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ABSTRACT

Runtime time preprocessing plays a major role in many efficient algorithms in computer

science, as well as playing an important role in exploiting multiprocessor architectures. We

give examples that elucidate the importance of run time preprocessing and show how these

optimizations can be integrated into compilers. To support our arguments, we describe

transformations implemented in prototype multiprocessor compilers and present benchmarks

from the iPSC2/860, the CM-2, and the Encore Multimax/320.
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1 Introduction

1.1 Overview

In many algorithms, data produced or input during a program's initialization plays a large

role in determining the nature of the subsequent computation. When the data structures

that define a computation have been initialized, a preprocessing phase follows. Vital elements

of the strategy used by the rest of the algorithm are determined by this preprocessing phase.

To effectively exploit many multiprocessor architectures, we may also have to carry out

run time preprocessing. This preprocessing will be referred to as runtime compilation. The

purpose of runtime compilation is not to determine which computations are to be performed

but instead to determine how a multiprocessor machine will schedule the algorithm's work,

how to map the data structures and how data movement within the multiprocessor is to be

scheduled. In this paper, we specifically address problems for which computational patterns

can be predicted when values assigned to key data structures are known. These problems

include computations on non-uniform meshes, sparse direct factorization which does not

involve pivoting and sparse iterative linear solvers.

Values obtained during program execution can affect the nature and degree of potential

concurrency. Runtime compilation may be needed to identify and ezploit concurrency. Com-

plex heterogeneous memory hierarchies characterize virtually all multiprocessor architectures

with more than a few dozen processors. Primary memory is divided among processors. To

obtain data from other portions of the primary memory of the multiprocessor, we typically

need to access a communications network. Program performance can be dramatically affected

by the scheduling of data movement among processors.

There has been much research carried out on methods for runtime parallelization as well

as runtime workload and data partitioning. Most parallelization and problem partitioning

methods explicitly or implicitly specify patterns of interprocessor communication. When

patterns of computation are determined by data structures initialized during program ex-

ecution, traditional compiler techniques cannot possibly carry out these partitioning and

scheduling operations. Only recently have methods been developed that can integrate the

kinds of runtime optimizations mentioned above into compilers and programming environ-

ments.

2 Algorithmic Execution Time Preprocessing

In many efficient approaches to solving problems in computing, data produced or input dur-

ing program execution plays a large role in determining computational patterns. Examples



include:

• Most searching and sorting problems

• Critical path analysis

• Game tree and decision tree manipulations

• Direct and iterative sparse linear system solvers

Once an appropriate subset of the input (or generated) data is available, it is frequently

worthwhile to perform some preprocessing. This preprocessing can take many forms, but

results of the preprocessing determine vital elements of the strategy used by the remainder

of the algorithm. A simple example of this is the method of interpolated binary search.

The number of computations required for a simple binary search of a sorted list depends on

the values of the elements in the list and on the value of the key. We can preprocess the

sorted list and use the distribution of element values in the list to produce an interpolation

function that is used to direct the search. It is frequently possible to amortize the cost of

preprocessing. In the interpolated binary search example, once preprocessing is carried out,

we can used the interpolation function to search for a sequence of different keys.

Some other examples of well known algorithms that carry out preprocessing to determine

vital elements of the strategy used by the remainder of the algorithm are:

a. Creation of indices to speed database retrieval where indices are created to allow the

use of efficient search methods on many different database keys [30].

b. Generation of threaded binary search trees where extra links are added to a binary

tree to speed tree traversal [16].

c. Matrix reordering and symbolic factorization used in sparse direct linear equation

solvers. In such problems, the number and pattern of computations in a sparse matrix

factorization is determined by the order in which steps in the factorization are carried

out. In many cases it is possible to use the non-zero structure of a matrix to predeter-

mine the order in which computations will be carried out and to allocate the memory

needed to store the resulting factored matrix [12].

In each of these examples, the results of a single preprocessing computation can be used to

solve any member of a class of structurally similar problems. In the database example, the

creation of an index can be followed by an arbitrary number of queries. Once a threaded



binary search tree is generated, the resulting data structure can be used in an arbitrary num-

ber of tree traversals. A symbolic matrix factorization can be used to speed the factorization

of any matrix with a given pattern of non-zero entries.

Runtime compilation techniques attempt to discover how to maximize the performance

of algorithms on multiprocessors. Since these methods are particularly useful in algorithms

whose computational patterns depend on values assigned to data structures during program

execution, a significant preprocessing cost is frequently involved. In runtime compilation, we

are also often able to amortize costs of preprocessing among a number of structurally similar

computational phases.

3 Run-Time Parallelization

Run-time paraUelization is perhaps the most obvious form of multiprocessor runtime compila-

tion. Parallelization carried out during compilation is necessarily conservative. If a compiler

cannot figure out how to generate a correct parallelizing loop transformation, loop iterations

have to be performed sequentially. Many loop nests defy compile-time parallelization be-

cause dependency patterns are determined by variables or arrays initialized during program

execution. One way of carrying out runtime parallelization is to analyze the inter-iteration

dependency pattern in a loop nest to identify wave fronts of concurrently executable loop iter-

ations. Using a form of run time preprocessing, we transform a loop nest with inter-iteration

dependencies into a sequence of parallel loops. Execution time preprocessing is frequently

used to parallelize sparse numerical algorithms, such as those arising in sparse direct and

iterative linear solvers [2], [4], [24], [11], [1].

Typically, programmers need to explicitly code the procedures that carry out the nec-

essary run time preprocessing. It is possible to produce a ntntime parallelization program

transformation that generates code designed to perform run-time loop parallelization [28].

The compiler transforms a loop into two separate code segments. The first code segment,

the inspector, finds sets of independent loop iterations while the second code segment, the

ezecutor, carries out the scheduled work. Runtime parallelization transformations have been

implemented in a prototype compiler targeted at shared memory machines [29]. Runtime

compilation only handles a subset of the possible types of runtime parallelization. Our trans-

formations only apply to loop nests in which inter-iteration dependencies do not depend on

the results of computations carried out within the loop nest. There are a number of al-

gorithms that merge the process of identifying and performing concurrent work. It seems

likely to us that it will be possible to produce compiler transformations that generate hybrid

inspector/executors for more fully dynamic algorithms, but we will not address this issue

.3



do i=I,N

y(i) = a(i)*y(ia(i)) + b(i)*y(ib(i))

end do

Figure 1: Sequential Code to be Parallelized

further in this paper.

To clarify the scheme, we now present a simple example. A simple sequential program

is presented in Figure 1. Note that right hand side references to array y use a level of

indirection. The inspector used to perform runtime parallelization (Figure 2) is simply a

topological sort. This sort can be generated from the parse tree produced by the loop in

Figure 1. The inspector in Figure 2 is sequential but can be parallelized using the principles

to be described later in this section. Once the wavefront corresponding to each index i8

known, we can sort the indices in order of increasing wavefront number to produce the array

schedule. The inspector also initializes a pointer array count. Array count contains the

address in schedule of the beginning of each wavefront. Loop iterations corresponding to

wavefront i are found in schedule between count(i) and count (i+1)-1.

The executor in Figure 3 is a sequence of parallel do loops that run over consecutive

wavefronts obtained by the inspector from the sequential code in Figure 1. Note that to

obtain the correct solution in the executor we need to maintain two copies of the array y

found in the sequential code. In Figure 1 we call these copies y and ynew.

In evaluating the usefulness of run-time parallelization, the cost of the preprocessing must

be taken into account. In [29] we present timings obtained from the run-time parallelization

transformation applied to sparse lower triangular solves. On an 18 processor Encore Mu1-

timax/320, a single processor required 241 milliseconds to solve a lower triangular system

obtained from an incomplete factorization of one of the Boeing Harwell test matrices. On

16 processors of the Multimax, the inspector required 100 milliseconds and the executor re-

quired 23 milliseconds. In many situations, we can amortize the cost of an inspector because

we need to repeatedly carry out a given pattern of computations. For instance, in iterative

linear systems solvers we may need to repeatedly solve the same sparse triangular systems

with different right hand sides.

A variety of tradeoffs can be made between the costs and benefits of preprocessing. We



wf(1:N)= o

do i=l,N

wf(i) = max(wf(i),wf(ia(i)),wf(ib(i))) + 1

end do

Use wf() to produce schedule(), a list of indices in order of increasing wavefront number

Figure 2: Parallelizing Inspector

do phase = 1, np

paralleldo i=count(phase),count(phase+l)-I

ii = schedule(i)

if(ia(ii).lt.ii) then tmpl = ynew(ia(ii))

else tmpl = y(ia(ii))endif

if(ib(ii).lt.ii) then tmp2 = ynew(ib(ii))

else tmp2 = y(ib(ii)) endif

ynew(ii) = a(ii)*tmpl + b(ii)*tmp2

end parallel do

end do

y(l:n) = ynew(l:n)

Figure 3: Parallelizing Executor
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can dispensewith reordering loop iterations into concurrentwavefrontsand still be able to

exploit parallelism to a degree by using a preprocessed doacross transformation [27]. In a

doacross construct [9], loop iterations are partitioned between processors in a striped fashion

and synchronization calls are introduced so that computations from some loop iterations can

be overlapped. Doacross loops typically make use of a-priori knowledge of inter-iteration

dependencies to carry out needed inter-iteration synchronizations. It is possible to carry

out a relatively small amount of run time preprocessing and postprocessing that eliminates

the need for a-priori knowledge of dependencies. On machines with snooping caches (such

as the Multimax/320), it is efficient to synchronize using shared arrays. The following is a

sketch of some of the transformations involved in generating preprocessed doacross loops, a

much more detailed description may be found in [27]. A shared array ready is initialized

to NOTDONE. When a left hand side array element i is calculated, ready(i) is set to DONE.

Processors needing to use an updated value of array element i busy wait on ready(i) until

ready(i) is set to DONE. In pvepvocessed doacross loops, we need to maintain two copies of

shared arrays that appear on the left hand side of expressions during the computation. After

the loop is completed, the two shared array copies need to be reconciled.

The run time initialization and postprocessing in the preprocessed doacross loop are rel-

atively inexpensive compared to the preprocessing costs incurred by a parallelizing inspector

(e.g. figure 2). For the above cited lower triangular solve involving the incompletely factored

Boeing Harwell test matrix, the preprocessed doacross loop requires 45 milliseconds. This

can be compared to the 23 milliseconds required to carry out the runtime parallelized solve

and the 100 millisecond preprocessing time of the inspector.

Runtime parallehzation can be carried out on a variety of architectures. In this paper,

we discuss runtime parallelization only in the context of shared memory architectures; a

discussion of runtime parallelization for distributed memory machines is found in [26].

4 Runtime Compilation for Distributed Memory Ma-

chines

4.1 Distributed Memory Inspectors and Executors

In distributed memory machines, large data arrays need to be partitioned between local

memories of processors. These partitioned data arrays are called distributed arrays. We

follow the usual practice of assigning long term storage of distributed array data to specific

memory locations in the distributed machine. A processor that needs to read an array

element must fetch a copy of that element from the memory of the processor in which that

array element is stored. Alternately, a processor may need to store a value in an off-processor



Each processor P:

preprocesses its own loop iterations

Records off-processor fetches and stores in hashed cache

Finds send/receive calls required for data exchange

(i) P generates list of all off-processor data to be fetched

(ii) Other processors tell P which data to send

(iii) Send/Receive pairs generated and stored

Figure 4: Inspector For Parallel Loop on Distributed Memory Multiprocessor

distributed array element. Local copies of off-processor distributed array elements are stored

in hash tables called hashed caches. Run-time procedures carry out the movement of data

between processors and manage the above mentioned hash tables.

In distributed memory MIMD architectures, there is typically a non-trivial communi-

cations latency or startup cost [7]. For efficiency reasons, information to be transmitted

should be collected into relatively large messages. The cost of fetching array elements can

be reduced by precomputing what data each processor needs to send and to receive.

In Figure 4, we outline the preprocessing we performed to implement a parallel loop on a

distributed machine. The distribution of parallel loop indices to processors determines where

computations are to be performed. We assume that all needed distributed arrays have been

defined and initialized and that loop iterations have been partitioned between processors.

Using the hashed cache to record off-processor fetches and stores allows us to recognize when

more than one reference is being made to the same off-processor distributed array element,

so that only one copy of that element need be fetched or stored.

During our inspector phase, we carry out a set of interprocessor communications that

allows us to anticipate exactly which send and receive communication calls each processor

must execute so that all interprocessor data transmission is correctly carried out. By contrast,

if individual fetches and stores were to be carried out during the actual computation, things

would be much more awkward. For example, in such a case processor A might obtain the

contents of a distributed array element which is not on A by sending a message to processor

B associated with the array element. Processor B would be programmed to anticipate a

request of this type, to satisfy the request and to return a responding message containing

the contents of the specified array element.



• Before loop or code segment

(i) Data to be sent off-processor read from distributed arrays

(ii) Send/receive calls transport off-processor data

(iii) Data written into hashed cache

• Computation carried out

- off-processor reads/writes go to hashed cache

• At end of loop or code segment

(i) Data to be stored off-processor read from hashed cache

(ii) Send/receive calls transport off-processor data

(iii) Data written back into distributed arrays for longer term storage

Figure 5: Executor For Parallel Loop on Distributed Memory Multiprocessor

Once preprocessing is completed, we are in a position to carry out the necessary commu-

nication and computation, Figure 5 outlines the steps involved. The initial data exchange

phase follows the plan established by the inspector. During preprocessing, each proces-

sor finds out which distributed array elements need to be transmitted. When a processor

obtains copies of off-processor distributed array elements, the copies are written into the

processor's hashed cache. Once the communication phase is over, each processor carries out

its computation. Each processor uses locally stored portions of distributed arrays along with

off-processor distributed array elements stored in the hashed cache. When the computational

phase is finished, distributed array elements to be stored off-processor are obtained from the

hashed cache and sent to the appropriate off-processor locations.

There are many situations in which simple, easily specified distributed array partitions

are inappropriate. For instance when we compute using an unstructured mesh, we attempt

to partition the problem so that each processor performs approximately the same amount of

work and so that the communications overhead is minimized. Typically, it is not possible to



EachprocessorP:

- preprocesses its own loop iterations

- Records off-processor fetches and stores in hashed cache

- Consults distributed translation table to

• Find location in distributed memory for each off-processor fetch or store

- Finds send/receive calls required for data exchange

(i) P generates list of all off-processor data to be fetched

(ii) Other processors tell P which data to send

(iii) Send/Receive pairs generated and stored

Figure 6: Inspector For Parallel Loop Using Irregular Distributed Array Mapping

express the resulting array partitions in a simple way. If we allow an arbitrary assignment of

distributed array elements to processors, the data structure used to describe the partitioning

will have the same number of elements as the distributed array.

In order to access an array element, we need to know where the element is stored in

the memory of the distributed machine. We use a distributed translation table defined by

a partitioning algorithm, to describe the mapping. When a distributed translation table

is used to describe array mappings, inspectors must be modified so that they access the

distributed table. Using an irregular array mapping does not alter t,he form of the ezecu_or.

The modifications to be made to an inspector are outlined in Figure 6.

4.2 Languages and Tools for Irregular Problems

Programs designed to carry out sparse direct and iterative methods also typically require

many of the optimizations described in Section 4.1. Some examples of such programs are

described in [3], [18], [15], [4]. Williams [34] describes a programming environment (DIME)

for calculations with unstructured triangular meshes using distributed memory machines. In

[34], collections of distributed array accesses are translated into an efficient set of inter-node

messages. The DIME programming environment embodies many of the principles discussed

in Section 4.1. The optimizations discussed in the last section can be incorporated into

distributed compilers. Runtime compilation for distributed machines was proposed in [25];

this description was in the context of the Crystal language. Distributed memory runtime



compilation wasexpandedupon in [20]; which outlines the principals behind the PARTI

project. A more detailed description of the conceptsbehind distributed memory runtime

compilation is found in [26], and [21]. The idea of splitting a loop into an inspector and

executor and integrating this into a compilerwasalso developedindependently as part of
the KALI project [17]. Other compiler projects have alsoproposedrun time resolution of

communicationson distributed machines [8], [22], [23]. Thesecompilersdo not carry out
the kinds of run time optimizations of the sort describedhere.

Wehavedesigneda set of proceduresor primitives that do the work neededto implement

inspectorsand executors. We have also designedand implementeda model compiler that

recognizesa subsetof Fortran (ARF - ARguably Fortran) and generatesinspector and ex-
ecutor loopswith embeddedprimitives. Distributed arrays canbe declaredin ARF source.

Thesedistributed arrays caneither be partitioned betweenprocessorsin a uniform manner

(e.g. equal sizedblocksof contiguousarray elementsassignedto eachprocessor),alternately,

distributed arrays can be partitioned in an irregular manner. When an array is to be par-
titioned in an irregular fashion, mapping information is specified in an integer array. This

integer array is typically produced by a partitioning procedure. Element i of the integer ar-

ray describes the processor to which element i of the distributed array is to be mapped. For

example, consider the ARF declaration, distributed irregular using map real y(4).

This declaration denotes a four dement real array y that is to be distributed according to

integer array map.

Embedded primitives include communications procedures designed to support irregular

patterns of distributed array access. Other primitives that involve interprocessor commu-

nication initiahze distributed translation tables or access distributed translation tables to

find the location of irregularly mapped distributed array data. Primitives also support the

maintenance of hashed caches. (Recall from Section 4.1 that hashed caches store copies of

off-processor distributed array data.) There are also PARTI primitives that perform accu-

mulations to off-processor distributed array elements.

In Figure 7 we present a simple example of an ARF program. The procedure to be

presented is a block sparse matrix vector multiply, obtained from an iterative solver produced

for a program designed to calculate fluid flow for geometries defined by an unstructured mesh

[31]. The ARF compiler uses information in integer array row to make calls to primitives

that initialize the distributed translation tables. These distributed translation tables are

used to describe the mapping of x, y , cols and ncols (statements S1 and S2). The

current version of ARF distributes only the last declared dimension in a multidimensional

array, although the PARTI primitives do support a broader class of array mappings [6].

As of the time of writing, the ARF compiler does not include syntax that specifies where

10



computational work is to be performed. Partitioning procedures specify where work is to be

carried out, but the interface between partitioning procedures and ARF has not yet been

automated.

In Figure 7, array x is indexed by m and cola (j,i). If we were to carry out the work

in this loop in a naive manner, we would have to fetch each individual distributed array

element x(m,cols(j ,i)) (statement $4) from its assigned processor. Since the processor

assignments of elements of x are stored in a distributed translation table, we would also need

to access the memory of the processor that keeps track of where x(m, cola (j, i)) is stored.

In Table 1, we present the execution times on 32 processor and 64 processor Intel

iPSC/8fi0 machines, obtained from the block matrix vector multiply kernel as well as exe-

cution times from another, more complex kernel that arose in an unstructured code. This

kernel, to be referred to here as fluzroe, computes convective fluxes using a method based on

Roe's approximate Riemann solver [32], [33]; the kernel is discussed in some detail in [6].

Both the block matrix vector multiply and the fluxroe kernel arise from iterative algorithms.

In these tests, fluxroe was translated into AKF and compiled. In these experiments, we used

two different unstructured meshes:

(i) A 21,672 element mesh generated to carry out an aerodynamic simulation involving a

multielement airfoil in a landing configuration [19]

(ii) A 37,741 element mesh generated to simulate a 4.2 % circular arc airfoil in a channel

[141.

In all the cases presented below, each unstructured mesh was partitioned by recursive

orthogonal dissection [13].

In table 1 we present:

inspector time - time required to carry out the inspector preprocessing phase

computation time - the time required to perform computations in the iterative portion

of the program

communication time - the time required to exchange messages within the iterative

portion of the program.

The inspector time includes the time requited to set up the needed distributed translation

table as well as the time required to access the distributed translation table when carrying

out the preprocessing in the inspector. In these experiments, the ratio of the time required to

carry out the inspector to the computation time required for a single iteration ranged from a

factor of 3 to a factor of 5. Most of the preprocessing time goes to setting up and using the

11



distributed translation table. For instance, consider the block matrix vector multiply on 64

processors using the 21,672 element mesh. The total preprocessing cost was 122 milliseconds,

of which 111 milliseconds went to translation table related work.

We can define parallel efficiency for a given number of processors P as the sequential

time divided by the product of the execution time on P processors times P. In Table 1 we

depict under the heading of single sweep efficiency, the parallel effciencies we would obtain

were we required to preprocess the kernel each time we carried out calculations. In reality,

preprocessing time can be amortized over multiple mesh sweeps. If we neglect the time

required to preprocess the problem in computing parallel effciencies, we obtain the second

set of parallel efficiency measurements, the amortized e_ciency presented in Table 1. The

amortized effciencies for 64 processors ranged from 0.48 to 0.59, while the single sweep

efficiencies ranged from 0.10 to 0.17.

In the experiments depicted in Table 1, the time spent computing is at least a factor of 2

greater than the communication time. The amortized effciencies are, however, impacted by

the fact that the computations in the parallelized codes are carried out less efficiently than

those in the sequential program. The parallel code spends time accessing the hashed cache.

It also needs to perform more indirections th_n the sequential program.

nprocs

nprocs

Table 1: Performance on different number of processors

time(rns) time(rns) time(ms) efficiency efficiency

Block Matrix Vector Multiply - 21,672 element mesh

32

64 I 148 49 9 0.15 ]122 25 9 0.10

Block MatrixVectorMultiply- 37,741 element mesh

0.55

0.48

32 ] 20064 150 85 [ 1042 9 0.19 ] 0.590.14 0.54

Fluxroe - 21,672 element mesh
8

16

32

64

231

162

135

172

310

157

80

41

24

21

22

19

0.40

0.34

0.19

0.12

0.69

0.65

0.57

0.48

8

16

32

64

Fluxroe- 37,741 element mesh

393

249

191

203

534 23

269 18

156 23

69 14

0.41

0.36

0.28

0.17
0.70

0.68

0.62

0.59
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$1 distributed irregular using row real x(4,n), y(4,n)

$2 distributed irregular using row integer cols(9,n), ncols(n)

... initialization of local variables ...

doall i=l ,n

do j=l,ncols(i)

$3 do k=1,4

sum = 0

do m = 1,4

$4 sum = sum + f(i,m,k,i)*x(m,cols(j,i))

enddo

y(k,i) = y(k,i) + sum

enddo

enddo

enddo

Figure 7: AR, F Kernel From Unstructured CFD Code
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4.3 Future Optimizations

Most of the optimizations described in this section are motivated either directly or indirectly

by the high communication latencies typically found in distributed memory computers. Be-

cause we can anticipate all of the interprocessor communications that will be needed in

carrying out a loop, we have the information we need to schedule interprocessor communi-

cations to reduce overheads due to contention. As we shall see in Section 5, scheduling of

interprocessor communication has already been shown to be an important optimization for

some SIMD architectures. We expect this to also turn out to be a fruitful optimization for

distributed memory MIMD computers.

Computations can be characterized by patterns of data dependency. Procedures that par-

tition data structuresand computational work take these dependency patterns into account.

It ispossible to design program transformations that generate procedures which output a

record of the dependency patterns in a loop nest in a a standard representation [20].Stan-

dardized partitioningprograms that use these data structurescan then be employed.

5 Runtime Compilation in SIMD Machines- the Com-

munications Compiler

Irregular problems can cause serious performance degradation On the CM-2 [5]. It turns

out that this performance degradation can be ameliorated by a form of runtime compila-

tion. Denning Dahl has developed a set of software facilities for the Connection Machine

(CM-2) that are designed to handle applications that exhibit fixed irregular patterns of

communication [10]. One procedure, the communications compiler schedules interprocessor

communications. The other procedure a mapping facilit!t maps graphs generated from a

communication pattern onto the CM-2. In this paper, we will focus our attention on the

communications compiler.

The communications compiler decomposes an irregular communications pattern into a

sequence of simple, inexpensive data transfers. These data transfers make use of the hy-

percube communication network in the CM-2. In the CM-2, all links of the hypercube

can simultaneously carry bidirectional information. The communications compiler attempts

to reduce time required for communication by the judicious scheduling of messages. At

present, the communications compiler is accessed by procedure calls. Lists of destination

addresses axe passed to the communication compiler's preprocessor procedures. Once the

preprocessing is completed, a data delivery function carries out the scheduled communica-

tions. Transformations analogous to those discussed in Section 4.2 could be used to embed

these communication compiler primitives into programs, and hence to generate inspectors

14



and executors.

We present a set of benchmarks that quantifies the performance effects of the commu-

nications compiler. A synthetic workload was defined in the following way. A square mesh

in which each point was linked to four nearest neighbors was incrementally distorted. Ran-

dom edges were introduced subject to the constraint that in the new mesh, each point still

required information from four other mesh points.

The following assumptions are inherent in our workload generator: makes

(i) The problem domain consists of a 64 by 128 mesh of points which are numbered using

their row major or natural ordering;

(ii) Each point is initially connected to its four nearest neighbors

(iii) Each link produced in the above step is examined, with probability q the link is replaced

by a link to a randomly chosen point.

An 8192 processor Connection Machine-2 was configured as a 64 by 128 torus. The

mesh was mapped onto the torus in the obvious manner. A sweep over the mesh was then

performed using the following communication mechanisms:

(i) Get: The standard CM-2 general router is called four times, once for each of the four

off-processor data elements needed by each processor.

(ii) Compiled get: Communications compiled using the communications compiler; the com-

munications compiler preprocessor was called four times, once for each of the four off-

processor data elements required by each processor. The data delivery procedure is

called four times during each mesh sweep.

(iii) Compiled gather: Communications compiled using the communications compiler; a

single call to the communications compiler preprocessor handles each processor's four

data requests. For each iteration, a single data delivery function carries out all com-

munication.

(iv) NEWS: CM-2 communications procedures that transmit information using mesh em-

bedded into hypercube by binary reflected gray code. NEWS was only used to bench-

mark the completely uniform mesh (q = 0 ).

The construction of the communication schedule took anywhere from 1 to 18 seconds.

The results of these benchmarks are depicted in Figure 8. In these experiments we

carried out sweeps over meshes generated by varying q from 0.0 to 0.5. For the uniform mesh

(q=0), we used all four communications mechanisms described above. For the synthetically
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generated irregular meshes, we used the standard CM get,the compiled get and the compiled

gather. Let TNSWS represent the the time required by the CM-2 to to sweep over a regular

mesh (q=0) using the NEWS mechanism; TNEWS was equal to 0.80 milliseconds. In Figure

8, we compare TNSWS with the time taken by the CM-2 to sweep over irregular meshes

using the standard CM get (TCET), the compiled get (TcoET) and the compiled gather

(Tcaxrssa). For the regular mesh, TaET, ToasT, and TCGXTHEa were factors of 15.4, 9..2

and 1.1 times larger than TNSWS. As q increased, the performance of the mesh sweep

degraded significantly with all three routing mechanisms tested. For q = 0.5, TGET, Tcugr,

and TcaATHSR were factors of 22.6, 4.4 and 2.7 times larger than TNEWS. It is clear that

runtime compilation techniques can play an important role in reducing communications

costs for irregular problems on SIMD machines. The computational cost of the simulated

annealing based communications compiler is, however, extremely high.

6 Conclusions

Execution time preprocessing plays a major role in many efficient algorithms in computer

science. Runtime preprocessing also plays an important role in exploiting multiprocessor

architectures. Examples of such preprocessing include runtime parallelization, runtime ag-

gregation and scheduling of remote distributed array accesses and execution time data and

workload partitioning. We have given examples of how optimizations of this type can be

integrated into compilers. We have also presented specific benchmarks that document, on a

range of multiprocessor architectures, the importance of various types of runtime compila-

tion.
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