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Abstract

The Internet of Things (IoT) is an emerging technology paradigm
where millions of sensors and actuators help monitor and manage, physi-
cal, environmental and human systems in real-time. The inherent closed-
loop responsiveness and decision making of IoT applications make them
ideal candidates for using low latency and scalable stream processing plat-
forms. Distributed Stream Processing Systems (DSPS) hosted on Cloud
data-centers are becoming the vital engine for real-time data processing
and analytics in any IoT software architecture. But the efficacy and per-
formance of contemporary DSPS have not been rigorously studied for IoT
applications and data streams. Here, we develop RIoTBench, a Real-
time IoT Benchmark suite, along with performance metrics, to evalu-
ate DSPS for streaming IoT applications. The benchmark includes 27
common IoT tasks classified across various functional categories and im-
plemented as reusable micro-benchmarks. Further, we propose four IoT
application benchmarks composed from these tasks, and that leverage var-
ious dataflow semantics of DSPS. The applications are based on common
IoT patterns for data pre-processing, statistical summarization and pre-
dictive analytics. These are coupled with four stream workloads sourced
from real IoT observations on smart cities and fitness, with peak streams
rates that range from 500 − 10, 000 messages/sec and diverse frequency
distributions. We validate the RIoTBench suite for the popular Apache
Storm DSPS on the Microsoft Azure public Cloud, and present empirical
observations. This suite can be used by DSPS researchers for performance
analysis and resource scheduling, and by IoT practitioners to evaluate
DSPS platforms.

1 Introduction

Internet of Things (IoT) is a technology paradigm wherein ubiquitous sensors
numbering in the billions will able to monitor physical infrastructure and envi-
ronment, human beings and virtual entities in real-time, process both real-time
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and historic observations, and take actions that improve the efficiency and re-
liability of systems, or the comfort and lifestyle of society. The technology
building blocks for IoT have been ramping up over for a decade, with research
into pervasive and ubiquitous computing [43], and sensor networks [17] forming
precursors. Recent growth in the capabilities of high-speed mobile (e.g., 3G/4G)
and ad hoc (e.g., Bluetooth) networks [15], smart phones and devices, affordable
sensing and crowd-sourced data collection [1], Cloud data-centers, and Big Data
analytics platforms have all converged to the current inflection point for IoT.

Existing IoT deployments in vertical domains such as Smart Power Grids [36]
and health and fitness monitoring [41] already have millions of sensing and actu-
ation points that constantly stream observations and trigger responses. The IoT
stack for such domains is tightly integrated to serve specific needs, but typically
operates on a closed-loop Observe Orient Decide Act (OODA) cycle [33], where
sensors communicate time-series observations of the (physical or human) system
to the Cloud for analysis, and the resulting analytics drives recommendations
that are enacted on the system to improve it, which is again observed and so on.
In fact, this closed-loop responsiveness is one of the essential and distinguishing
design characteristics of IoT applications, compared to other Big Data domains.

This low-latency cycle makes it necessary to process data streaming from
sensors at fine spatial and temporal scales, in real-time, to derive actionable
intelligence. In particular, this streaming analytics has be to done at mas-
sive scales (millions of sensors, thousands of events per second) from across
distributed sensors, requiring large computational resources. Cloud computing
offers a natural platform for scalable processing of the observations at globally
distributed data centers, and sending a feedback response to the IoT system at
the edge.

Recent Big Data platforms like Apache Storm [39], Spark Streaming [42] and
Flink [13] provide an intuitive dataflow programming model for composing such
streaming applications, with a scalable, low-latency execution engine designed
for commodity clusters and Clouds. These Distributed Stream Processing Sys-
tems (DSPS) are becoming essential components of any IoT stack to support
online analytics and decision-making for IoT applications. DSPS provide the
ability to compose a dataflow graph of user-defined tasks that can process a
continuous stream of opaque messages on distributed resources. This flexibility
allows DSPS to incorporate a wide variety of business logic for real-time process-
ing and online analytics necessary for a diverse and emerging domain like IoT.
In fact, reference IoT solutions from Cloud providers like Amazon AWS1 and
Microsoft Azure2 include their proprietary stream and event processing engines
as part of the IoT software architecture.

Shared-memory stream processing systems [16, 17] have been investigated
over a decade back for wireless sensor networks, with benchmarks such as Lin-
ear Road [6] being proposed. But there has not been a detailed review of, or
benchmarks for, distributed stream processing for IoT. IoT encompasses mul-

1https://aws.amazon.com/iot/how-it-works/
2https://www.microsoft.com/en-in/server-cloud/internet-of-things/overview.aspx
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tiple domains, and applications go well beyond traditional social network and
web traffic workloads for which DSPS were designed for [39]. They include a
swathe of generalizable tasks for data pre-processing, statistical summarization
and predictive analytics, as well as analytics for specific IoT application areas
like Smart Transportation or health. As such, the efficacy and performance of
contemporary DSPS have not been rigorously studied for IoT applications and
data streams. One reason is the absence of a well-defined IoT benchmark that
realistically captures the domain features, exercises the unique compositional
capabilities of DSPS, and validates them on real data streams. We address this
gap in this paper.

This paper extends our prior published work, significantly increasing both
the breadth and depth of the benchmark suite [35]. We add 14 new tasks to
the earlier 13 tasks, including in new categories; two new streaming dataflow
applications, besides updating the earlier two as well; and two new data work-
loads from the smart grid and personal fitness domains. We also include support
for spatial scaling to increase the number of sensor streams, in addition to the
temporal scaling used earlier to increase the stream rates. These make our
benchmark comprehensive.

Specifically, we make the following contributions in this article:

1. We classify different characteristics of streaming applications, their com-
position semantics, and their data sources, in § 3.

2. Then, in § 4, we propose categories of tasks that are essential for IoT
applications and the key features of input data streams they operate upon.

3. We identify performance metrics of DSPS that are necessary to meet the
latency and scalability needs of streaming IoT applications, in § 5.

4. We propose the RIoTBench real-time IoT benchmark for DSPS based on
representative micro-benchmark tasks, drawn from the above categories,
in § 6. We design four reference IoT applications that span Data pre-
processing, Statistical analytics and Predictive Analytics, and are com-
posed from these tasks. We also identify four real-world streams with
different distributions as workloads on which to evaluate them.

5. Lastly, we validate the proposed benchmark suite for the popular Apache
Storm DSPS, and present empirical results for the same in § 7.

Our contributions benefit two classes of audience. One, for developers and
users in IoT domains, RIoTBench offers a set of realistic IoT tasks and appli-
cations that they can customize and configure to help evaluate candidate DSPS
platforms for their performance and scalability needs. Two, for researchers on
Big Data, it provides a reference micro and application benchmark, along with
datasets, that can be used as a baseline to uniformly compare the impact of
their research advances in resource management, scalability and resiliency for
DSPS on the emerging IoT domain.
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2 Background and Related Work

Stream processing systems allow users to compose applications as a dataflow
graph, with task vertices having some user-defined logic and streaming edges
passing messages between the tasks. The systems then run the applications con-
tinuously over incoming data streams. Early Data Stream Management Systems
(DSMS) extended Database Management Systems (DBMS) to support by sen-
sor network applications, that have similarities to IoT [8,14,18]. They supported
continuous query languages with operators such as join and aggregation similar
to SQL, but with a temporal dimension using time and tuple window opera-
tions. These have been extended to distributed implementations [9, 11] and,
more recently, complex event processing (CEP) engines for detecting sequences
and patterns [19].

Contemporary Distributed Stream Processing Systems (DSPS) like Apache
Storm, Spark Streaming, Flink and Yahoo S4 [13,32,39,42] were designed using
Big Data fundamentals – running on commodity clusters and Clouds, offering
weak scaling, ensuring robustness, and supporting fast data processing over
thousands of events per second. Unlike DSMS, DSPS do not support native
query operators and instead allow users to plug in their own logic composed as
dataflows that are executed on a cluster. Event processing and querying can
be higher-level abstractions on top of these 3. While developed for web and
social network applications, such fast data platforms have found use in financial
markets, astronomy, and particle physics. IoT is one of the more recent domains
to consider them.

There are design and architectural differences even within DSPS, which we
highlight as part of our characterization. The types of programming seman-
tics supported can vary, and determines the flexibility in composition. Spark
Streaming uses micro-batch processing in contrast to per-tuple processing in
Storm, with consequences trade-offs between latency and throughput. As a
result, it is important to qualitatively and quantitatively evaluate these frame-
works for specific application domains, and the distributed platform they target.
Understanding the common set of feature dimensions and performance metrics,
in addition to the actual IoT benchmark definitions, is necessary for fair com-
parison across the DSPS. We discuss these later for DSPS operating on Clouds
to support IoT applications.

2.1 DSPS Benchmarks

Work on DSMS spawned the Linear Road Benchmark (LRB) [6] that was pro-
posed as an application benchmark. In the scenario, the DSMS had to evaluate
toll and traffic queries over event streams from a virtual toll collection and
traffic monitoring system. This has parallels with current smart transporta-
tion scenarios. However, there have been few studies or community efforts on
benchmarking DSPS, other than individual evaluation of research prototypes

3Apache Trident, http://storm.apache.org/releases/1.0.1/Trident-tutorial.html
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against popular DSPS like Storm or Spark. These efforts define their own mea-
sures of success – typically limited to throughput and latency – and use generic
workloads such as the Enron email dataset with empty operations (NoOps) as
micro-benchmark to compare InfoSphere Streams [30] and Storm.

SparkBench [3] is a framework-specific benchmark for Apache Spark, and
includes four categories of applications from domains spanning Graph compu-
tation and SQL queries, with one on streaming applications supported by Spark
Streaming. The benchmark metrics include CPU, memory, disk and network IO,
with the goal of identifying tuning parameters to improve Spark’s performance.
CEPBen [28] evaluates the performance of CEP systems based of the functional
behavior of queries. It shows the degree of complexity of CEP operations like
filter, transform and pattern detection. The evaluation metrics consider event
processing latency, but ignore network overheads and CPU utilization. Further,
CEP applications rely on a declarative query syntax to match event patterns
rather than a dataflow composition based on user-logic provided by DSPS.

StreamBench [29] is the closest work that partially addresses our goals. The
authors propose 7 micro-benchmarks on 4 different synthetic workload suites
generated from real-time web logs and network traffic to evaluate DSPS. Met-
rics including performance, durability and fault tolerance are proposed. The
benchmark covers different dataflow composition patterns and common tasks
like grep and wordcount, and compare Storm and Spark Streaming.

The paper, while addressing the gap that existed in generalizable bench-
marks DSPS, still falls short on several counts. It focuses on micro-benchmarksand
does not consider larger applications with more tasks and complex structures.
Design patterns like duplicates and round-robin, and selectivity ratios are not
explicitly considered. The benchmark does not cover a broad range of realis-
tic input data rates either. We address these gaps. At the same time, we do
not emphasize durability or fault-tolerance metrics in our study, through these
metrics can be added.

In contrast to these DSPS benchmarks, RIoTBench offers relevant micro-
and application-level benchmarks for evaluating DSPS, specifically for IoT work-
loads for which such platforms are increasingly being used. Our benchmark is
designed to be platform-agnostic, simple to implement and execute within di-
verse DSPS, and representative of both the application logic and the data stream
workloads observed in IoT domains. This allows for the performance of DSPS
to be independently and reproducibly verified for IoT applications.

2.2 Big Data and IoT Benchmarks

There has been a slew of Big Data benchmarks that have been developed re-
cently in the context of processing high volume (i.e., MapReduce-style) and en-
terprise/web data that complement our work. Hibench [25] is a workload suite
for evaluating Hadoop with popular micro-benchmarks like Sort, WordCount
and TeraSort, MapReduce applications like Nutch Indexing and PageRank, and
machine learning algorithms like K-means Clustering. BigDataBench [22] ana-
lyzes workloads from social network and search engines, and analytics algorithms
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like Support Vector Machine (SVM) over structured, semi-structured and un-
structured web data. Both these benchmarks are general purpose workloads
that do not target any specific domain, but MapReduce platforms at large.

BigBench [23] uses a synthetic data generator to simulate enterprise data
found in online retail businesses. It combines structured data generation from
the TPC-DS benchmark [31], semi-structured data on user clicks, and unstruc-
tured data from online product reviews. Queries cover data velocity by pro-
cessing periodic refreshes that feed into the data store, variety by including
free-text user reviews, and volume by querying over a large web log of clicks.
We take a similar approach for benchmarking fast data platforms, targeting the
IoT domain specifically and using real public data streams.

Chronos [24] is a recent work to generate and simulate streams for bench-
marking. Their aim is to generate realistic input data streams with a distribu-
tion similar to given sample events. They use elastic infrastructure to generate
events at high rates, and validate their work for telecom, advertising and stock
market data. Their work is complementary to ours, as we propose dataflow pat-
terns and applications, as well as representative datasets as part of benchmarks
which are run at their native and scaled rates. Chronos can be used to stress
these benchmarks further with larger inputs and faster rates.

There has been some recent work on benchmarking IoT applications. In
particular, the generating large volumes of synthetic sensor data with realistic
values is challenging, yet required for benchmarking. IoTAbench [7] provides
a scalable synthetic generator of time-series datasets. It uses a Markov chain
model for scaling the time series with a limited number of inputs such that
important statistical properties of the stream is retained in the generated data.
They have demonstrated this for smart meter data. The benchmark also in-
cludes six SQL queries to evaluate the performance of different query platforms
on the generated dataset. Their emphasis is on the data characteristics and
content, which supplements our focus on evaluating the runtime aspects of the
DSPS platform.

CityBench [4] is a benchmark to evaluate RDF stream processing systems.
They include different generation patterns for smart city data, such as traffic
vehicles, parking, weather, pollution, cultural and library events, with changing
event rates and playback speeds. They propose fixed set of semantic queries over
this dataset, with concurrent execution of queries and sensor streams. Here, the
target platform is different (RDF database), but in a spirit as our work.

Benchmarks for IoT hardware is also becoming important. IoT-Connect [40]
is an Industry-Standard Benchmark for Embedded Systems to analyze the be-
havior of micro-controllers with various connectivity interfaces like Bluetooth,
Thread, LoRa, and WiFi. It also provides methods to determine the energy
consumption for IoT devices.
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Figure 1: Common task patterns and semantics in streaming applications.

3 Characteristics of DSPS Applications and Streams

In this section, we review the common application composition capabilities of
DSPS, and the dimensions of the streaming applications that affect their per-
formance on DSPS. These semantics help define and describe streaming IoT
applications based on DSPS capabilities.

3.1 Dataflow Composition Semantics

DSPS applications are composed as a dataflow graph, where vertices are user
provided tasks and directed edges refer to streams of messages that can pass be-
tween them. The graph need not be acyclic. Tasks in the dataflows can execute
zero or more times, and a task execution usually depends on data-dependency
semantics, i.e, when “adequate” inputs are available, the task executes. How-
ever, there are also more nuanced patterns that are supported by DSPS that we
discuss. Messages (or events or tuples) from/to the stream are consumed/pro-
duced by the tasks. DSPS typically treat the messages as opaque content, and
only the user logic may interpret the message content. However, DSPS may
assign identifiers to messages for fault-tolerance and delivery guarantees, and
some message attributes may be explicitly exposed as part of the application
composition for the DSPS to route messages to downstream tasks.

Selectivity ratio, also called gain, is the average number of output mes-
sages emitted by a task on consuming a unit input message, expressed as
σ = input rate : output rate. Based on this, one can assess whether a task
amplifies or attenuates the incoming message rate. It is important to consider
this while designing benchmarks as it can have a multiplicative impact on down-
stream tasks.

There are message generation, consumption and routing semantics associ-
ated with tasks and their composition. Fig. 1 captures the basic composition
patterns supported by modern DSPS. Source tasks have only outgoing edge(s),
and these tasks encapsulate user logic to generate or receive the input messages
that are passed to the dataflow. Likewise, Sink tasks have only incoming edge(s)
and these react to the output messages from the application, say, by storing it
or sending an external notification.

Transform tasks, sometimes called Map 4, generate one output message
for every input message received (σ = 1 : 1). Their user logic performs a
transformation on the message, such as changing the units or projecting only a
subset of attribute values. Filter tasks allow only a subset of messages that

4Spark Programming Guide, http://spark.apache.org/docs/latest/programming-
guide.html
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they receive to pass through, optionally performing a transformation on them
(σ = N : M , N ≥M). Conversely, a FlatMap consumes one message and emits
multiple messages (σ = 1 : N). An Aggregate pattern consumes a window
of messages, with the window width provided as a count or a time duration,
and generates one or more messages that is an aggregation over each message
window (σ = N : 1). Specific DSPS may expose additional dataflow patterns
as well.

When a task has multiple outgoing edges, routing semantics on the dataflow
decide if an output message is duplicated onto all the edges, or just one down-
stream task is selected for delivery, either based on a round robin behavior or
using a hash function on an attribute in the outgoing message to decide the
target task. Similarly, multiple incoming streams arriving at a task may be
merged into a single interleaved message stream for the task. Or alternatively,
the messages coming on each incoming stream may be conjugated, based on or-
der of arrival or an attribute exposed in each message, to form a joined stream
of messages. Other custom DSPS routing semantics may exist too.

There are additional dimensions of the streaming dataflow that can deter-
mine its performance on a DSPS. Tasks may be data parallel, in which case,
it can be allocated concurrent resources (threads, cores) to process messages
in parallel by different instances the task. This is typically possible for tasks
that do not maintain state across multiple messages. The number of tasks in
the dataflow graph indicates the size of the streaming application. Tasks are
mapped to computing resources, and depending of their degree of parallelism
and resource usage, it determines the cores/VMs required for executing the ap-
plication. The length of the dataflow is the latency of the critical (i.e., longest)
path through the dataflow graph, if the graph does not have cycles. This gives
an estimate of the expected latency for each message and also influences the
number of network hops a message on the critical path has to take in the clus-
ter.

3.2 Data Stream Characteristics

We list a few characteristics of the input data streams that impact the runtime
performance of streaming applications, and help classify IoT message streams.

The input throughput in messages/sec is the cumulative frequency at which
messages enter the source tasks of the dataflow. Input throughputs can vary
by application domain, and are determined both by the number of streams of
messages and their individual rates. This combined with the dataflow selectivity
will impact the load on the dataflow and its individual tasks, and determine the
output throughput.

Throughput distribution captures the variation of input throughput over
time. In real-world settings, the input data rate is usually not constant and
DSPS need to adapt to this. There may be several common data rate distribu-
tions besides a uniform one. There can be bursts of data coming from a single
sensor, or a coordinated set of sensors. A saw-tooth behavior is seen in the
ramp-up/-down before/after specific events. A Normal distribution can occur
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for diurnal (day vs. night) stream sources, with bi-modal variations capturing
peaks during the morning and evening periods of human activity.

Lastly, the message size provides the average size of each message, in bytes.
Often, the messages sizes remain constant for structured messages arriving from
specific sensor or observation types, but may vary for free-text input streams
or those that interleave messages of different types. This size help assess the
communication cost of transferring messages in the dataflow.

4 Characteristics of IoT Applications and Streams

Here, we categorize IoT tasks, applications and data streams used within DSPS,
based on the domain requirements. These, together with the patterns and
semantics discussed in the previous section, offer a search space for defining
dataflows and workloads that meaningfully and comprehensively validate IoT
applications on DSPS.

4.1 Categories of IoT Tasks

IoT covers a broad swathe of domains, many of which are rapidly developing.
So, it is not possible to comprehensively capture all possible IoT application sce-
narios. However, DSPS have clear value in supporting the real-time processing,
analytics, decision making and feedback that is intrinsic to most IoT domains.
Here, we attempt to categorize these common processing and analytics tasks
that are performed over real-time data streams.

Parse. Messages are encoded on the wire in a standard text-based or binary
representation by the stream sources, and need to be parsed upon arrival at the
application. Text formats in particular require string parsing by the tasks,
and are also larger in size on the wire. The tasks within the application may
themselves retain the incoming format in their streams, or switch to another
format or data model, say, by projecting a subset of the fields. They may also
annotate and extend the number of fields. Industry-standard formats that are
popular for IoT domains include CSV, XML, SenML and JSON text formats,
and EXI and CBOR binary formats. For e.g., IETF’s SenML (Sensor Markup
Language) [26] can define an array of entries, where each entry is an object object
that encapsulates attributes and their values, such as the unique identifier for
the sensor, the time of measurement, and the current value, with the ability
to model repetitions, relative time, etc. SenML serializations into JSON, XML
and EXI are possible.

Filter. Messages may require to be filtered based on specific attribute values
present in them, for data quality checks, to route a subset of message types
to a part of the dataflow graph, or as part of their application logic. Value
filters such as min/max or band-pass filters check the numeric values of different
observational fields from the sensors and can drop outliers. Since IoT event rates
may be high, more efficient Bloom filters are a probabilistic structure that can
be used to process large sets of discrete values with low space complexity but
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a small fraction of false positives. It can be used to detect invalid sensors or
users in an incoming data streams. Filtering over text or media streams is also
possible, but requires consideration like using text or video processing libraries.

Statistical Analytics. Groups of messages within a sequential time or
count window of a stream may require to be aggregated as part of the applica-
tion. The aggregation function may be common mathematical operations like
average, count, minimum and maximum. They may also be higher order statis-
tics such finding outliers, quartiles, second and third order moments, and counts
of distinct elements. Statistical data cleaning like linear interpolation or denois-
ing using Kalman filters are common for sensor-based data streams. Some tasks
may maintain just local state for the window width (e.g., local average) while
others may maintain state across windows (e.g., moving average). When the
state size grows, here again approximate aggregation algorithms may be used.
Distinct approximate count is another such example of statistical tasks where
we try to find approximate distinct values present in stream.

Predictive Analytics. Predicting future behavior of the system based on
past and current messages is an important part of IoT applications. Various
statistical and machine-learning algorithms may be employed for predictive an-
alytics over sensor streams. The predictions may either use a recent window of
messages to estimate the future values over a time or count horizon in future, or
train models over streaming messages that are periodically used for predictions
over the incoming messages. Even simple techniques like interpolation can be
useful for replacing empty entries by interpolation over past values. Classifi-
cation algorithms like decision trees, neural networks and näıve Bayes can be
trained to map discrete values to a category, which may lead to specific actions
taken on the IoT system. External packages like Weka or R may be used by such
tasks. The training itself can be an online task that is part of a DSPS dataflow.
For e.g., ARIMA and linear regression use statistical methods to predict uni- or
multi-variate attribute values, respectively. Also trained models can be updated
on the fly within such forecasting tasks.

Pattern Detection. Another class of tasks are those that identify patterns
of behavior over several events. Unlike window aggregation which operate over
static window sizes and perform a function over the values, pattern detection
matches user-defined predicates on messages that may not be sequential or even
span streams, and returns the matched messages. These are often modeled as
state transition automata or query graphs. Common patterns include contiguous
or non-contiguous sequence of messages with specific property on each message
(e.g., high-low-high pattern over 3 messages), a join over two streams based
on a common attribute value, or even semantic matching [44]. Complex Event
Processing (CEP) engines like Siddhi [37] may be embedded within the DSPS
task to match such patterns.

Visual Analytics. Other than automated decision making, IoT applica-
tions often generate charts and animations for consumption by end-users or sys-
tem managers. These visual analytics may be performed at the client’s browser
using libraries like D3.js, in which case the processed data stream is aggregated
and provided to the users. Alternatively, the streaming application may itself
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periodically generate such plots and visualizations as part of the dataflow, to be
hosted on the web or pushed to the client. Charting and visualization libraries
like XChart, gnuplot or matplotlib may be used for this purpose.

IO Operations. Lastly, the IoT dataflow may need to access external
storage or messaging services to access/push data into/out of the application.
These may be to store or load trained models, archive incoming data streams,
access historic data for aggregation and comparison, and subscribe to message
streams or publish actions back to the system. These require access to file
storage, SQL and NoSQL databases, and publish-subscribe messaging systems.
Often, these may be hosted as part of the Cloud platforms themselves like
Azure Storage. This also include writing files to local or remote disk, and
optionally compressing or uncompressing them. Each of them have their own
characteristics in term of latency, peak rate supported and resource usage.

4.2 Categories of IoT Applications

The tasks from the above categories, along with other domain-specific tasks,
are composed together to form streaming IoT dataflow applications. These
domain dataflows themselves fall into specific classes based on common use-case
scenarios, and loosely map to the Observe-Orient-Decide-Act (OODA) phases.

Extract-Transform-Load (ETL) and Archival applications are front-
line “observation” dataflows that receive and pre-process the data streams, and
if necessary, archive a copy of the data offline. Pre-processing may perform data
format transformations, normalize the units of observations, data quality checks
to remove invalid data, interpolate missing data items, and temporally reorder
messages arriving from different streams, annotate with the metadata. The pre-
processed data may be archived to table storage, and passed onto subsequent
dataflow for further analysis.

Summarization and Visualization applications perform statistical ag-
gregation and analytics over the data streams to understand the behavior of
the IoT system at a coarser granularity. Statistical analytics may include tasks
such as finding approximate counts, identifying skewness in data distribution,
and using linear regression for online trends. Such summarization can give the
high-level pulse of the system, and help “orient” the decision making to the
current situation. These tasks are often coupled with visualization tasks in the
dataflow to present the summary status to end-users and decision makers.

Prediction and Pattern Detection applications use current information
and historic models to help determine the future state of the IoT system, and
“decide” if any reaction is required. They identify patterns of interest that may
indicate the need for a correction, or forecasts based on current behavior that
require preemptive actions. For e.g., a trend that indicates an unsustainably
growing load on a smart power grid may cause a decision to preemptively shed
load, or a detection that the heart-rate from a fitness watch is dangerously
high may trigger a decision to reduce physical exertion. Model-based prediction
applications are also coupled with batch or online dataflow applications that
periodically re-train the models using observed data.
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Classification and Notification applications determine specific “actions”
that are required and communicate them to the IoT system. Decisions may be
mapped to specific actions, and the entities in the IoT system that can enact
those are notified. These notifications can be delivered using SMS gateways, web
service calls, or publish-subscribe brokers. For e.g., the need for load shedding
in the power grid may map to notifying specific residents with a request for
curtailment, or the need to reduce physical exertion may lead to a treadmill
being notified to reduce the speed. The classification or case based reasoning
systems may also require model training, like for predictive analytics.

4.3 IoT Data Stream Characteristics

IoT data streams are often generated by physical sensors that observe physical
systems or the environment. As a result, they are typically time-series data that
are generated periodically by the sensors. The sampling rate for these sensors
may range from once a day to hundreds per second, depending on the domain.
The number of sensors themselves may vary from a few hundred to millions as
well. IoT applications like smart power grids can generate high frequency plug
load data at thousands of messages/sec from a small cluster of residents, or low
frequency data from a large set of sensors, such as in smart transportation or
environmental sensing. As a result, we may encounter a wide range of input
throughputs from 10−2 to 105 messages/sec. In comparison, streaming web
applications like Twitter deal with 6000 tweets/sec from 300M users.

At the same time, this event rate itself may not be uniform across time.
Sensors may also be configured to emit data only when there is a change in ob-
served value, rather than unnecessarily transmitting data that has not changed.
This helps conserve network bandwidth and power for constrained devices when
the observations are slow changing. Further, if data freshness is not critical to
the application, they may sample at high rate but transmit at low rates but in
a burst mode. E.g. smart meters may collecting kWh data at 15 min intervals
from millions of residents but report it to the utility only a few times a day,
while the FitBit smart watch syncs with the Cloud every few minutes or hours
even as data is recorded every few seconds. Message variability also comes into
play when human-related activity is being tracked. Diurnal or bimodal event
rates are seen with single peaks in the afternoons, or dual peaks in the morning
and evening. E.g., sensors at businesses may match the former while traffic flow
sensors may match the latter.

There may also be a variety of observation types from the same sensor device,
or different sensor devices generating messages. These may appear in the same
message as different fields, or as different data streams. This will affect both
the message rate and the message size. These sensors usually send well-formed
messages rather than free-text messages, using standards like SenML. Hence
their sizes are likely to be deterministic if the encoding format is not considered
– text formats tend to bloat the size and also introduce size variability when
mapping numbers to strings. However, social media like tweets and crowd-
sourced data are occasionally used by IoT applications, and these may have
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more variability in message sizes.

5 Performance Metrics

We identify and formalize commonly-used quantitative performance measures
for evaluating DSPS for the IoT workloads.

Latency. Latency for a message that is generated by a task is the time in
seconds it took for that task to process one or more inputs to generate that
message. If σ = N : M is the selectivity for a task T , the time λTM it took to
consume N messages to causally produce those M output messages is the latency

of the M messages, with the average latency per message given by λT =
λT
M

|M | .

When we consider the average latency λ of the dataflow application, it is the
average of the time difference between each message consumed at the source
tasks and all its causally dependent messages generated at the sink tasks.

The latency per message may vary depending on the input rate, resources
allocated to the task, and the type of message being processed. While this task
latency is the inverse of the mean throughput, the end-to-end latency for the
task within a dataflow will also include the network and queuing time to receive
a tuple and transmit it downstream.

Throughput. The output throughput is the aggregated rate of output
messages emitted out of the sink tasks, measured in messages per second. The
throughput of a dataflow depends on the input throughput and the selectivity
of the dataflow, provided the resource allocation and performance of the DSPS
are adequate. Ideally, the output throughput ωo = σ × ωi, where ωi is the
input throughput for a dataflow with selectivity σ. It is also useful to measure
the peak throughput that can be supported by a given application, which is the
maximum stable rate that can be processed using a fixed quanta of resources.

Both throughput and latency measurements are relevant only under stable
conditions when the DSPS can sustain a given input rate, i.e., when the latency
per message and queue size on the input buffer remain constant and do not
increase unsustainably.

Jitter. The ideal output throughput may deviate due to variable rate of
the input streams, change in the paths taken by the input stream through the
dataflow (e.g., at a Hash pattern), or performance variability of the DSPS. We
use jitter to track the variation in the output throughput from the expected
output throughput, defined for a time interval t as,

Jt =
ωo − σ × ωi

σ × ωi

where the numerator is the observed difference between the expected and actual
output rate during interval t, and the denominator is the expected long term
average output rate given a long-term average input rate ωi. In the case of an
ideal DSPS, jitter will tend toward zero, even if there are instantaneous changes
in the input rate.
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CPU and Memory Utilization. Streaming IoT dataflows are expected
to be resource intensive, and the ability of the DSPS to use the distributed
resources efficiently with minimal overhead is important. This also affects the
VM resources and consequent price to be paid to run the application using the
given stream processing platform. We track the CPU and memory utilization
for the dataflow as the average of the CPU and memory utilization across all the
VMs that are being used by the dataflow’s tasks. The per-VM information can
also help identify which VMs hosting which tasks are the potential bottlenecks
and can benefit from data-parallel scale-out, and cases of over-allocation of
resources.

6 RIoTBench IoT Benchmark Suite

We propose benchmark workloads to help evaluate the metrics discussed before
for various DSPS. These benchmarks are in particular targeted for emerging IoT
applications, to help them distinguish the capabilities of contemporary DSPS on
Cloud computing infrastructure. The benchmarks themselves have two parts,
the dataflow logic that is executed on the DSPS and the input data streams
that they are executed for. We next discuss our choices for both.

6.1 IoT Micro-benchmarks

We propose a suite of common IoT tasks that span various categories we have
identified and different streaming task patterns. These tasks form independent
micro-benchmarks, and are further composed into application benchmarks later.
The goal of the micro-benchmarks is to evaluate the performance of the DSPS
for individual IoT tasks, and we measure the peak input throughput that they
can sustain on a unit computing resource as the performance metric. This
offers a baseline for comparison with other DSPS, and can also inform resource
scheduling decisions for more complex application dataflows composed using
these tasks.

Table 1 lists the different micro-benchmark tasks, and their IoT categories,
task patterns, and selectivity. These are grouped by their categories. The parse
category includes tasks that process standard text formats such as SenML and
XML, and convert them to object formats, and also convert from a CSV format
to a SenML form with additional semantics. The annotation task appends
metadata content to an existing message based on an in-memory lookup for a
unique ID present in the tuple. All these parse tasks transform messages from
one form to another. The Bloom filter finds practical use in the filter category
for processing a large, discrete data space. It is trained with a white-list of valid
sensor IDs that it will permit. The simple value range filter is used filtering in
messages with observation fields that fall within a fixed upper and lower bound.

We have several tasks in the statistical analytics category that perform ag-
gregations and transformations. Basic statistics include a simple average of a
single attribute’s values over a count window, and a generic accumulator that
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Table 1: IoT Micro-benchmark Tasks with different IoT Categories and DSPS
Patterns.

Task Name Code Category Pattern σ Ratio State

Annotate ANN Parse Transform 1:1 No
CsvToSenML C2S Parse Transform 1:1 No
SenML Parsing [26] SML Parse Transform 1:1 No
XML Parsing XML Parse Transform 1:1 No
Bloom Filter [12] BLF Filter Filter 1:0/1 No
Range Filter RGF Filter Filter 1:0/1 No
Accumlator ACC Statistical Aggregate N:1 Yes
Average AVG Statistical Aggregate N:1 Yes
Distinct Appox. Count [21] DAC Statistical Transform 1:1 Yes
Kalman Filter [27] KAL Statistical Transform 1:1 Yes
Second Order Moment [5] SOM Statistical Transform 1:1 Yes
Decision Tree Classify [34] DTC Predictive Transform 1:1 No
Decision Tree Train DTT Predictive Aggregate N:1 No
Interpolation INP Predictive Transform 1:1 Yes
Multi-var. Linear Reg. MLR Predictive Transform 1:1 No
Multi-var. Linear Reg. Train MLT Predictive Aggregate N:1 No
Sliding Linear Regression SLR Predictive Flat Map N:M Yes
Azure Blob D/L ABD IO Source/Transform 1:1 No
Azure Blob U/L ABU IO Sink 1:1 No
Azure Table Lookup ATL IO Source/Transform 1:1 No
Azure Table Range ATR IO Source/Transform 1:1 No
Azure Table Insert ATI IO Transform 1:1 No
MQTT Publish MQP IO Sink 1:1 No
MQTT Subscribe MQS IO Sink 1:1 No
Local Files Zip LZP IO Sink 1:1 No
Remote Files Zip RZP IO Sink 1:1 No
MultiLine Plot [2] PLT Visualization Transform 1:1 No

buffers incoming messages based on a count window for use by other tasks. The
second order moments over time-series values is another common statistics we
implement. Estimating the frequencies a large range of streaming values can
be memory intensive, and distinct approximate count performs a probabilistic
count over the incoming messages while conserving memory. Lastly, the Kalman
filter we provide is a popular denoising algorithm used for smoothing sensor data
values in a time-series.

Predictive analytics uses the Weka library to implement several common
Machine Learning tasks. A multi-variate linear regression is included to predict
one attribute’s numerical value based on the values of one or more other in
the message. This has both online training and online prediction tasks. Simi-
larly, the decision tree classifier is used for predict a class based on enumerated
field values in the message, and also comes with a training and a classification
task. Training for both these models happens over large, batched windows of
messages. Interpolation and linear regression are standard techniques used for
univariate time-series observation, and are available in the micro-benchmark
suite.

We have several IO tasks for reading and writing to Microsoft Azure Cloud’s
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Figure 2: High-level logical interactions between different sensors, benchmark
applications, platform services and users

file (blob) storage and NoSQL (table) storage. In addition, the common file
operation of compressing a set of files is also available, with the source files
being either on local disk or on the network. Publish/subscribe to/from an
MQTT publish-subscribe broker for notifications and also included. Lastly, a
single exemplar Visualization task in the form of a Java XChart plotting library
is present to accumulate and generate an image file.

A micro-benchmark dataflow is composed for each of these tasks as a se-
quence of a source task, the benchmark task and a sink task. As can be seen,
these tasks also capture different dataflow patterns such as transform, filter,
aggregate, flat map, source and sink.

6.2 IoT Application Benchmarks

Application benchmarks are valuable in understanding how non-trivial and
meaningful IoT applications behave on DSPS. Application dataflows for a do-
main are most representative when they are constructed based on real or realistic
application logic, rather than synthetic tasks. In case applications use highly-
custom logic or proprietary libraries, this may not be feasible or reusable as a
community benchmark. However, many of the common IoT tasks we have de-
fined earlier are naturally composable into application benchmarks that satisfy
the requirements of a OODA decision making loop.

Fig. 2 shows a high-level use case of such an IoT scenario that is general-
izable to many domains such as smart power, transportation and fitness. This
is achieved by the interaction between four different application dataflows we
propose. Here, input streams from sensors in the domain arrive at a Extract-
Transform-Load (ETL) dataflow that performs data pre-processing and cleaning
on the observations and archives it to Cloud table storage. Further, one output
stream is published to the MQTT message broker so that clients interested in
real-time monitoring can subscribe to it, while another copy is forked to the
second dataflow which performs Statistical Summarization (STATS). This ap-
plication does higher order aggregation and plotting operations, and stores the
generated plots to Cloud blob file storage, from where web-pages can load the
visualization files on browsers.

Concurrently, two dataflows support predictive analytics. Model Training
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(TRAIN) periodically loads the archived data from the Cloud table store and
trains forecasting models that are stored in the Cloud, and notifies the MQTT
broker of an updated model being available. The Predictive Analytics (PRED)
dataflow subscribes to the broker and downloads the new models from the Cloud,
and continuously operates over the pre-processed data stream from ETL to
make predictions and classifications that can indicate actions to be taken on
the domain. It then notifies the message broker of the predictions, that can
independently be subscribed to by a user or device for action.

More specifically, ETL (Fig. 3a) ingests incoming data streams in SenML
format, performs data filtering of outliers on individual observation types using
a Range and Bloom filter, and subsequently interpolates missing values. It then
annotates additional meta-data into the observed fields of the message and then
inserts the resulting tuples into Azure table storage, while also converting the
data back to SenML and publishing it to MQTT. A dummy sink task shown is
used for logging purposes.

The STATS dataflow (Fig. 3b) parses the input messages that arrive in
SenML format – typically from the ETL, but kept separate here for modularity.
It then performs three types of statistical analytics in parallel on individual ob-
servation fields present in the message: an average over a 10 message window,
Kalman filtering to smooth the observation fields followed by a sliding window
linear regression, and an approximate count of distinct values that arrive. These
three output streams are then grouped for each sensor IDs, plotted and the re-
sulting image files zipped. These three tasks are tightly coupled and we combine
them into a single meta-task for manageability, as is common. and the output
file is written to Cloud storage for hosting on a portal.

The TRAIN (Fig. 3c) application uses a timer to periodically (e.g., for
every minute) trigger a model training run. Each run fetches data from the
Azure table available since the last run and uses ti to train a Linear Regression
model. In addition, these fetched tuples are also annotated to allow a Decision
Tree classifier to be trained. Both these trained model files are then uploaded
to Azure blob storage and their files URLs are published to the MQTT broker.

The PRED (Fig. 3d) application subscribes to these notifications and fetches
the new model files from the blob store, and updates the downstream prediction
tasks. Meanwhile, the dataflow also consumes pre-processed messages stream-
ing in, say from the ETL dataflow, and after parsing it forks it to the decision
tree classifier and the multi-variate regression tasks. The classifier assigns mes-
sages into classes, such as good, average or poor, based on one or more of their
field values, while linear regression predicts a numerical attribute value in the
message using several others. The regression task also compares the predicted
values against a moving average and estimates the residual error between them.
The predicted classes, values and errors are published to the MQTT broker.
The Appendix lists configuration parameters and attributes used for relevant
tasks in the dataflows for different workloads we benchmark them on.

As such, these applications leverage many of the compositional capabilities of
DSPS. The dataflows include single and dual sources; tasks that are composed
sequentially, task-parallel and as combined meta-tasks; stateful and stateless
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Figure 3: Application benchmarks composed using the micro-benchmark tasks.

tasks; and data parallel tasks allowing for concurrent instances. Each message
in the data streams contains multiple observation fields, but several of these
tasks are applicable only on univariate streams and some are meaningful only
from time-series data from individual sources. Thus, the initial parse task for
ETL and STATS uses a flat map pattern (σ = 1 : N , where N is number
of observational fields) to create observation-specific streams early on. These
streams are further passed to task instances, grouped by their observation type
and optionally their sensor/meter ID using a hash pattern.

6.3 IoT Input Stream Workloads

We have identified four real-world IoT data streams available in the public
domain as candidates for our benchmarking workload. These correspond to
domains within smart cities, which is a major contributor to the growth of IoT,
taxi cab services, and personal fitness. Their features are shown in Table 2 and
their message rate distribution is in Fig. 4.

Sense your City (CITY) [1]. This is an urban environmental monitoring
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Table 2: Characteristics of Smart Cities data stream workloads used in bench-
marks, with temporal and spatial scaling.

Raw Workload Scaling Factor Effective Workload
Name Sensors Attrib.∗ Size (bytes) Distribution Temporal Spatial Effective Peak Rate (msg/sec) Sensors

CITY [1] 90 9 380 Uniform 30× 30× 900× 5,000 2,700
FIT [10] 10 26 1,024 Uniform 1× 1× 1× 500 10

GRID [38] 6,435 3 130 Normal 1× 500× 500× 10,000 32,17,500
TAXI [20] 20,355 17 191 Bimodal 1, 000× 1× 1, 000× 4,000 20,355

∗ Every dataset has a minimum of three attributes: sensorId, timestamp and one (or more) observational field(s).

project 5 that has used crowd-sourcing to deploy sensors at 7 cities across 3 con-
tinents in 2015, with about 12 sensors per city. Five timestamped observations,
outdoor temperature, humidity, ambient light, dust and air quality, are reported
every minute by each sensor along with metadata on sensor ID and geolocation.
Besides urban sensing, this also captures the vagaries of using crowd-sourcing
for large IoT deployments. Data from over 2 months is available. We use a
single logical stream that combines the global data from all unique sensors pro-
vided in the dataset. Fig. 4a shows a narrow distribution of the message rate,
with the peak frequency centered at 5, 000 msg/sec.

NYC Taxi cab (TAXI) [20]. This offers a stream of smart transportation
messages that arrive from 2M trips taken in 2013 on 20, 355 New York city taxis
equipped with GPS. A message is generated when a taxi completes a single
trip, and provides the taxi and license details, the start and end coordinates
and timestamp, the distance traveled, and the cost, including the taxes and
tolls paid. Other similar transportation datasets are also available 6, though
we chose ours based on the richness of the fields. This data has a bi-modal
event rate distribution that reflects the morning and evening commutes, with
peaks at 300 and 3, 200 events/sec. We use 7 days of data from 14-Jan-2013 to
20-Jan-2013 for our benchmark runs.

Energy dataset (GRID) [38]. This is a univariate dataset that reports
the energy consumption for each smart meter in a pilot smart grid deployment
in Ireland. The actual dataset had 6, 435 unique sensors and emits a reading
every half an hour. Data is available from over 500 days of observations. It
shows a normal distribution of data around each half an hour timestamp. The
final peak rate of dataset used in the experimental runs is 10, 000 events/sec.

MHealth dataset (FIT) [10]. The MHEALTH (Mobile HEALTH) dataset
consists of body motion and vital signs recordings for ten volunteers of diverse
profiles collected when performing physical activities. Sensors measure in differ-
ent parts of the subject’s body collect acceleration, rate of turn, magnetic field,
and ECG data, among others, at a constant rate of 50 Hz. We the merge 10
subjects data into a single global stream, with messages having the subject ID
as sensor ID. It has a constant rate of 500 events/sec as shown in Fig. 4d.

While these datasets correspond to real values collected from the domain,
they are representative samples from even larger datasets that are typically
proprietary. In order to capture the real scale of these data streams, we make use

5http://map.datacanvas.org
6https://github.com/fivethirtyeight/uber-tlc-foil-response
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Figure 4: Frequency distribution of input throughput for the four workloads,
with the temporal and spatial scaling used for the benchmark runs.

of temporal and spatial scaling. Temporal scaling allows us to accelerate the data
rate by time-compressing messages that were generated over a longer interval
into a smaller one. For e.g., when the CITY data is temporally scaled by 30×,
its original rate per sensor goes from an average of 6 msg/min to 180 msg/min,
and 7 days of wall-clock time get reduces to 336 mins of benchmark time. This
causes the shape of the distribution in Fig. 4 to be retained, but widens the X
Axis. Temporal scaling is relevant when the raw workload data that is available
is not representative of the sampling rates that are expected in contemporary
IoT sensors and domains. Considering that GPS sensors placed in taxis report
their location each second for navigation and monitoring rather than only at
the end of the trip, we use a temporal scaling factor of 1000× for the TAXI
workload.

Spatial scaling, on the other hand, allow us to simulate a larger number of
sensors than available in the raw data. This is necessary when data streams are
available only from a small sample of sensors. Here, we consider data streams
from the same sensor but during different time windows (e.g., days) to act as
if they are from different sensors but at a precious time. This too does not
affect the shape of the message rate distribution, but expands the Y Axis. For
e.g., tn the GRID data, a spatial scaling of 500× increases the 6, 435 smart
meters present in original dataset to 3, 217, 500 unique meters, which is more
representative of a city-scale deployment. Similarly, a 30× spatial scaling in
CITY (in addition to the temporal scaling) causes the 336 mins of benchmark
time to further reduce to 12 mins of benchmark time, while increasing the sensor
count from 90 to 2, 700.

These two scaling factors are also shown in Table 2, along with the effective
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number of sensors and the peak rate after applying these factors. As we can
see, using scaling to create workloads that are representative of real-world sce-
narios also achieves diversity in the event rate distribution profiles for the input
streams, and also offers peak rates that span from 500 to 10,000 msg/sec.

7 Evaluation of Proposed Benchmarks

7.1 Benchmark Implementation

We implement the 27 micro-benchmarks as generic Java tasks that can consume
and produce objects. These tasks are building blocks that can be composed into
micro-dataflows and the ETL, STATS, PRED and TRAIN dataflows using any
DSPS that is being benchmarked. To validate our proposed benchmark, we
compose these dataflows on the Apache Storm open source DSPS, popular for
fast-data processing, using its Java APIs. We then run these for the four stream
workloads and evaluate them based on the metrics we have defined. The bench-
mark is available online at https://github.com/dream-lab/riot-bench.

In Storm, each task logic is wrapped by a bolt that invokes the task for
each incoming tuple and emits zero or more response tuples downstream. The
dataflow is composed as a topology that defines the edges between the bolts,
and the groupings which determine duplicate or hash semantics. We have im-
plemented a scalable data-parallel event generator that acts as a source task
(spout). It loads time-series tuples from a given SenML file and replays them as
an input stream to the dataflow. While the spatial scaling of the workloads is
performed offline as a pre-processing step, our generator can perform temporal
scaling online, as it emits the message. We generate random integers as tuples
at maximum rate for the micro-benchmarks, and replay the original datasets by
scaling their native rates as in table 2 for the application benchmarks, following
the earlier distribution.

7.2 Experimental Setup

We use Apache Storm 1.0.1 running on OpenJDK 1.7, and hosted on Ubuntu
14.0 Virtual Machines (VMs) in the Southeast Asia data center of Microsoft
Azure public cloud. For the micro-benchmarks, Storm runs the task being
benchmarked on one exclusive D1 size VM (1 Intel Xeon E5-2660 core at 2.2 GHz,
3.5 GiB RAM, 50 GiB SSD), while the supporting source and sink tasks and
the master service run on a D4 size VM (8 Intel Xeon E5-2660 core at 2.2 GHz
cores, 28 GiB RAM, 400 GiB SSD). The larger VM for the supporting tasks
and services ensures that they are not the bottleneck, and helps benchmark the
peak rate supported by the micro-benchmark task on a single core VM.

For the ETL, STATS, TRAIN and PRED application benchmarks, we use
D3 VMs (4 Intel Xeon E5-2660 core at 2.2 GHz cores, 14 GiB RAM, 200 GiB
SSD) for all the tasks of the dataflow, while reserving additional D4 VMs to
exclusively run the source and sink tasks, and the Storm master service. Storm
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Table 3: The number of resources assigned, given as “cores, VMs”, for each
application benchmark and workload. Each VM has 4 cores.

App. CITY FIT GRID TAXI

ETL 11, 3 8, 2 14, 3 10, 3
STATS 27, 7 10, 3 11, 3 32, 8

TRAIN 7, 2 7, 2 N/A† 7, 2

PRED 10, 3 9, 3 N/A† 9, 3
† Benchmarks are not done for the particular applications with the GRID dataset as

it is univariate and DTC and MLR tasks require multiple fields.

requires the users to explicitly assign the data parallelism per task, and the total
number of resources in the cluster. We determine the number of cores and data
parallelism required by each task using a simple resource allocation algorithm,
as follows.

We have the peak rate supported by the single-threaded task on a single
core as given by the micro-benchmarks, and the peak rate seen for that task
for a given application and stream workload by examining the dataflow and
selectivity. For tasks where the expected rate in the dataflow is less than its
peak rate supported on one core, we assign it an exclusive core and two threads.
In cases that are I/O bound (e.g., MQTT, Azure storage) rather than CPU
bound, we require multiple task instances on a single core to leverage data
parallelism, and sometimes multiple cores as well. Table 3 shows the number
of cores and VMs assigned for running the experiments with the applications
and stream workloads.

We log the ID and timestamp for each message at the source and the sink
tasks in-memory to calculate the latency, throughput and jitter metrics. We
also sample the CPU and memory usage on all VMs every 5 secs to plot the
utilization metrics. Each experiment runs for ∼ 10 mins of wallclock time.

7.3 Micro-benchmark Results

Fig. 5 shows plots of the different metrics evaluated for the micro-benchmark
tasks on Storm when running at their peak input rate supported on a single
D1 VM with one thread. The peak sustained throughput per task is shown in
Fig. 5a in log-scale. We see that most tasks can support 3, 000 msg/sec or
higher rate, going up to 68, 000 msg/sec for ANN, BLF, RGF, ACC, DAC and
KAL. XML parsing is highly CPU bound and has a peak throughput of only
310 msg/sec. SML parse supports much higher rate than XML with less CPU
usage, indicating that it is a better fit for streaming IoT applications than
the XML format. DTT and MLT uses WEKA library for model training and
supports only 50 and 70 msg/sec rate, CPU being the bottleneck. PLT uses
the XChart [2] Java charting library and supports only 25 msg/sec rate as it is
CPU intensive around 70% as shown in 5d at peak rate.

The Azure operations are I/O bound on the Cloud service and slow due to
the web service latency. ATR supports only 1 msg/min, as the task has to
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scan the full table on Azure with, e.g., 753, 382 records for the Taxi dataset,
to query over non-key attributes on single Azure table partition. Better input
rates can be achieved by storing Azure table on multiple partitions with query
attributes as partition or row-key. RZP supports 300 msg/sec while LZP sup-
ports 3, 000 msg/sec – RZP has to write the Zip file to a remote shared directory
while LZP uses a local disk.

The inverse of the peak sustained throughput gives the mean latency, and
we do not explicitly plot it. However, it is interesting to examine the end-to-
end latency, calculated as the time taken between emitting a message from the
source, having it pass through the benchmarked task, and arrive at the sink
task. This is the effective time contributed to the total tuple latency by this
task running within Storm, including framework overheads. We see that while
the mean latencies should be in sub-milliseconds for the observed throughputs,
the box plot for end-to-end latency (Fig. 5b) varies widely up to 2, 600 ms for
Q3, except ACC and INP task. This wide variability could be because of non-
uniform task execution times due to which slow executions queue up incoming
messages that suffer higher queuing time, such as for DTC and MLR that both
use the WEKA library. Or tasks supporting a high input rate in the order of
10, 000 msg/sec, such as DAC and KAL, may be more sensitive to even small
per-tuple overhead of the framework, say, caused by thread contention between
the Storm system and worker threads, or queue synchronization.

The Azure tasks that have a lower throughput also have a higher end-to-
end latency, but much of which is attributable directly to the task latency.
ATR has a latency of 1 min due to scanning of the large table. ACC shows
wide distribution of latency due to variability in the complexity of operation
performed on it. Events associated with a single sensor ID are stored in a
time-ordered queue until the threshold count is reached, upon which it extracts
all the accumulated values and passes it downstream. MQS shows latency of
1, 900 ms with no whiskers as the task logic just polls a local queue of messages
being populated by the subscribed messages arriving from the broker.

The box-plot for jitter (Fig. 5c) shows values close to zero in all cases. This
indicates the long-term stability of Storm in processing the tasks at peak rate,
without unsustainable queuing of input messages. The wider whiskers indicate
the occasional mismatch between the expected and observed output rates. ATR
again has a high range for the whiskers as its rate is very low at 1 msg/min;
thus even minor variation in rate shows high jitter values.

The box plots for CPU utilization (Fig. 5d) shows the single-core VM effec-
tively used at 70% or above in all cases except for the SML, MQS and Azure
tasks that are I/O bound. MQS is bounded by the number of threads as single
thread is busy in polling the message queue which is not CPU intensive. SML
is having low CPU of ≈ 30%, the reason being that as we are using a JSON
representation for SenML which is less CPU intensive as compared to XML.
The memory utilization (Fig. 5e) appears to be higher for tasks that support
a high throughput, potentially indicating the memory consumed by messages
waiting in queue rather than consumed by the task logic itself. MQS shows a
high memory usage (≈ 50%) even for a low rate due to buffering of incoming
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messages from the broker in a queue that is asynchronously being polled. Simi-
larly, memory for DTT and MLT is ≈ 45% because a batch of nearly thousand
rows is stored in memory for model training triggered by every incoming input
message.

7.4 Application Results

The ETL and STATS application benchmarks are run for the CITY, FIT, GRID
and TAXI stream workloads. TRAIN and PRED are run for CITY, FIT and
TAXI datasets and not for GRID because it has only one observation field, and
prediction tasks such Decision Tree and Multivariate Linear Classifier uses a
combination of fields to predict or classify an observational field. The input
rate is as per scaling discussed in table 2 for each dataset.

The end-to-end latencies of the applications depend on the sum of the end-
to-end latencies of each task in the critical path of the dataflow. For the ETL
application, latency values in Fig. 6a remain the same 30 millisec for CITY,
FIT and TAXI datasets. GRID has a higher variation in latency than others
because of its normal distribution of messages over timestamp. The median
latency for all the datasets are nearly comparable, with GRID having median
latency 50 millisec and CITY, TAXI and FIT around 30 millisec. The STATS
dataflow has latency values in the range of 10− 40 millisec, shown in Fig. 6b,
which is higher than ETL and PRED. This is mainly due to the GroupViZ
meta-task which batches messages, forming a time-series for plotting, and then
accumulating the plots to create a zipped file. Also, its median latency values are
highly variable depending on the dataset. The reason is that the accumulation
and plotting are done separately for every distinct sensor ID until a fixed count
is reached, and hence the latency for the meta-task depends on the content of
input messages received.

The TRAIN dataflow’s timer source task simulates the model training trigger
every 2 hours of original time for CITY, every day for TAXI, and every minute
for the FIT dataset. This translates to a benchmark time period of 2− 5 mins
between two source events. The latency values for TRAIN are understandably
higher than other applications since it is a batch processing dataflow encoded as
a streaming dataflow. The key reason is the Azure Table Range task that scans
the full table to fetch rows that were inserted since the last training time. Also,
the latency for the CITY dataset in Fig. 6c is larger at 300 sec than FIT and
TAXI datasets that are at 50 sec due to the difference in the table sizes. CITY
has 3, 629, 428 rows in its table while TAXI has 753, 382 rows inserted. The
PRED topology’s latencies (Fig. 6d) also remain close together at 20 millisec
for all the datasets. The large range of whiskers for all datasets in PRED is due
to DTC and MLR tasks, which exhibit significant variations in their runtimes
even for the micro-benchmarks.

The jitter is also close to zero in all cases (Fig. 7), indicating a sustainable
performance for the application benchmarks. The whiskers for STATS are not
visible as the total number of messages at the sink tasks are comparatively
fewer than the input messages since the GroupViZ task accumulates many of
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the inputs in singleton outputs per sensor ID. Similarly, the whiskers for TRAIN
are larger as few messages are emitted from source (max 10 msg/sec for FIT)
in total, and thus most of the time variation is observed between source and
sink rate.

The number of cores and VMs required for the same application varies with
the workload used (Tbl. 3). This is due to the difference in input rate that is
processed by tasks for the respective workload, thus requiring different number
of cores per task. We also see that the resource allocation strategy is generally
liberal, and resources are under-utilized. The CPU utilization for STATS is
higher at 20− 80% than other applications (Fig. 9). This is due to AVG, DAC
and GroupViZ tasks requiring higher CPU%, matches with the CPU% required
for microbenchmarks. Also memory usage is higher for STATS in comparison to
others due to GroupViZ task accumulating the messages and plots in memory
before zipping (Fig. 9). The CPU utilisation for TRAIN is fairly small due to
the low message rate, and the memory usage is comparatively high at 20% as
the large batch of table rows is stored in memory for model training. The CPU
utilization for the FIT workload is the least for all the application benchmarks
due to the fact that it has the least rate at 500 msg/sec, and we have assigned
exclusive an core to each of its tasks. TAXI has a low CPU usage, mostly at a
5% median, with a wide box (Figs. 8d, 11c 9d 10c) – this is due to its bi-modal
distribution with low input rates at nights, with lower utilization, and high in
the day with higher utilization. In general, we see that such a resource under-
utilization strongly motivates the need for robust resource allocation strategies
for IoT applications on DSPS.

8 Conclusion

In this paper, we have proposed RIoTBench, a novel benchmark suite for eval-
uating distributed stream processing systems for Internet of Things applica-
tions, which encompasses several emerging domains. Fast data platforms like
DSPS are integral for the rapid decision making needs of IoT applications. Our
proposed micro and application benchmarks help evaluate their efficacy using
common tasks found in IoT domains, as well as fully-functional dataflows for
pre-processing, statistical summarization and predictive analytics. These ap-
plications naturally fit into the OODA interaction model found in many IoT
domains. These benchmarks are combined with four real-world data streams
from Smart Grid, Smart Transportation, Urban Sensing and personal fitness
domains of IoT, that are further spatially and temporally scaled to recreate
the stream profiles of contemporary IoT deployments. The proposed bench-
mark has been validated for the highly-popular Apache Storm DSPS, and the
performance metrics reported.

As future work, we would like to add event pattern detection and notifi-
cations as tasks to our benchmark suite to complete the representative cate-
gories. The benchmark can also be used to evaluate other popular DSPS such
as Apache Spark Streaming and Flink. Incidentally, these tasks and applica-
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tions we have provided have real and accurate business logic. Thus, they form
a valuable library of tasks that can be used in both generic and IoT streaming
applications. We are currently in the process of integrating customized versions
of these benchmark applications into the IISc Smart Campus IoT project for
smart water and power management 7.
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Figure 5: Performance of micro-benchmark tasks for integer input stream at
peak rate.
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Figure 6: End-to-end latency plots for application benchmarks on workloads.
ETL and PRED are in millisec and STATS and TRAIN are in sec. *TRAIN
and PRED are not run for GRID workload as it has only the target field, and
no additional field to predict upon.
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Figure 7: Jitter plots for application benchmarks on workloads. *TRAIN and
PRED are not run for GRID workload as it has only the target field, and no
additional field to predict upon.
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Figure 8: CPU and Memory utilization plots for ETL application benchmark
on all workloads.
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Figure 9: CPU and Memory utilization plots for STATS application benchmarks
on all workloads.
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Figure 10: CPU and Memory utilization plots for TRAIN application bench-
marks three workloads, CITY FIT and TAXI. GRID workload is not used as it
has only the target field, and no additional field to predict upon.
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Figure 11: CPU and Memory utilization plots for PRED application bench-
marks on three workloads, CITY FIT and TAXI. GRID workload is not used
as it has only the target field, and no additional field to predict upon.
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A Configurations used in Application Dataflows

Table 4: Attributes Used in Tasks of the ETL Application

Task CITY FIT GRID TAXI

ANN∗ location, sensor type age, gender tariff allocation, sme
allocation, stimulus al-
location

driver name, city, company

BLF source N/A † meterid taxi identifier

INP temperature, hu-
midity, light, dust,
airquality raw

acceleration chest,
arm, ankle X/Y/Z,
ecg 1

energyConsumed N/A ‡

RGF temperature, hu-
midity, light, dust,
airquality raw

acceleration chest,
arm, ankle X/Y/Z,
ecg 1

energyConsumed trip time in sec, trip distance,
fare amount, surcharge, mta
tax, tip amount, tolls amount,
total amount

∗ Annotation attributes that are added to the dataset by ANN, either provided with the dataset or synthetically
† No fields were used for the particular task with the dataset because the number of unique subjects is very less (10) for FIT thus not requires BLF.
‡ Interpolation of values over different Taxi trips is not meaningful.

Table 5: Attributes Used in Tasks of the STATS Application

Task CITY FIT GRID TAXI

AVG temperature, hu-
midity, light, dust,
airquality raw

acceleration chest,
arm, ankle X/Y/Z,
ecg 1/2

energyConsumed trip time in sec, trip distance,
fare amount, surcharge, mta
tax, tip amount, tolls amount,
total amount

DAC temperature ecg 1 energyConsumed N/A †

SLR temperature, hu-
midity, light, dust,
airquality raw

acceleration chest,
arm, ankle X/Y/Z,
ecg 1/2

energyConsumed trip time in sec, trip distance,
fare amount, surcharge, mta
tax, tip amount, tolls amount,
total amount

† No fields were used for the particular task with the dataset because DAC over individual Taxi trips is not meaningful.

Table 6: Attributes Used in Tasks of the PRED Application

Task CITY FIT GRID TAXI

AVG airquality raw ecg 1 N/A † fare amount

DTC F(temperature, hu-
midity, light, dust,
airquality raw) →
{C1 | C2 | C3 | C4}∗

F(acceleration chest,
arm, ankle X/Y/Z, ecg
1) → {C1 | C2 | C3 |
C4}∗

N/A † F(trip time in sec, trip dis-
tance, fare amount) → {C1 |
C2 | C3 | C4}∗

MLR F(temperature, hu-
midity, light) →
airquality raw

(acceleration chest,
arm, ankle X/Y/Z) →
ecg 1

N/A † F(trip time in secs, trip
distance)→ fare amount

∗ Classses used for prediction by DTC task
† No fields were used for the particular task with the dataset as GRID is univariate whereas DTC and MLR tasks require multiple fields.
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Table 7: Attributes Used in Tasks of the TRAIN Application

Task CITY FIT GRID TAXI

DTT temperature, hu-
midity, light, dust,
airquality raw

acceleration chest,
arm, ankle X/Y/Z,
ecg 1

N/A † trip time in sec, trip distance,
fare amount

MLT temperature, hu-
midity, light, dust,
airquality raw

acceleration chest,
arm, ankle X/Y/Z,
ecg 1

N/A † trip time in sec, trip dis-
tance,fare amount

† No fields were used for the particular task with the dataset as GRID is univariate whereas DTT and MLT tasks require multiple fields.
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