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Abstract

More and more massive parallel codes running on several hundreds of
thousands of cores enter the computational science and engineering do-
main, allowing high-fidelity computations on up to trillions of unknowns
for very detailed analyses of the underlying problems. During such runs,
typically gigabytes of data are being produced, hindering both efficient
storage and (interactive) data exploration. Here, advanced approaches
based on inherently distributed data formats such as HDF5 become neces-
sary in order to avoid long latencies when storing the data and to support
fast (random) access when retrieving the data for visual processing. Avoid-
ing file locking and using collective buffering, write bandwidths to a single
file close to the theoretical peak on a modern supercomputing cluster were
achieved. The structure of the output file supports a very fast interactive
visualisation and introduces additional steering functionality.

Keywords:High-Performance Computing, I/O, HDF5, Computational Steering,
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1 Introduction

According to the U.S. President’s Council of Advisors on Science and Technology
‘high-performance computing must now assume a broader meaning, encompassing
not only flops, but also the ability, for example, to efficiently manipulate vast
and rapidly increasing quantities of both numerical and non-numerical data’ [1].
Latest advances in hardware led to high-performance computing (HPC) systems
consisting of hundreds of thousands to millions of cores that exhibit petaflop
performance for high-fidelity applications. Designing massive parallel codes that
can utilise such systems is a challenging task itself, being able to handle the
inherent huge data advent — easily exceeding tons of gigabytes per computational
step — is yet another one. This raises the necessity for sophisticated concepts to
store and interact with the computed data—even in real-time.
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Within the authors’ research, they have developed a computational fluid dy-
namics (CFD) code for multi-scale, multi-physics problems arising in the field
of computational engineering with special emphasis on thermal comfort assess-
ment. This code has been successfully deployed on up to a total of 140,000
processes on two of Germany’s three top-ranked supercomputers, namely Super-
MUC (based on System x® iDataPlex® dx360 M4 compute nodes) installed at
Leibniz Supercomputing Centre and JuQueen (Blue Gene/(Q system) installed at
Jiilich Supercomputing Centre. Furthermore, performance measurements were
done using up to 32,000 processes on Shaheen (Blue Gene/P system) installed
at KAUST Supercomputing Laboratory. Core part of the code is a hierarchical
data structure consisting of logical and computational grids following a space-
tree based [2] spatial partitioning. In conjunction with a so-called neighbourhood
server, a topological repository storing which computational grid resides on which
process, this structure fosters distributed computing and supports efficient nu-
merical solvers as well as dynamic load balancing strategies.

Furthermore, the structure also supports in-situ monitoring of the computed
data, in other words, users have the possibility to retrieve computation results
already during runtime for visual exploration. A sliding window called approach
allows to interactively select any region of the computational domain, whereupon
the size of the window defines the corresponding level-of-detail, thus keeping the
total amount of data to be transmitted between the CFD code and the user
constant in order not to exceed given bandwidth limitations [3]. Hence, a window
covering the entire domain allows for a qualitative evaluation of the global flow
field while smaller windows — cf. a zooming into the data — reveal more and more
details for quantitative assessments. Even for huge domains with trillions (10'2)
of unknowns, the sliding window approach is advantageous as only small parts of
the data need to be processed for visual display. For further research regarding
actual HPC in-situ visualisations the reader is advised to Rivi et al. [4].

Nevertheless, at certain time steps the data will be written to a storage system
either for checkpointing (fault tolerance) purposes or an offline post-processing
of the computation results. During this time, all processes cannot continue with
their computations and have to wait until the data dump has been finished,
thus slowing down the entire execution. Finally, the user is left with tons of
sequentially ordered data that — due to its mere size — forbid any efficient access
or treatment within subordinated post-processing tools. In order to tackle this
problem, an I/O kernel based on HDF5 has been implemented that supports
parallel I/O functionality to speed up the write operations of the checkpointing,
minimising the impact on the overall execution time of the code.

The main characteristic of this approach is the mapping of a rather complex,
but highly efficient data structure in terms of parallelisation and selective vi-
sualisation to an I/O kernel based on HDF5. The authors were able to show
competitive write bandwidths on top tier machines, even when comparing with
a state-of-the-art 1/O kernel employing a comparable lighter data structure. In-



cluding not only raw data values, but also detailed information about the do-
main topology at every checkpoint, the offline structure enables very fast restarts,
without the need to reconstruct the domain. Additionally, it allows to utilise the
sliding window approach even on offline data. Hence, users can switch between
online (present) and offline (past) data for visual exploration—practically they
can reverse in time. Such a time reversal further provides the possibility to mod-
ify a scenario at any point in time and re-compute it with altered settings in case
of undesired results or effects, thus opening the door for computational steering
or interactive computing applications.

This paper is based on Ertl et. al. [5], but the current paper includes the fol-
lowing additional research: A more thorough look on the time reversible steering
concept with supporting simulation scenarios. Furthermore, the I/O kernel was
deployed and tested on SuperMUC.

The remainder of this paper is organised as follows. In the next section, the
basic mathematical concepts as well as the data structure are introduced, includ-
ing some runtime and speed-up measurements done on SuperMUC, JuQueen and
Shaheen. The design and implementation of the I/O kernel using HDF5 is ad-
dressed in section three. Section four gives a more detailed introduction into the
time-reversible steering concept based on the kernel’s functionality. The follow-
ing section five presents write speed measurements of full sized runs on JuQueen
and SuperMUC. Finally, section six is closing with a short summary.

2 Fluid Flow Simulations

In this section, the foundations of the CFD code mpfluid including all mathemat-
ical concepts are presented. Main contribution is a hierarchical data structure
inherently supporting distributed computing and allowing for in-situ data explo-
ration already during runtime. This follows the elucidations of [6].

2.1 Mathematical Modelling

The implementation of the CFD kernel is based on the Navier—Stokes equations
which can be derived from the conservation of mass, momentum, and energy
principles |7] [8].

The governing equations for incompressible Newtonian fluid flows consist of
the continuity equation and the momentum equations. The continuity equation
can be written in differential form as

Vi=0, (1)

where @ describes the velocity vector of the flow field. For a divergence free
vector field, the continuity equation has to be satisfied at every time step in the
entire domain.



The momentum equations for every direction i € {1,2,3} can be written in
differential form as

ot

where ¢ represents the time, p,, the density of the fluid (assumed constant over
the entire domain), u; the velocity in direction ¢, u the dynamic viscosity, p the
pressure, b; some interior body forces in direction i, and €; the unit vector in
direction 1.

+ V- (pootitl) =V - (uVu;) = V - (p€i) + b; , (2)

In order to include thermal effects such as buoyancy, the last part b; on the
right-hand side in (2) must be replaced by ps - 8- (T — Two)g: to couple effects
of the temperature field to the momentum equations, commonly known as the
Boussinesq approximation, see Lienhard and Lienhard [9] for instance. Here,
[ describes the thermal expansion coefficient of the fluid, T" the temperature,
T, the temperature of the undisturbed fluid at rest, and g; the gravitational
force in direction ¢. Finally, for modelling the thermal heat transport, the energy
equation (adapted from a generic convection-diffusion equation to a heat transfer
problem) can be written in differential form as
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where o = k/(ps - ¢p) represents the heat diffusion coefficient, & the heat con-
duction coefficient, ¢, the specific heat capacity at constant pressure, and g
the internal heat generation.

As pressure p is solely contained in its gradient form Vp in (2), some pressure
correction methods as proposed by Harlow and Welch [10] or Chorin [11] have to
be applied. In the present approach, the so-called fractional step or projection
method introduced by Chorin that iterates between the velocity and pressure
fields is used, where the latter one acts as correction to the velocity field in
every time step to fulfil (1). Choosing an explicit Euler time discretisation for
the temporal derivatives 0/0t, one is eventually left with a Poisson equation
for the pressure that has to be solved in every time step and also determines
the computationally most complex part. For the spatial discretisation a finite
volume method is applied that — due to the block substructuring of the domain
into regular Cartesian grids — locally degenerates into finite differences and, thus,
favours fast computations based on standard stencil operators.

In the next part, the data structure together with a multigrid-like solver —
directly derived from the data structure’s exchange routines — for the solution of
the pressure Poisson equation will now be introduced.

2.2 Data Structure

The data structure follows the general idea of space-trees (with quadtrees as 2D
and octrees as 3D representatives) for a spatial partitioning. Starting from a



single root cell on depth 0, each cell is further subdivided by r, x r, x r, cells
until a predefined depth d,,., has been reached. This hierarchy of grids defines
the logical part of the structure — also called logical grid or l-grid — and plays
a vital role when retrieving any hierarchic grid information. For computation
purposes, now every cell of this logical grid links to a data grid of size s, x s, X s,
that stores all necessary variables such as velocities, pressure, or temperature
values. Furthermore, each data grid — also referred to as d-grid — is surrounded
by a halo (currently of size one) for the proper data exchange between d-grid
boundaries. This completes the data structure which is composed of block-
structured, non-overlapping, orthogonal, regular, hierarchical grids. An example
2D data structure is illustrated in Fig. 1. The root grid on top is successively
refined up to depth 5, using a bisection in both dimensions, that is r, = r, = 2.
In addition, the example shows that the data structure also supports adaptive
subdivision of grids, such that it is possible to represent regions of interest with
a finer resolution.

To keep track about the distribu-
tion of d-grids to (MPI) processes,
a dedicated process called neighbour-
hood server was implemented. This
server stores the entire logical struc-
ture, the l-grids, in order to answer
topological queries, while all compu-
tational processes solely store the d-
grids assigned to them. The assign-
ment per se follows a space-filling
Lebesgue curve that has proven to pre-
serve neighbouring relations, thus re-
ducing the necessary communication
overhead. For a ghost layer update,
any computational process queries the
neighbourhood server by its own d-
grid IDs in order to obtain all neigh-
bouring d-grid IDs and their physi-
cal residence (i.e. MPI ranks). Af-
terwards, the process can launch an
inter-grid data transfer (communica-
tion phase) which is strictly separated
from the computation phase.
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The communication phase consists
of three sequential steps as described
in [12]. First of all, in a bottom-up
step all d-grids that have not been
updated yet during the computation Figure 1: Example 2D data structure,
phase are set to the averaged values of adaptively refined up to depth 5



their corresponding child d-grids. In a second, horizontal step all adjacent d-
grids update their ghost layers before in a last, top-down step all resulting ghost
layers of d-grids on different levels (due to an adaptive grid refinement) are set
properly. Here, the l-grid management must take care about flux conservation
across d-grid boundaries in order to guarantee data integrity and consistency.
Whereas the communication phase is not very time consuming — a full update
for a domain with resolution 4096 x 4096 x 4096 resulting to more than 700 billion
unknowns to be exchanged takes around 0.1s on 140,000 cores on SuperMUC,
see Fig. 2a — according to [13] the parallel code spends more than 90 % of the
time in the computation phase for solving the pressure Poisson equation.

To solve the pressure equation, a parallel multigrid-like solver following the
ideas of Brandt [14] for solving elliptic partial differential equations was imple-
mented. Multigrid-like, because it utilises the above communication schema —
precisely the bottom-up and top-down update steps — as restriction and pro-
longation operators for setting up a cell-centred multigrid method, thus making
use of the data structure’s superior parallel performance and scalability proper-
ties. Nevertheless, the multigrid-like solver exhibits convergence instabilities for
certain scenarios (in case of adaptive refinement, e.g.) which can be handled
by different smoothing strategies such as doubling the amount of pre- and post-
smoothing steps on coarser resolutions. Details about all performed analyses and
comparisons can be found in [15]. Fig. 2b and Fig. 2¢ show the obtained strong
speed-up and time-to-solution values of the multigrid-like solver for different do-
mains on different architectures.

2.3 Sliding Window Visualisation

To reduce the data transfer between the CFD code running on an HPC system
— called back end — and the user application for visual display — called front end
— the previous data structure was extended with the idea of the sliding window
concept. Main strategy is to select on the back end only subsets of the computed
data in order to stay below the available network bandwidth between front and
back end. Hence, any user has the possibility to choose a region of interest (the
window) which can be moved around the computational domain and increased
or decreased in size. The larger the window, the lower will be the density of
data points to be considered for the visual display—even when a higher density
of data points would be available, depending on the window size every second,
third, fourth, and so on data point will be dismissed. This approach allows to
catch either global effects of the simulation (large window) or to explore local
details (small window) without overloading the network with unnecessary data
and, thus, harming the experience of an authentic interactive computing.

The sliding window implementation practically consists of two components:
a back end collector for gathering the desired data and a front end visualisation
and interpreter tool for sending data requests. Therefore, a new process called



collector was introduced at the back end, listening for user requests on a stan-
dard TCP socket. The collector forwards the query to the neighbourhood server
which can easily identify all computational processes storing relevant d-grids in-
tersecting with the window. These processes themselves send all selected data
points to the collector which returns a compressed data stream to the front end
application. On the front end we use ParaView [16] for the visualisation of the
fluid flow data. A special ParaView plug-in allows the user to connect to a run-
ning simulation, to set all necessary sliding window parameters, and to retrieve
the desired data for an interactive visual data exploration. Fig. 3 shows a full
pass of a sliding window query.

The Sliding Window approach has shown no significant performance overhead
in practice. The data selection process happens on the neighbourhood server,
completely independent from any computing process. One additional communi-
cation to send selected grids to the collector process is necessary, but is limited by
the fixed amount of data transferred by the Sliding Window concept, adjusting
the density of data points according to the window size. Aggregating and sending
the data over the TCP connection by the collector is again completely indepen-
dent from the computing processes and thus has no influence on the execution
time.

3 1/0 Kernel

Previously the approach to store and visualise simulation data — aside from online
monitoring — was based on each computing process writing out the the grid data
comprising the domain in the finest resolution available into an individual binary
VTK file per time step. Usually this approach performs well, in case of a scarcity
of I1/0 links for example on JuQueen (5.1), having a multitude of processors in-
quire an /O operation at the same time leads to severe contention. Furthermore,
the sheer number of files generated using one of the top tier machines is hardly
manageable by the file system. For post-processing the individual files are ap-
pended into a single one per time step, again causing a heavy burden on the file
system. Finally, visualising such files, gotten from production sized simulation
runs, is not viable in a reasonable amount of time. In order to be able to handle
the large amount of data our CFD code produces, a dedicated approach to the
code’s 1/O routines had to be employed.

One major building block of this approach comprises the use of the high-level
data format HDF5 (Hierarchical Data Format version 5) [17]. HDF5 is specifi-
cally tailored to store large amounts of array based data in a database-like view.
The key concept behind HDF5’s data model is based on datasets which contain
the actual data and groups making up the general structure. Starting from a root
group, groups may contain additional groups or datasets themselves, resulting in
a hierarchical tree-like structure resembling a Unix file system. Attributes allow
to describe the data and can be associated to a group or dataset. The layout



of the data is specified by HDF5’s storage model, while the HDF5 library takes
care of the conversion between the database-like view of the data model and the
storage model. The user may be completely oblivious to the way his data looks
like on the file system. Considering performance, however, it is necessary to be
aware of the layout of the data in an HDF5 file. Considerations concerning this
are found in 3.2.

HDF5 is a self-describing format, meaning a file contains information about
its structure as well as the used data types. Portability is a huge concern in
today’s diverse architecture landscape. Different machines and compilers employ
different notions of endianess as well as different sized data types, making the
transfer and processing of files between machines a non-trivial task. However,
during the mapping from storage to data model and vice versa, the HDF5 library
accounts for these discrepancies. Using the self-describing information, the data
is converted from the source to the target machines’ architecture without any
attention required from the user.

Additionally, HDF5 provides functionality for distributed memory systems.
Parallel HDF5 routines are based on an underlying implementation of MPI-10,
whereas the HDF5 libraries manage the application’s I/O calls and in turn utilise
MPI-10’s routines, providing easy-to-use parallel I/O functionality.

3.1 Functionality and Design of the I/0O Kernel

The most important aspects of designing an 1/O kernel were fixing the desired
functionality and subsequently determining on how the tree-structure within the
HDEF5 file is conceived. Further on, the content and shape of the datasets had
to be settled to support the intended functionalities. Due to the fact that struc-
ture, functionality, and considerations concerning the implementation strongly
influence each other, this process was revised throughout the whole development.
The final outcome is based mainly on the following conditions.

To reduce the management effort and the overall load on the file system, a
shared file approach is used, in which each participating process reads and writes
to a single file. Also, in its current version, this output file supports the complete
set of intended functionality since most of these have overlapping requirements.
However, this is subject to be revised in future iterations of the kernel to allow

users turn off unnecessary functions and, thus, reduce the amount of data in the
file.

The following functionality is currently supported by the kernel and the output
file:

e output
The main purpose of the I/O kernel is to output snapshots of the running
simulation at user defined intervals. These snapshots give a complete view
of the topological grid structure as well as the computed cell values. The file



structure and the I/O routines were conceptualised to achieve a write-out
as fast as possible, resulting in a minimal impact on the overall execution
time of the CFD code. Apart from good programming practice this is
achieved by using hardware specific optimisation. For details see section
5.2.

e checkpointing

Using any of the written simulation snapshots, the code is able to recreate
the topological grid structure from the HDF5 file and resume computation.
This prevents costly data loss after a crash or a power outage for example or
allows for splitting time intensive computations into smaller parts, to better
utilise the sparse and expensive CPU hours on current high-performance
machines. Also, the code’s current domain decomposition and distribution
strategy is done serially (by the neighbourhood server). To allow for an
efficient usage of resources, this step can be prepared on a smaller machine
while the simulation run is then started from the HDFb5 file.

e offline sliding window

The sliding window concept allows for visualisation during runtime using
the neighbourhood servers complete view of the topological grid structure.
The neighbourhood server is able to select a subset of simulation data
of arbitrary resolution representing the desired section. This allows for
an efficient limitation of data to transfer and display. However, this is
possible for the currently computed time step only, i. e. online. Having the
hierarchical grid structure also present within the snapshots of the HDF5
file allows for a sliding window scheme in a similar — offline — fashion.
This enables users to visualise even largest datasets in a quick and efficient
manner for every written time step.

e time reversible steering

Being able to follow a running simulation through the online sliding win-
dow concept, the 1/0O kernel further allows influencing a running simulation
in a computational steering approach. Changing boundary conditions or
issuing refinements and coarsenings at runtime are possible. The ability to
visualise previous time steps as well as to recreate the complete topological
domain structure and the corresponding data values at any written check-
point provided by the I/O kernel, enables another dimension in steering
capabilities, so called time reversible steering. This enables to go back to
a previous time step, load this state and issue steering commands from
there, shortening simulation cycles, and allowing an iterative optimisation
of simulation parameters. In Section 4, this concept is explained in more
detail and shown with possible applications.

The current structure of the HDF5 file is illustrated in Fig. 4. Below the
root group the structure splits into two branches. The common group encloses



datasets that hold constant information such as the time discretisation step,
refinement spacings, or fluid properties. It is therefore only accessed once at
generation of the file or start of a simulation run. The simulation group holds
further groups that enclose the structure information as well as the cell data itself
for each time step. These time step groups are named with the elapsed time.

All datasets in the time step groups follow a
simple paradigm. Every row in the two dimen- 5] output.hs
sional datasets corresponds to one grid in the
code’s data structure. Additionally, the row
indices are constant across all datasets repre-
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viding the necessary starting point to traverse  Figure 4: Tree-like structure
the hierarchical data structure. of the HDF5 output file

The datasets grid property, subgrid uid, and bounding boxr make up the topo-
logical grid structure of the respective time step. grid property stores the Unique
Identifier (UID) for every grid, encoding the residing rank, a rank unique iden-
tifier and its location in the structure. subgrid uid contains the UIDs for grids
created by refining the respective grid on the next finer level and bounding box
encodes the physical extent of each grid.

The datasets current cell data, previous cell data, and temp cell data contain
the data values for every cell of every grid such as velocities, pressure etc. The
cell type dataset stores the boundary conditions. These last four datasets make
up the vast majority of data in the file.

3.2 Implementation Aspects

All HDF5 functionality is encapsulated into one C+-+ class that each comput-
ing process instantiates. The current iteration of the kernel makes no use of
any functionality of the neighbourhood server to avoid possible communication
bottlenecks.

The first write creates the file and the aforementioned tree structure while



subsequent writes only open the file and add the respective time step group and
datasets.

In Parallel HDF5, the group structure as well as every dataset has to be
created collectively by all participating ranks, while read and write operations
can be carried out individually. To be able to generate the needed datasets,
the total amount of grids in the complete domain must be known to all ranks.
Additionally, to determine the non overlapping regions of individual ranks in the
datasets for their read and writes — in HDF5 terminology so called hyperslabs —
every rank must be aware of the cumulative amount of grids on previous ranks.
This is achieved using a global MPI reduction, summing up all grids, followed by
an MPI prefix reduction to determine the amount added by all previous ranks
to the global sum.

In the HDF5 storage model, each dataset is represented via a header followed
by the actual data in form of a linear array, regardless of its actual dimensionality.
The shape of the dataset is defined by the header information. For optimised
performance, a one to one mapping of data from the code to the HDF5 file is
desirable. For this purpose, a linear write buffer is initialised on each rank in
which the grid data is copied. This additional storage requirement effectively
cuts the amount of data to be handled by a single process in half. As emphasis
is laid on the added performance by this approach, the drawbacks of limiting the
amount of data per rank was deemed acceptable.

Reading and restarting was conceived in a comparable fashion. Each rank
reads the UIDs in the grid property dataset to determine their range of grids ac-
cording to the rank information encoded in the UlDs. Each rank then generates
the respective amount of grids, reads the data from its hyperslab, and copies it
to the respective grids. The neighbourhood server registers the topological struc-
ture and computation may commence. If restart from an intermediate snapshot
is ordered, the I/O kernel creates a new branching file for subsequent write outs.

The sliding window approach in the code makes use of the ability of the neigh-
bourhood server traversing the logical grid structure from the root downwards to
subsequently refined grids. If a sliding window query is send to the neighbour-
hood server, it successively adds and removes d-grids to a list while traversing
the tree until it has found the finest possible resolution fitting into a given limit
of bandwidth and visualisation window. The sliding window on top of the HDF5
file uses the same approach of traversing the tree, starting from the root grid
at row index 0. This is achieved by assigning the UID information of a grid
to its respective row index via the grid property dataset. Grids on subsequent
refinement levels are found via the subgrid uid dataset. The routine ends up with
a list of indices referring to the grids that fit the determined criteria and allows
for a selective visualisation of the corresponding grid data.



4 Time Reversible Steering (TRS)

The visualisation front end can be used to issue commands to the simulation
back end and influence the running simulation in a computational steering ap-
proach. Possible operations are the ordering of refinements or coarsenings of the
simulation space, or the altering of boundary conditions, for example moving
geometry or influencing velocity constraints. The new functionality introduced
by the HDF5 output file, namely the possibility to visualise and restart from
any written time step in a timely fashion, allows for an extension of the classical
steering.

This extension, titled Time Reversible Steering (TRS) alongside the classi-
cal steering is schematised in Fig. 5. Simulation snapshots are depicted using
circles, the numbers within signify the succession of generation. A horizontal
shift signifies continuation of the simulation (black solid arrows), while vertical
shifts are used to represent a steering operation (red dashed arrows). The former
approach, supported by the back end/front end link and the online visualisation
is depicted by a single continuous simulation path. Steering operations influ-
ence the current state and the subsequent simulation. The offline visualisation
enabled by the HDF5 file grants access to all previously written snapshots, allow-
ing a more thorough understanding of forming flow characteristics. In addition,
it is possible to reload every checkpoint from the file (blue dashed and dotted
arrows) in rapid fashion. Due to the stored domain topology in the file, it is not
necessary to build up and distribute it from scratch. Finally, the issue of steering
operations for reloaded checkpoints are carried out in the same fashion as with
classical steering. Having two or more possibilities leads to branching simulation
paths.

TRS as well as its predecessor the classical steering are at the moment not
suited for full-sized production runs. The overhead of the approach is simply
too large to be run on current top tier machines. Nevertheless, the concept’s
main advantage is the possibility to quickly evaluate the influence of changes to
the simulation on a reduced problem, filtering less promising outcomes. This
shortens design cycles and leads to more efficient use of the expensive computing
time on clusters. To further emphasise on the applicability for the approach two
simulation scenarios were conducted and the concept was applied.

The first case is a benchmark scenario initially proposed by Schéfer and Turek
within the DFG priority research program ‘Flow Simulation on High-Performance
Computers’ [18]. The setup consists of a two dimensional channel flow with a
cylinder obstacle near the inlet on the left-hand side channel boundary. Using
Reynold’s number Re = 100, an unsteady flow is generated which leads to the
well known phenomena of vortex shedding behind the obstacle. The basic sce-
nario was simulated for two seconds, then, the simulation was rolled back to the
one second mark, boundary conditions have been altered and the simulation was
continued. Fig. 6 shows visualisations from ¢t = 0.0s to t = 2.0s of the basic



setup on the left side. Visualisations from shifting the obstacle at ¢ = 1.0s are
shown in the middle. Finally, introducing a second obstacle at ¢ = 1.0s is shown
on the right. Again it is emphasised that these are not separate simulations, but
rather branchings within the framework.

The second example conducted is a thermally coupled airflow simulation of an
operation theatre with a complex geometry. The standard configuration consists
of the operation theatre, one patient and two assistants. This example was
initially shown in [19] using an isothermal setting and further analysed in [13],
this time using a thermally coupled approach. The air inlet is realised over
one complete wall, while a slightly open door on the opposite wall functions
as an outlet. Temperate boundary conditions are set on all geometry objects,
T = 324.66 K on the lamps, 7' = 299.50 K on human models and 7" = 290.16 K
on all other objects.

A desirable configuration is signified by an airflow streaming away from the
patient, as to minimise the risk of germs entering surgery wounds. This example
converges to a steady state, as such, initial time steps are computationally more
expensive than latter ones. Therefore, the time reversible steering concept —
restarting from a reasonable converged state, altering the boundary conditions
slightly — proves exceptionally well for quickly iterating through different design
possibilities and assessing their applicability, while skipping the expensive initial
simulation.

The visualisations in Fig. 7a and Fig. 7b depict the outcome of converged
states at elapsed time t = 50.0s with two different temperature boundary con-
ditions applied to the lamps. The first scenario is simulated for the full 50.0s,
reloaded at elapsed time t = 20.0's, then, the temperature is increased by 50 A°K
and simulation is resumed. On the author’s in-house cluster, an Intel Sandy-
bridge architecture using 16 cores, the first 20.0s of simulation take roughly 24 h,
while the later 30.0s take 12h. Using TRS, one is able to evaluate the altered
state at approximately 33% of time investment compared to a full simulation
run.

5 Output Performance

The following section highlights the performance measurements of the kernel’s
write routines, the most performance critical aspect of the implementation as
these are carried out continuously during a simulation run. Extensive measure-
ments were conducted on the JuQueen supercomputer located at Jiilich Super-
computing Centre. Furthermore, the kernel was recently deployed on SuperMUC
and initial testing results are presented in the final part of this section.



5.1 Benchmark Systems

The JuQueen is an IBM BlueGene/Q system which combines 27,672 computing
nodes and 458,752 cores in 28 racks. Each node employs a memory of 16 GB,
amounting to 448 TB for the whole installation. Intra-rack communication is
realised via a five dimensional torus network, made up from high speed serial
links. The system’s theoretical peak performance is listed at 5.9 Petaflops, with
a sustained Linpack performance at 5.0 Petaflops. For 1/O, the system employs
dedicated 1/0O nodes, grouped in I/O drawers installed in the top compartment
of the racks. Each rack except the last one contains one I/O drawer with eight
I/O nodes. Every I/0 node has two PCle ports for input and output connecting
to the torus network, allowing 4 GB/s of raw data throughput one way. This
sums up to a bandwidth of 32 GB/s per rack. Each I/O node is connected via
two 10GbE Ethernet adapters to the file system, allowing a maximal bandwidth
of 16 GB/s per 1/0 drawer. The underlying parallel file system is IBM’s General
Parallel File System (GPFS). A more comprehensive overview of the the JuQueen
can be found in the official Documentation [20] and the best practice guide from
PRACE |21].

The second system, SuperMUC, employs 18 so called Thin node Islands, each
consisting of 512 System x iDataPlex dx360 M4 compute nodes. With two Sandy
Bridge-EP Xeon E5-2680 8C processors per node and eight cores per processor
the complete system combines 147,456 computing cores. SuperMUC utilises a
non-blocking tree intra-island and a 4:1 pruned tree inter-island network topology
using Infiniband FD10 switches. The underlying file system is GPFS, similar to
JuQueen, with a combined bandwidth of all islands of 200 GB/s. More detailed
information on SuperMUC can be found in its respective best practice guide

from PRACE [22].

5.2 Hardware-Aware Optimisations

To achieve optimised performance, the I/O kernel has to be aware of the under-
lying hardware and must be tuned accordingly. Most of the optimisations like
alignment of data to the file system’s block size lead only to comparably small
improvements in write speed, however enabling collective buffering and disabling
expensive file locking mechanisms of the GPFS have proven to be indispensable
for the performance of the kernel.

Collective buffering utilises a subset of the computing nodes as aggregators,
which collect data from the different processes and manage the file accesses. The
JuQueen’s node cabling is qualified exceptionally well for collective buffering.
Each computing node employs 10 links to the intra-rack five dimensional torus
network. However, only 16 of the 1024 nodes employ a single link to the 1/O
nodes. Doing independent 1/0O over the very scarce amount of 1/O connections
would lead to severe contention and minuscule performance. The natural choice
for the aggregators are the nodes that employ the direct links to the I/O drawers.



Data is collected over the very fast intra-rack network while the I/O links are
utilised to their full extent.

To avoid contention by concurrent file accesses, the file driver of MPI-1O’s
current implementation on the JuQueen employs a very conservative file locking
policy which proves detrimental to the performance of shared file approaches.
Since each participating rank has its exclusive access region, it is safe to disable
the file locking, thus leading to a tremendous increase in performance.

5.3 Measurements and Results

To be able to classify our CFD code’s /O performance not only in terms of
utilised bandwidth, mpfluid’s kernel was compared against another 1/O kernel
based on HDF5. As reference, the VPIC-IO (vector particle-in-cell) kernel [23]
from ExaHDF used in the largest I/O run to date [24] was employed. In or-
der to get architecture independent measurements, comparable to the present
implementation, the measurements using VPIC-IO were done similarly on the
JuQueen, using the same optimisations and scaling the total amount of data for
both kernels to be equal.

Two test cases were used, varying the amount of computing processes utilised.
The first test case involved a fully refined 3D domain of resolution 1024 x 1024 x
1024 (depth 6) leading to a total amount of about 300,000 d-grids in the domain.
Each d-grid contains 16 cells in every dimension, making up 4096 cells per single
d-grid and about 1.23 billion cells in the entire domain. Each written checkpoint
claims a file size of 337 GB.

The second test case uses the same properties but resolves the domain one
level further up to a resolution of 2048 x 2048 x 2048 (depth 7), resulting in a
total amount of about 2.4 million d-grids and 10 billion cells at a checkpoint size

of 2.7TB.

The refinement levels as well as the amount of cells per computational grid
were taken in accordance to Frisch and Mundani [25], who determined the setup
to perform very well for solving the underlying Navier Stokes Equations.

Fig. 8a shows excellent performance for both kernels in the range from 2048
to 8192 processes. The similar measurements are attributable to the equal 1/0
resources they have available. If no other application is using the I/O nodes, all
four nodes, connected to one half of the rack are available within the intra-rack
network. The discrepancy between the measured and the theoretical peak band-
width is believed to be due to the wind up and wind down of write operations
to individual datasets. Here more in-depth measurements are required. Using
16,384 processes and having a full drawer with eight 1/O nodes available the
used bandwidth increased by about 20 %. An unsatisfactory result, as now dou-
ble the I/O resources are available compared to the previous cases. Doubling the
amount of processes and available I/O nodes again, reveals even worse scaling as
only one forth of the estimated bandwidth compared to the first three measure-



ments was achieved. The authors believe this is attributable to the amount of
grids per process on the later test cases. While each individual process has fewer
grids to manage, the communication overhead of filling the aggregators’ write
buffers increases, which is likely to be responsible for the bad scaling behaviour.
Additionally, more aggregators, assuming less data each participate in 1/O, cer-
tainly affects the performance negatively. On top of the fact that the problem is
too small to show adequate scaling in the regions above 8192 processes for 1/0
performance, the same was observed for the actual computation in [25].

For the second test case, measurements were not possible below 8192 processes
due to the aforementioned memory limitation introduced by the additional write
buffers. Fig. 8b shows the measured results. As expected, the measurements
show adequate scaling in the expected range, both for VPIC-IO’s and our kernel.

The same test scenario as was run on JuQueen was performed on SuperMUC,
with a fully refined 3D domain resolved until depth 6, amounting to approx.
1.23 billion cells and a checkpoint size of 337 GB. The best result was achieved
using 2048 processes at 21.4 GB/s with a gradual decrease in performance using
4096 processes at 14.92 GB/s and 8192 processes at 4,64 GB/s. This decrease in
performance is in accordance with the findings gained from JuQueen, stating that
below a certain amount of grids per process communication overhead becomes
an issue. The higher bandwidth at a lower node count in comparison to the
JuQueen is attributable to the different network topology, which in case of the
SuperMUC does not exhibit the aforementioned I/O bottleneck.

6 Conclusion

In this paper, a massive parallel CFD code was presented that was successfully
deployed on two of Germany’s supercomputers, running on about 140,000 cores,
solving a problem with more than 700 billion unknowns. Core of this work is
a hierarchical data structure that not only supports distributed computing and
the development of efficient numerical solvers, but further allows users an in-
situ visualisation (sliding window) of the computed results in order to leverage
high-performance interactive data exploration. This code was now extended by
an HDF5 I/O kernel to tackle the problem of reading and writing huge datasets
during runtime, a typical bottleneck for modern HPC applications, thus slowing
down the overall performance due to long I/0 latencies.

The current 1/0 kernel — using collective buffering for optimisation — shows a
good scaling behaviour within the applicable range of grids, that is, any limiting
factor is due to the specifically used 1/O hardware, so that with an increasing
amount of 1/O nodes a much better performance is to be expected. Further
comparisons with ExaHDF’s I/O kernel foster these results. By adopting above
data structure for the design of the kernel’s internal file structure, additional
functionality such as a file-based sliding window could easily be implemented,
now providing users the opportunity for a time reversal steering, enabling to



change boundary conditions and restart the computation at any previous time

step.
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(depth 8) with approx. 707 billion unknowns on different HPC systems
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Figure 3: Single steps of a full sliding window query: the client issues a request to
the collector (1) that forwards it to the neighbourhood server for identifying all
relevant d-grids (2) and informs respective computational processes (3) to send
the desired information to the collector (4) that finally returns a data stream to
the client (5) — based on |3]

simulation processes

classical steering (? »@ >@
O 26,

time-reversible steering
® 0,
26,

O snapshot —— simulation A steering A reload

Figure 5: Schematic concept of classical and time reversible steering concept.
Horizontal shifts signify continuation of the simulation while a vertical shift rep-
resents a steering operation. Main characteristic of classical steering at the top is
a continuous progression forward in time, whereas time reversible steering allows
the reload and altering of previous written checkpoints, leading to branching
simulation paths.
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Figure 6: Time reversible steering: comparative visualisation of a von Karmén
vortex street according to [18] at selected times from ¢t = 0.0s and ¢t = 2.0s for
the basic setup and two altered scenarios — going back to a previous time step
(blue dashed and dotted arrow) and modifying boundary conditions (red dashed
arrows) — restarting at ¢t = 1.0s



(a) Operation theatre at ¢ = 50.0s with lamps at 7' = 324.66 K

(b) Operation theatre at ¢ = 50.0 s with lamp boundary conditions altered at ¢t = 20.0s
to T = 374.66 K

Figure 7: Simulation of an Operation theatre, utilising the TRS concept to
evaluate two different temperature boundary conditions applied on the lamps.
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