ▲ Hybrid

(c) Small stream size

●

●

●

●

●

●

▲

▲

▲ ▲

▲

▲

1 32 64 128 256 512
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Cores

F
ra
c
ti
o
n
a
l
O
v
e
rh
e
a
d

n=29B, k=2000, ρ=1.1

● MPI ▲ Hybrid

(d) Big stream size

Figure 4. Performance comparison between pure MPI and MPI/OpenMP parallel versions.

4.3. Evaluation of the OpenMP version on Intel Phi accelerator

In the third experiment we determined the best configurationof our code on one single Intel Phi
accelerator e.g. we measured the performance varying the number of threads on a single Intel Phi
accelerator. For this experiment we used an input dataset with 3 billion items with skew 1.1 and

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2016)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

9

Table III. MPI: in each cell the running time (in seconds) andthe speedup are reported.

Cores
Varyingn Varying k Varying ρ

4B 8B 16B 29B 500 1000 2000 4000 8000 1.1 1.8

1
122.24 238.96 481.52 874.88 953.10 892.38 874.88 935.06 976.47 874.88 689.42

1 1 1 1 1 1 1 1 1 1 1

32
4.79 9.58 19.20 34.94 39.57 34.75 34.94 36.53 38.58 34.94 27.14
25.48 24.92 25.07 25.04 24.08 25.67 25.04 25.59 25.30 25.04 25.40

64
2.57 6.45 9.87 17.36 19.10 17.67 17.36 18.38 19.59 17.36 13.86
47.54 37.01 48.76 50.38 49.89 50.49 50.38 50.85 49.82 50.38 49.72

128
1.26 2.68 5.04 10.44 9.90 9.17 10.44 9.67 14.04 10.44 7.16
96.99 88.86 95.42 83.79 96.23 97.29 83.79 96.63 69.54 83.79 96.15

256
0.73 1.98 3.67 6.05 7.04 6.64 6.05 6.96 7.17 6.05 3.73

167.39 120.46 131.00 144.65 135.29 134.21 144.65 134.17 136.06 144.65 184.41

512
0.44 1.02 1.90 3.35 3.57 3.41 3.35 3.48 3.65 3.35 2.12

272.76 232.96 253.12 261.39 266.54 261.51 261.39 268.40 267.22 261.39 323.69

Table IV. MPI/OpenMP: in each cell the running time (in seconds) and the speedup are reported.

Varyingn Varyingk Varyingρ

4B 8B 16B 29B 500 1000 2000 4000 8000 1.1 1.8

1
119.53 238.32 479.27 869.83 1148.35 881.50 869.83 1068.89 992.36 869.83 730.49

1 1 1 1 1 1 1 1 1 1 1

32
4.81 9.62 19.09 34.47 36.72 34.73 34.47 36.20 38.08 34.47 26.43
24.82 24.77 25.09 25.24 31.26 25.37 25.24 29.51 26.05 25.24 27.62

64
2.55 4.92 9.67 17.38 18.68 19.70 17.38 18.37 19.40 17.38 13.42
46.76 48.40 49.51 50.05 61.46 44.73 50.05 58.16 51.12 50.05 54.39

128
1.28 2.45 5.45 9.26 9.48 9.90 9.26 10.34 10.29 9.26 7.59
93.06 97.13 87.78 93.94 121.07 88.96 93.94 103.34 96.34 93.94 96.16

256
0.72 1.28 2.79 4.87 5.33 5.01 4.87 5.21 5.54 4.87 3.68

165.25 184.92 171.38 178.49 215.10 175.62 178.49 205.04 178.83 178.49 198.45

512
0.36 0.67 1.46 2.40 2.60 2.46 2.40 2.53 2.86 2.40 1.92

325.83 353.46 326.86 363.11 440.08 357.97 363.11 422.02 346.61 363.11 380.10

2000 counters. The reason for limiting the dataset size to 3 billion of items is that each Intel Phi
accelerator is equipped with 16 GB of RAM and we could not use abigger input dataset. The
results reported in Figure5 reveal that the best performance on a single Intel Phi is obtained by
using 120 OpenMP threads, hence the code exploits the Intel Phi accelerator, at the best, with 2
hardware threads (instead of 4).

●

●

●

●

●

15 30 60 120 240

30

40

50

60

Num Threads

R
u
n
n
in
g
T
im
e
(s
)

k=2000, ρ=1.1, n=!

(a) Running time

●

●

●

● ●

15 30 60 120 240
0.0

0.5

1.0

1.5

Num Threads

F
ra
c
ti
o
n
a
l
O
v
e
rh
e
a
d

k=2000, ρ=1.1, n="

(b) Fractional overhead

●

●

●

●

●

15 30 60 120 240
0

1

2

3

Num Threads

A
R
E
(1
0
-
6
)

k=2000, ρ=1.1, n=#

(c) Average relative error

Figure 5. Performance evaluation on one single Intel Phi accelerator using the OpenMP version.

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2016)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

10 M. CAFARO ET AL.

4.4. Comparison between Xeon and MIC processors

In the fourth experiment we evaluated the scalability of theMPI/OpenMP parallel version executed
on Intel Phi accelerators instantiating 120 OpenMP threadsper MPI process and binding each
MPI process to one Intel Phi accelerator; the results were compared to those obtained using the
MPI/OpenMP on the Intel Xeon processors instantiating 8 OpenMP threads per MPI process and
binding each MPI process to one Xeon processor. We have compared the Phi and Xeon performance
varying the number of counters among 500, 1000, 2000, 4000, and 8000 units using an input dataset
made of 3 billion items with skew 1.1. Finally, we have also analyzed the behaviour varying the
dataset skew between 1.1 and 1.8 with an input dataset of 3 billion items and using 2000 counters.

The MPI/OpenMP version has been executed on Intel Phi offloading to the MIC accelerator the
computational part of the code and the interprocess communication, while the I/O operations are
executed on the CPU. Figure6 shows that execution on Intel Phi accelerator did not provide any
advantage with regard to the Intel Xeon processor. The motivation is twofold: our algorithm uses an
unordered and unpredictable pattern for memory accesses during the items’ frequency update owing
to the use of hash tables and this heavily limits the exploitation of the 512-bit wide SIMD vector unit
included in the Intel Phi accelerator; in addition, due to the non-contiguous access to memory, the
algorithm does not exhibit any data locality limiting the exploitation of the cache memory hierarchy.
Hence, even if the algorithm exposes a high level of data parallelism, it does not fit well the Intel Phi
accelerator architecture, making the use of the traditional Xeon processor more suitable for good
performance.

●

●

●

●

●
●

▲

▲

▲

▲

▲

▲

1 4 8 16 32 64

0.5

1

5

10

Number of Sockets

R
u
n
n
in
g
T
im
e
(s
)

k=2000, n=$

Processor

● Intel Phi ▲ Intel Xeon

(a) Running time

●

●
●

●

●

●

▲ ▲ ▲
▲ ▲ ▲

1 4 8 16 32 64
0

1

2

3

4

5

Number of S%&'()*

F
+,
.
/0
6
7
8
9
O
:
;
<=
>
?
@

k=2000, n=A

Processor

● Intel Phi ▲ Intel Xeon

(b) Fractional overhead

●
●

●

●

●

●

▲ ▲ ▲ ▲ ▲
▲

1 4 8 16 32 64
0

20

40

60

80

100

120

Number of BCDEGHI

A
R
E
(1
0
-
6
)

k=2000, n=J

Processor

● Intel Phi ▲ Intel Xeon

(c) Average relative error

Figure 6. Performance comparison between the Intel Xeon andIntel Phi using MPI/OpenMP parallel
version.

5. CONCLUSIONS

We have presented a shared-memory version of our Parallel Space Saving algorithm, and studied
its behavior with regard to accuracy and performance on multi and many-core processors, including
the Intel Xeon and Phi. In particular, we carried out severalexperiments and reported extensive
experimental results, including a comparison of a hybrid MPI/OpenMP version against a pure MPI
based version. The results demonstrated that the MPI/OpenMP parallel version of the algorithm
significantly improve the parallel speedup and efficiency due to the use of the shared-memory
approach reduces the communication overhead introduced bythe parallel reduction. Moreover we
have also experimented that for its characteristics, the Intel Phi accelerator is not suitable for this
algorithm since the algorithm exhibits a highly limited data locality and the non-contiguous memory
access limit the exploitation of the cache hierarchy.

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2016)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

11

ACKNOWLEDGEMENT

The authors would like to thank CINECA for granting the access to the Galileo supercomputer machine
through grant IsC40PFI HP10C84WLO.

REFERENCES

1. Gibbons PB, Matias Y. Synopsis data structures for massive data sets.DIMACS: Series in Discrete Mathematics and
Theoretical Computer Science: Special Issue on External Memory Algorithms and Visualization, vol. A., American
Mathematical Society, 1999; 39–70.

2. Brin S, Motwani R, Ullman JD, Tsur S. Dynamic itemset counting and implication rules for market basket data.
SIGMOD ’97: Proceedings of the 1997 ACM SIGMOD international conference on Management of data, ACM,
1997; 255–264, doi:http://doi.acm.org/10.1145/253260.253325.

3. Fang M, Shivakumar N, Garcia-Molina H, Motwani R, Ullman JD. Computing iceberg queries efficiently.
Proceedings of the 24th International Conference on Very Large Data Bases, VLDB. Morgan–Kaufmann, San
Mateo, Calif., 1998; 299–310.

4. Beyer K, Ramakrishnan R. Bottom–up computation of sparseand iceberg cubes.Proceedings of the ACM SIGMOD
International Conference on Management of Data. ACM, New York, 1999; 359–370.

5. Boyer R, Moore J. Mjrty – a fast majority vote algorithm.Technical Report 32, Institute for Computing Science,
University of Texas, Austin 1981.

6. Boyer R, Moore JS. Mjrty – a fast majority vote algorithm.Automated Reasoning: Essays in Honor of Woody
Bledsoe, Automated Reasoning Series, Kluwer Academic Publishers, Dordrecht, The Netherlands. 1991; 105–117.

7. Fischer M, Salzberg S. Finding a majority among n votes: Solution to problem 81–5.J. of Algorithms1982; (3):376–
379.

8. Misra J, Gries D. Finding repeated elements.Sci. Comput. Program.1982;2(2):143–152.
9. Demaine ED, López-Ortiz A, Munro JI. Frequency estimation of internet packet streams with limited space.ESA,

2002; 348–360.
10. Estan C, Varghese G. New directions in traffic measurement and accounting.IMW ’01: Proceedings of the 1st

ACM SIGCOMM Workshop on Internet Measurement, ACM, 2001; 75–80, doi:http://doi.acm.org/10.1145/505202.
505212.

11. Pan R, Breslau L, Prabhakar B, Shenker S. Approximate fairness through differential dropping.SIGCOMM Comput.
Commun. Rev.2003;33(2):23–39, doi:http://doi.acm.org/10.1145/956981.956985.

12. Charikar M, Chen K, Farach-Colton M. Finding frequent items in data streams.ICALP ’02: Proceedings of the 29th
International Colloquium on Automata, Languages and Programming, Springer–Verlag, 2002; 693–703.

13. Gelbukhl A ((ed.)).Computational Linguistics and Intelligent Text Processing, 7th International Conference,
CICLing 2006, Lecture Notes in Computer Science, vol. 3878, Springer–Verlag, 2006.

14. Zipf GK.Selected Studies of the Principle of Relative Frequency in Language. Cambridge University Press, 1932.
15. Mandelbrot B. Information theory and psycholinguistics: A theory of word frequencies.Language: selected

readings, edited by R.C. Oldfield and J.C. Marchall, PenguinBooks. 1968.
16. Mouillot D, Lepretre A. Introduction of relative abundance distribution (rad) indices, estimated from the rank-

frequency diagrams (rfd), to assess changes in community diversity. Environmental Monitoring and Assessment
2000;63(2):279–295.

17. Karp RM, Shenker S, Papadimitriou CH. A simple algorithmfor finding frequent elements in streams and bags.
ACM Trans. Database Syst.2003;28(1):51–55, doi:http://doi.acm.org/10.1145/762471.762473.

18. Cormode G, Hadjieleftheriou M. Finding the frequent items in streams of data.Commun. ACM2009;52(10):97–
105, doi:http://doi.acm.org/10.1145/1562764.1562789.

19. Manku GS, Motwani R. Approximate frequency counts over data streams.In VLDB, 2002; 346–357.
20. Metwally A, Agrawal D, Abbadi AE. Efficient computation of frequent and top-k elements in data streams.

International Conference on Database Theory, 2005; 398–412.
21. Metwally A, Agrawal D, Abbadi AE. An integrated efficientsolution for computing frequent and top-k elements

in data streams.ACM Trans. Database Syst.Sep 2006;31(3):1095–1133, doi:10.1145/1166074.1166084. URL
http://doi.acm.org/10.1145/1166074.1166084.

22. Cormode G, Muthukrishnan S. An improved data stream summary: the count-min sketch and its applications.J.
Algorithms2005;55(1):58–75, doi:http://dx.doi.org/10.1016/j.jalgor.2003.12.001.

23. Cafaro M, Tempesta P. Finding frequent items in parallel. Concurr. Comput. : Pract. Exper.Oct 2011;23(15):1774–
1788, doi:10.1002/cpe.1761. URLhttp://dx.doi.org/10.1002/cpe.1761.

24. Cafaro M, Pulimeno M. Merging frequent summaries.Proceedings of the 17th Italian Conference on Theoretical
Computer Science (ICTCS 2016), Volume 1720, CEUR Proceedings, 2016; 280–285.

25. Cafaro M, Pulimeno M, Tempesta P. A parallel space savingalgorithm for frequent items and the hurwitz
zeta distribution.Information Sciences2016; 329:1 – 19, doi:http://dx.doi.org/10.1016/j.ins.2015.09.003. URL
http://www.sciencedirect.com/science/article/pii/S002002551500657X.

26. Heath MT. A tale of two laws. International Journal of High Performance
Computing Applications 2015; 29(3):320–330, doi:10.1177/1094342015572031. URL
http://hpc.sagepub.com/content/29/3/320.abstract.

27. Quinn MJ.Parallel Programming in C with MPI and OpenMP. McGraw–Hill, 2003.

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2016)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

http://doi.acm.org/10.1145/1166074.1166084
http://dx.doi.org/10.1002/cpe.1761
http://www.sciencedirect.com/science/article/pii/S002002551500657X
http://hpc.sagepub.com/content/29/3/320.abstract

	1 Introduction
	2 Related work
	3 The Parallel Algorithm
	4 Experimental Results
	4.1 Evaluation of the OpenMP version on the Intel Xeon
	4.2 Comparison between MPI and MPI/OpenMP parallel versions
	4.3 Evaluation of the OpenMP version on Intel Phi accelerator
	4.4 Comparison between Xeon and MIC processors

	5 Conclusions

