
Analysis and Transformation in anInteractive Parallel Programming Tool �Ken Kennedy Kathryn S. McKinley Chau-Wen Tsengken@cs.rice.edu kats@cri.ensmp.fr tseng@cs.rice.eduDepartment of Computer ScienceRice UniversityHouston, TX 77251-1892AbstractThe ParaScope Editor is a new kind of interactive parallel programming tool for developing scienti�cFortran programs. It assists the knowledgeable user by displaying the results of sophisticated programanalyses and by providing editing and a set of powerful interactive transformations. After an edit orparallelism-enhancing transformation, the ParaScope Editor incrementally updates both the analyses andsource quickly. This paper describes the underlying implementation of the ParaScope Editor, payingparticular attention to the analysis and representation of dependence information and its reconstructionafter changes to the program.1 IntroductionThe ParaScope Editor is a tool designed to help skilled users interactively transform a sequential Fortran77 program into a parallel program with explicit parallel constructs, such as those in PCF Fortran [35].In a language like PCF Fortran, the principal mechanism for the introduction of parallelism is the parallelloop, which speci�es that its iterations may be run in parallel according to any schedule. The fundamentalproblem introduced by such languages is the possibility of nondeterministic execution. Nondeterminismmay occur if two di�erent iterations of a parallel loop both reference the same memory location, where atleast one of the references writes to the location. For example, consider converting the following sequentialloop into a parallel loop.DO I = 1, 100A(I) = A(50) + 1ENDDOBecause the parallel loop does not order its iterations, the value of each A(I) will depend on how earlyiteration 50 executes in the parallel execution schedule. Hence, the results may di�er each time the programis executed. This kind of anomaly, often called a data race, precludes the parallelization of the above loop.In the literature of compilation for parallel execution, a potential data race is referred to as a loop-carrieddependence [3, 34]. Without explicit synchronization, only loops with no carried dependences may besafely executed in parallel.Automatic parallelizers use this principle by constructing a dependence graph for the entire program andthen parallelizing every loop that does not carry a dependence. Unfortunately, a parallelizer is often forced�This research was supported by the Center for Research on Parallel Computation (CRPC), a National Science FoundationScience and Technology Center. CRPC is funded by NSF through Cooperative Agreement Number CCR-9120008. Additionalsupport was provided by IBM Corporation. Page 1

to make conservative assumptions about whether dependences exist because of complex subscripts or theuse of unknown symbolics. As a result, automatic systems miss many loops that could be parallelized. Thisweakness has led most researchers to conclude that automatic systems, by themselves, are not powerfulenough to �nd all of the parallelism in a program.However, the analysis performed by automatic systems can be extremely useful to the programmerduring the parallelization process. The ParaScope Editor (Ped) is based upon this observation. It isdesigned to support an interactive parallelization process in which the user examines a particular loopand its dependences. To safely parallelize a loop, the user must either determine that each dependenceshown is not valid (because of some conservative assumption made by the system), or transform the loopto eliminate valid dependences. After each transformation, Ped reconstructs the dependence graph sothat the user may determine the level of success achieved and apply additional transformations if desired.Clearly a tool with this much functionality is bound to be complex. Ped incorporates a complete sourceeditor and supports dependence analysis, dependence display, and a large variety of program transforma-tions to enhance parallelism. Previous work has described the usage and motivation of the ParaScopeEditor [6, 23, 32] and the ParaScope parallel programming environment [16]. In this paper, we focus onthe implementation of Ped's analysis and transformation features. Particular attention is paid to therepresentation of dependences, the construction of the dependence graph, and how dependences are usedand incrementally reconstructed for each program transformation in an e�cient and
exible manner.We begin in Section 2 with a brief overview of dependence. Section 3 describes our work model. Section 4presents Ped's internal representations, and Section 5 examines the analysis strategy and algorithms inPed. Sections 6 and 7 explain Ped's support for transformations and details an interesting subset.Section 8 summarizes strategies for updates following program and dependence edits. We conclude with adiscussion of Ped's modular design and related work.2 DependenceAt the core of Ped is its ability to analyze dependences in a program. Dependences describe a partialorder between statements that must be maintained to preserve the meaning of the original sequentialprogram. A dependence between statement S1 and S2, denoted S1�S2, indicates that S1, the source, mustbe executed before S2, the sink. There are two types of dependence, data and control dependence, whichare described below.2.1 Data DependenceA data dependence, S1�S2, indicates that S1 and S2 read or write a common memory location in a waythat requires their execution order to be preserved. There are four types of data dependence [34]:True (
ow) dependence occurs when S1 writes a memory location that S2 later reads.Anti dependence occurs when S1 reads a memory location that S2 later writes.Output dependence occurs when S1 writes a memory location that S2 later writes.Input dependence occurs when S1 reads a memory location that S2 later reads.11Input dependences do not restrict statement order. Page 2

2.2 Control DependenceIntuitively, a control dependence, S1�cS2, indicates that the execution of S1 directly determines whether S2will be executed. The following formal de�nitions of control dependence and the postdominance relationare taken from the literature [19].Def: x is postdominated by y in the control
ow graph Gf , if every path from x to stop contains y, wherestop is the exit node of Gf .Def: Given two statements x, y 2 Gf , y is control dependent on x if and only if:1. 9 a non-null path p, from x to y, such that y postdominates every node between x and y on p,and2. y does not postdominate x.2.3 Loop-Carried and Loop-Independent DependenceDependences are also characterized as either being loop-carried or loop-independent [3]. Consider thefollowing loop:DO I = 2, NS1 A(I) = : : :S2 : : : = A(I)S3 : : : = A(I-1)ENDDOThe true dependence S1�S2 is loop-independent because it exists regardless of the surrounding loops. Loop-independent dependences, whether data or control, occur within a single iteration of the loop and do notinhibit a loop from running in parallel. For example, if S1�S2 were the only dependence in the loop, thisloop could be run in parallel, because statements executed on each iteration only a�ect other statementsin the same iteration and not in any other iterations. However, loop-independent dependences do a�ectstatement order within a loop iteration. Interchanging statements S1 and S2 violates the loop-independentdependence and changes the meaning of the program.By comparison, the true dependence S1�S3 is loop-carried because the source and sink of the dependenceoccur on di�erent iterations of the loop: S3 reads a memory location that was written to by S1 on theprevious iteration. Loop-carried dependences are important because they inhibit loops from executing inparallel without synchronization. When there are nested loops, the level of any carried dependence is theoutermost loop on which it �rst arises [3].2.4 Dependence TestingDetermining the existence of data dependence between array references is more di�cult than for scalars,because the subscript expressions must be considered. The process of di�erentiating between two sub-scripted references in a loop nest is called dependence testing. To illustrate, consider the problem ofdetermining whether or not there exists a dependence from statement S1 to S2 in the following loop nest:DO i1 = L1; U1DO i2 = L2; U2� � �DO in = Ln; UnS1 A(f1(i1; : : : ; in); : : : ; fm(i1; : : : ; in)) = : : :S2 : : : = A(g1(i1; : : : ; in); : : : ; gm(i1; : : : ; in))ENDDO� � �ENDDOENDDO Page 3

Let � and � be vectors of n integer indices within the ranges of the upper and lower bounds of the n loops.There is a dependence from S1 to S2 if and only if there exist � and � such that � is lexicographically lessthan or equal to � and the following system of dependence equations is satis�ed:fk(�) = gk(�) 8k; 1 � k � m2.5 Distance and Direction VectorsDistance and direction vectors may be used to characterize data dependences by their access patternbetween loop iterations. If there exists a data dependence for � = (�1; : : : ; �n) and � = (�1; : : : ; �n), thenthe distance vector D = (D1; : : : ; Dn) is de�ned as � � �. The direction vector d = (d1; : : : ; dn) of thedependence is de�ned by the equation: di = 8><>: < if �i < �i= if �i = �i> if �i > �iThe elements are always displayed left to right, from the outermost to the innermost loop in the nest. Forexample, consider the following loop nest:DO I = 1, NDO J = 1, MDO K = 1, LA(I+1, J, K-1) = A(I, J, K) + CENDDOENDDOENDDOThe distance and direction vectors for the true dependence between the de�nition and use of array A are(1; 0;�1) and (<;=; >), respectively. Since several di�erent values of � and � may satisfy the dependenceequations, a set of distance and direction vectors may be needed to completely describe the dependencesarising between a pair of array references.Direction vectors, introduced by Wolfe [48], are useful for calculating loop-carried dependences. Adependence is carried by the outermost loop for which the element in the direction vector is not an`='. Additionally, direction vectors are used to determine the safety and pro�tability of loop interchange[3, 48]. Distance vectors are more precise versions of direction vectors that specify the actual numberof loop iterations between two accesses to the same memory location [3, 48]. They are employed bytransformations to exploit parallelism and the memory hierarchy.3 Work ModelPed is designed to exploit loop-level parallelism, which comprises most of the usable parallelism in scienti�ccodes when synchronization costs are considered [15]. In the work model best supported by Ped, the user�rst selects a loop for parallelization. Ped then displays all of its carried dependences. The user maysort or �lter the dependences, as well as edit and delete dependences that are due to overly conservativedependence analysis. Ped also provides a set of intelligent program transformations that can be used toeliminate dependences.
Page 4

Figure 1: Ped User Interface
Page 5

Ped's user interface is shown in Figure 1. The top of the window is the program pane, which displays aloop from the subroutine newque in simple.2 The outer l loop is selected, which causes its header to behighlighted in a di�erent color (not visible in the black and white picture). When a loop is selected, itscarried dependences (and their characteristics) are exhibited in the middle dependence pane. In Figure 1the true dependence involving variable duk is selected, causing it to be emboldened in the dependencepane. The dependence is simultaneously shown in the program pane with an arrow from its source toits sink. The variable pane at the bottom of the window discloses the private and shared status of thevariables in the selected loop (see Section 5.3). Buttons across the top of each pane invoke various Pedfeatures, such as transformations and program analysis.4 Internal RepresentationsThis section describes the three major internal representations used by Ped: the abstract syntax tree andits associated structures, the dependence graph, and loop information.4.1 Abstract Syntax TreeIn Ped and throughout the ParaScope programming environment, the program is represented using anabstract syntax tree (AST). Because the AST is a public structure, Ped does not change the structure ofan AST node nor use any �elds within the AST. However, Ped obviously needs to associate informationsuch as data and control dependences with elements of the AST. The AST therefore has pointers to anassociated structure, called a side array.Ped uses the side array to hold pointers into a variable sized info array. Elements of the info arrayhold pointers to information Ped associates with AST nodes such as level vectors, reference lists, loopinformation, and subscript text. They also point to shadow expressions containing the results of symbolicanalysis (discussed in Section 5.4). These structures are described in full below and illustrated for a sampleprogram in Figure 2.4.2 Dependence GraphPed uses a statement dependence graph to represent control and data dependences in the program. Thedependence graph is made up of dependence edges, which are connected using level vectors and referencelists. The level vectors provide the means for quickly collecting dependence edges on a statement pertainingto a speci�c loop level, and the reference lists provide the means for �nding all the dependences associatedwith a particular variable reference.4.2.1 Dependence EdgesEach data and control dependence in the program is represented as an explicit edge in the dependencegraph. Dependences between pairs of variable references are reference level dependences. Statement leveldependences arise due to input and output statements, branches out of loops, unanalyzed subroutine calls,and control dependences. An edge in the dependence graph is a data structure that describes the followingsigni�cant features of the dependence.� Type of the dependence: true, anti, output, input, control, i/o, exit, or call.� Level of the loop carrying the dependence.2simple is a two dimensional Lagrangian hydrodynamics program with heat di�usion produced by Lawrence LivermoreNational Laboratory Page 6

� AST pointers for source/sink statements or references.� Pointers to the source/sink level vectors and reference lists.� Pointer to a hybrid direction/distance vector.� Interchange-preventing and interchange-sensitive
ags indicate the safety and pro�tability of loopinterchange.Ped uses a hybrid direction/distance vector to store the results of dependence testing. Each elementof the vector can represent a dependence distance or direction. Dependence edges are organized for theuser interface using a higher level data abstraction, called the edge list. The edge list provides the user acon�gurable method of �ltering, sorting, and selecting dependences [16, 32].4.2.2 Level VectorsDependence edges hold most of the dependence information for a program, but level vectors provide theglue which links them together and to the AST. Every executable statement in a loop nest involved witha dependence has a level vector. A level vector contains entries for each loop nesting level in which thestatement is contained. Every entry points to the list of dependences carried at its level. Level vectorstherefore provide quick and e�cient access to all of the dependences at a particular loop level for eachstatement. They are used extensively by Ped's loop based transformations and user interface.Because of their high frequency and simplicity, Ped treats dependence edges resulting from scalarvariables di�erently. Dependences between a pair of scalar variable references occur for all commonlynested loops. To avoid duplicate edges, only a single edge is stored along with its deepest nesting level.These scalar edges have a separate entry in the level vector. Queries for dependences carried on level kthus cause two entries in the level vector to be searched|the entry at level k and the entry for scalardependences.4.2.3 Reference ListsEvery variable reference in a loop nest involved in a dependence has a reference list. A reference list pointsto all dependences that have a given reference as the source or sink. They are useful for transformationssuch as scalar expansion and array renaming, as well as for reference based user queries.4.3 Loop Information and Variable ListsEvery loop in the program has a structure known as loop info that contains the following information.� AST pointer for the loop header.� Level (depth) of the loop in a nest.� Pointers to the loop info for the previous and next loops.� Pointers to the shared and private variable lists.� Flag for parallelized loops.The shared and private variable lists record the status of all variables accessed in the loop body. Privatevariables are de�ned and used only within an iteration of the loop. All other variables are shared. Page 7

�2�1 �3�6�5 �4�3�2 �1 loop : do iloop : do jstmt : sum = : : :id : sumid : sumsubs : a(i, j)stmt : a(i, j) = : : :subs : a(i, j)subs : a(i-1, j)subs : a(i, j+1)
do j = 1,100do i = 1,100 Side ArrayASTProgram

enddo
Info Arraya(i, j) = a(i-1, j) + a(i, j+1)enddosum = sum + a(i, j)

123
LevelVectors
...
...123

ReferenceLists
ListsVariableInformationLoopnextprev nextprevdo jdo isharedprivateprivateshared a j

aij
i sum sum

a(i, j+1)SubscriptText
DependenceEdges�5

ScalarIndependentLevel
ScalarIndependentLevel

SINSIN
�4�6

Figure 2: Ped Internal Representations
Page 8

QueriesTransformations
TestingDependenceAnalysisInterproceduralAnalysisSymbolicAnalysisData-
owScalar Dependence DriverEdits

Figure 3: Dependence Analyzer Architecture5 Program AnalysisPed's dependence analyzer faces three major challenges:Precision Conservative data dependence analysis requires that if a dependence cannot be disproven, itmust be assumed to exist. But if these dependences do not actually exist, Ped may be inhibited fromexploiting the parallelism available in a program. The most important objective of the dependence analyzeris to minimize these false dependences through precise analysis.E�ciency In order for Ped to be truly useful, the dependence analyzer must provide precise resultsin a reasonable amount of time. Ped's dependence analyzer gains e�ciency by using fast algorithms foranalyzing common simple cases, holding more powerful but expensive algorithms in reserve.Incrementality Historically, dependence analysis has been performed in batch mode as a single passthrough the entire program. In an interactive tool or parallelizing compiler, batch reanalysis after eachprogram transformation has proven to be unacceptably slow. Ped's dependence analyzer supports incre-mental dependence analysis, a technique to limit reanalysis which results in signi�cantly faster updates afterprogram changes. In general, incremental algorithms must be both quick and precise. Otherwise, userswill prefer batch analysis. Ped achieves e�ciency by applying a tiered set of incremental responses basedon the scope of the program change. Ped's incremental analysis strategy and algorithms are described inSections 6.1 and 8.1.1.5.1 Dependence Analyzer OverviewThe architecture of Ped's dependence analyzer is shown in Figure 3. It consists of four major compo-nents: the dependence driver, scalar data-
ow analysis, symbolic analysis, interprocedural analysis, anddependence testing. The following sections examine each in more detail.5.2 Dependence Analysis DriverThe dependence analysis driver insulates and coordinates the internal phases of the dependence analyzerfrom the programming environment. It serves four important functions: coordination, query management,Page 9

change noti�cation, and dependence updates.First, the driver coordinates each of the internal phases of the analyzer. This is especially importantfor incremental analysis. It also invokes syntax and type checking after edits to ensure that the inputprogram is correct before continuing program analysis. Query management is achieved by hiding theinternal representation of the dependence graph and enforcing a standard interface for all queries aboutdependence information. Queries are insulated from the dependence graph by the driver, allowing lazydependence updates after a series of edits.The driver is also responsible for change noti�cation. It receives notice of program changes from theeditor and user interface, determines the scope of changes, and decides on an appropriate update strategy.After updates have been performed, the driver must also notify other parts of the environment. Finally, thedependence driver also supports an interface for direct dependence updates. This interface enables e�cientincremental updates of dependence information after structured transformations with known e�ects.5.3 Scalar Data-
ow AnalysisScalar data-
ow analysis computes data-
ow information, control dependences, and data dependences forscalar variables. It also provides a framework for the later phases of the dependence analyzer. Ped �rstconstructs the control
ow graph and postdominator tree. It then computes dominance frontiers for eachscalar variable and uses them to build the static single assignment (SSA) graph for each procedure [18].Edges in the SSA graph correspond to precise true dependences for scalar variables.Next, Ped constructs a coarse dependence graph for array variables in each loop nest by connectingfDefsg with fDefs [Usesg. These edges are later re�ned through dependence testing to construct de-pendence edges. The same technique is used to build a set of coarse anti and output dependences forscalar variables in loop nests. More precise anti and output dependences may be calculated for scalarsusing techniques similar to those used in building the SSA graph, but we do not �nd it necessary. Pedalso inserts loop-carried dependences for unanalyzed procedure calls, input and output statements, andbranches out of loops.The scalar data-
ow analysis phase also calculates information used to determine whether variables ina loop may be safely made private. If a scalar variable is not live outside a speci�c loop and does not haveloop-carried true dependences, it may be made private to eliminate loop-carried storage (anti and output)dependences. Otherwise, the variable is classi�ed as shared. Ped currently assumes that all arrays arelive outside of loops and are therefore shared. Transformations such as loop distribution also need controldependences, which are calculated from the postdominator tree (see Sections 2.2 and 7.2).All internal dependence representations and underlying structures are complete in the current imple-mentation of Ped. The only remaining task is to compute live ranges and dependences for scalars usingthe SSA graph.5.4 Symbolic AnalysisSymbolic analysis is the process of representing and evaluating expressions in program variables at compiletime. When possible, this phase derives constants or simpli�ed forms for loop bounds, loop steps, arraysubscript expressions, array dimensions, and control
ow. Symbolic analysis signi�cantly improves theprecision of dependence testing [20, 22, 44] and interprocedural analysis [24].Unlike automatic parallelization tools, Ped does not make transformations to the program for purposesof analysis. Accordingly, the results of symbolic analysis are stored in shadow expressions that representPage 10

computations of interest. For example, the dependence testing phase may need to reason about a subscriptexpression or compare two subscript expressions. The symbolic analyzer will then provide or build anappropriate shadow expression.The SSA graph for scalars, produced by scalar data-
ow analysis, provides the framework for symbolicanalysis in Ped. Global value numbering is performed on the SSA graph [4]. An extended version ofthis algorithm simpli�es value numbers as they are built, using arithmetic laws and cancellation. Valuenumbers are then translated into shadow expressions for use by dependence testing and other analyses.Because the value numbering algorithm deduces and propagates constraints and relationships betweensymbolic expressions, the symbolic analyzer can detect and perform the following:Constant propagation. Variables and expressions that can be reduced to a constant.Auxiliary induction variable recognition. Auxiliary induction variables are represented by functionsof loop index variables.Expression folding. Symbolic expressions are simpli�ed and propagated.Loop-invariant expression recognition. Loop-invariant expressions are identi�ed for use during de-pendence testing and optimization.Reduction recognition. Opportunities for using reduction operators are detected.Value numbering and the resulting shadow expressions have been implemented and incorporated intothe dependence tester. Constant propagation, expression folding, loop-invariant expression and reductionrecognition are all available. Auxiliary induction variable recognition on the SSA graph is planned. Thisimplementation is part of an ongoing e�ort that also encompasses interprocedural symbolic analysis.5.5 Interprocedural AnalysisThe presence of procedure calls complicates the process of analyzing dependences. Interprocedural anal-ysis is required so that worst case assumptions need not be made when calls are encountered. ParaScopeperforms conventional interprocedural analysis that discovers constants, aliasing,
ow-insensitive side ef-fects such as ref and mod [12, 17]. Flow-sensitive side e�ects such as use and kill are not currentlyavailable. Even with these analyses, improvements are limited because arrays are treated as monolithicobjects, making it impossible to determine whether two references to an array actually access the samememory location.To provide more precise analysis, array accesses can be summarized in terms of regular sections thatdescribe subsections of arrays such as rows, columns, and rectangles [24]. Local symbolic analysis andinterprocedural constants are required to build accurate regular sections. Once constructed, regular sec-tions may be quickly intersected during interprocedural analysis and dependence testing to determinewhether dependences exist. The implementation of regular sections in ParaScope is nearing completion.We are also integrating existing ParaScope interprocedural analysis and transformations such as inliningand cloning into Ped [17].5.6 Dependence TestingThe dependence testing phase re�nes the coarse dependence graph for array variables created by scalaranalysis and sharpened by interprocedural analysis. Ped classi�es subscripts in a pair of array referencesPage 11

according to two orthogonal criteria: complexity and separability. Complexity refers to the number ofindices appearing within the subscript. Separability describes whether a given subscript interacts withother subscripts for the purpose of dependence testing.Using this classi�cation scheme, appropriate dependence tests are selected and applied to each subscriptposition in a pair of array references. Dependence edges are eliminated if dependence between the ref-erences can be disproved. Otherwise, dependence testing characterizes the dependences with a minimalset of hybrid distance/direction vectors. This dependence information is vital for guiding transformations.Ped's dependence tests are discussed in detail elsewhere [20]. Most of these dependence tests have beenimplemented in the current version of Ped. We are in the process of extending them to handle symbolicexpressions, complex iteration spaces, and regular sections.5.7 Analysis of SynchronizationIn a sophisticated parallel program, the user may wish to employ complex synchronization. Typically,synchronization constructs are used to ensure that a dependence is satis�ed. When synchronization ispresent, it is important to eliminate any preserved dependences so that the user will not need to considerthem further. Establishing that the order speci�ed by certain dependences will always be observed has beenshown to be co-NP-hard, but techniques have been developed to identify dependences that are satis�edby existing synchronization under restricted circumstances [13]. The current implementation of Ped candetermine if event style synchronization is su�cient to protect a particular dependence.5.8 Utilizing External AnalysisTo overcome gaps in the current implementation of program analysis, Ped may import dependence in-formation from Pfc, the Rice system for automatic vectorization and parallelization [3]. Pfc's programanalyzer is more mature and contains symbolic analysis, interprocedural regular sections and constants,as well as control and data dependence analysis. Pfc produces a �le of dependence information that Pedconverts into its own internal representation. This process is a temporary expedient which will becomeunnecessary when program analysis in Ped is complete.6 TransformationsPed provides a variety of interactive, structured transformations that enhance or expose parallelism inprograms. These transformations are applied according to a power steering paradigm: the user speci�esthe transformation to be made, and the system provides advice and carries out the mechanical details.Thus the user is relieved of the responsibility of making tedious and error prone program changes.Ped evaluates each transformation invoked according to three criteria: applicability, safety, and prof-itability. A transformation is applicable if it can be mechanically performed. For example, loop interchangeis inapplicable for a single loop. A transformation is safe if it preserves the meaning of the original se-quential program. Some transformations are always safe, others require a speci�c dependence pattern.Finally, Ped classi�es a transformation as pro�table if it can determine that the transformation directlyor indirectly improves the parallelism of the resulting program.To perform a transformation, the user makes a program selection and invokes the desired transformation.If the transformation is inapplicable, Ped responds with a diagnostic message. If the transformation issafe, Ped advises the user as to its pro�tability. For parameterized transformations, Ped may also suggestPage 12

a parameter value.3 The user may then apply the transformation.If the transformation is unsafe or unpro�table, Ped responds with a warning explaining the cause. Inthese cases the user may decide to override the system advice and apply the transformation anyway. Forexample, if a user decides to parallelize a loop with loop-carried dependences, Ped will warn the user ofthe dependences but allow the loop to be made parallel. This override ability is extremely important in aninteractive tool, since it allows the user to apply knowledge unavailable to the tool. The program AST anddependence information are automatically updated after each transformation to re
ect the transformedsource.Ped supports a large set of transformations that have proven useful for introducing, discovering, andexploiting parallelism. Ped also supports transformations for enhancing the use of the memory hierarchy.These transformations are described in detail in the literature [2, 3, 10, 34, 36, 48]. We classify thetransformations in Ped as follows.Reordering TransformationsLoop Distribution Loop Skewing Statement InterchangeLoop Interchange Loop Fusion Loop ReversalStrip MiningDependence Breaking TransformationsPrivatization Scalar Expansion Loop SplittingArray Renaming Loop Peeling AlignmentMemory Optimizing TransformationsScalar Replacement Loop Unrolling Unroll-and-JamMiscellaneous TransformationsSequential $ Parallel Loop Bounds AdjustingStatement Addition Statement DeletionReordering transformations change the order in which statements are executed, either within or across loopiterations.4 They are safe if all program dependences in the original program are preserved. Reorderingtransformations are used to expose or enhance loop-level parallelism. They are often performed in con-cert with other transformations to structure computations in a way that allows useful parallelism to beintroduced.Dependence breaking transformations are used to break speci�c dependences that inhibit parallelism.They may introduce new storage to eliminate storage-related anti or output dependences, or convertloop-carried dependences to loop-independent dependences, often enabling the safe application of othertransformations. If all the dependences carried on a loop are eliminated, the loop may then be run inparallel.Memory optimizing transformations adjust a loop's balance between computations and memory accessesto make better use of the memory hierarchy and functional pipelines. These transformations have provento be extremely e�ective for both scalar and parallel machines.3For example, see loop skewing and unroll-and-jam in Sections 7.4 and 7.5.4Loop skewing and strip mining reorder execution only when used in conjunction with loop interchange. Page 13

6.1 Incremental AnalysisA signi�cant advantage of structured transformations is that their e�ects are known in advance. Inparticular, few transformations a�ect global data-
ow or symbolic information. Ped can thus performupdates very e�ciently. Some transformations may require partial reanalysis, while others may directlyupdate the existing dependence graph. Below, we classify safe transformations based on their Ped updatealgorithms.None: Statement Interchange, Loop Bounds AdjustingMove edges: Loop Interchange, Array RenamingModify edges: Loop Distribution, Loop Skewing, Loop Reversal, Alignment, PrivatizationDelete edges: Scalar Expansion, Statement DeletionAdd edges: Strip Mining, Scalar ReplacementRedo dependence testing: Loop Peeling, Loop SplittingRedo dependence analysis for loop nest: Loop Fusion, Loop Unrolling, Unroll-and-Jam,Statement Addition7 Example TransformationsAlthough many of the algorithms for applying these transformations have appeared elsewhere, our imple-mentation gives pro�tability advice and performs incremental updates of dependence information. Ratherthan describe all these phases for each transformation, we have chosen to examine �ve interesting trans-formations in detail. We discuss loop interchange, loop distribution, loop fusion, loop skewing, and unroll-and-jam. The purpose, mechanics, and safety of these transformations are presented, followed by theirpro�tability estimates, user advice, and incremental dependence update algorithms.7.1 Loop InterchangeLoop interchange is a key transformation that modi�es the traversal order of the iteration space for theselected loop nest [3, 48]. It has been used extensively in vectorizing and parallelizing compilers to adjustthe granularity of parallel loops and to expose parallelism [3, 34, 48]. Ped interchanges pairs of adjacentloops. Loop permutations may be performed as a series of pairwise interchanges. Ped supports interchangeof triangular or skewed loops. It also interchanges complex loop nests that result after interchanging skewedloops.Safety Loop interchange is safe if it does not reverse the order of execution of the source and sink ofany dependence. Ped determines this by examining the direction vectors for all dependences carried onthe outer loop. If any dependence has a direction vector of the form (<;>), interchange is unsafe. Thesedependences are called interchange-preventing; they are
agged by Ped during dependence testing. Whenapplying loop interchange, each dependence edge carried on the outer loop is examined. If any dependencehas its interchange-preventing
ag set, Ped advises the user that interchange is unsafe.Pro�tability Ped judges the pro�tability of loop interchange by calculating which of the loops will beparallel after the interchange. A dependence carried on the outer loop will move inward if it has a directionvector of the form (<;=). These dependences are called interchange-sensitive; they are also
agged byPed during dependence testing. When applying loop interchange, Ped examines each dependence edge onPage 14

the outer loop to determine where it will be following interchange. It then checks for dependences carriedon the inner loop as well; they move outward following interchange. Depending on the result, Ped advisesthe user that neither, one, or both of the loops will be parallel after interchange.Update Updates after loop interchange are very quick. Dependence edges on the interchanged loops aremoved directly to the appropriate loop level based on their interchange-sensitive
ags. All the dependencesin the loop nest then have the elements in their direction vector corresponding to the interchanged loopsswapped, e.g., (<;=) becomes (=; <). Finally, the interchange
ags are recalculated for dependences inthe loop nest.7.2 Loop DistributionLoop distribution separates independent statements inside a single loop into multiple loops with identicalheaders [3, 34]. It is used to expose partial parallelism by separating statements which may be parallelizedfrom those that must be executed sequentially. Loop distribution is a cornerstone of vectorization andparallelization [3, 34].In Ped the user can specify whether distribution is for the purpose of vectorization or parallelization.If the user speci�es vectorization, then each statement is placed in a separate loop when possible. If theuser speci�es parallelization, then statements are grouped together into the fewest loops such that themost statements can be made parallel. The user is presented with a partition of the statements into newloops, as well as an indication of which loops are parallelizable. The user may then apply or reject thedistribution partition.Safety To maintain the meaning of the original loop, the partition must not put statements that are in-volved in recurrences into di�erent loops [30, 34]. Recurrences are calculated by �nding strongly connectedregions in the subgraph composed of loop-independent dependences and dependences carried on the loopto be distributed. Statements not involved in recurrences may be placed together or in separate loops,but the order of the resulting loops must preserve all other data and control dependences. Ped alwayscomputes a partition which meets these criteria.If there is control
ow in the original loop, the partition may cause decisions that occur in one loopto be used in a later loop. These decisions correspond to loop-independent control dependences thatcross between partitions. We use Kennedy and McKinley's method to insert new arrays, called executionvariables, that record these \crossing" decisions [30]. Given a partition, this algorithm introduces theminimal number of execution variables necessary to e�ect the partition, even for loops with arbitrarycontrol
ow.Pro�tability Currently Ped does not change the order of statements in the loop during partitioning.This simpli�cation improves the recognizability of the resulting program, but may reduce the parallelismuncovered. In particular, statements that fall lexically between statements in a recurrence will be putinto the same partition as the recurrence. In addition, when the source of a dependence lexically followsthe sink, these statements will be placed in the same partition. The implementation of a partitioningalgorithm that maximizes loop parallelism while producing the fewest parallel loops is underway [31].When distributing for vectorization, statements not involved in recurrences are placed in separate loops.When distributing for parallelization, they are partitioned as follows. A statement is added to the precedingpartition only if it does not cause that partition to be sequentialized. Otherwise it begins a new partition.Consider distributing the left loop below. Page 15

PARALLEL DO I = 1, NDO I = 1, N S1 A(i) = : : :S1 A(i) = : : : =) ENDDOS2 : : : = A(i-1) distribution PARALLEL DO I = 1, NENDDO S2 : : : = A(i-1)ENDDOThis loop contains only the loop-carried true dependence S1�S2. Since there are no recurrences, S1 and S2begin in separate partitions. S1 is placed in a parallel partition, then S2 is considered. The addition of S2to the partition would instantiate the loop-carried true dependence, causing the partition to be sequential.Therefore, S2 is placed in a separate loop and both loops may be made parallel, as illustrated above bythe two transformed loops on the right. Loop distribution can also enable loop interchange to enhanceparallelism or data locality [3, 14].Update Updates can be performed quickly on the existing dependence graph after loop distribution. Foreach new loop Ped also creates new loop info structures and attaches them to the AST. Data and controldependences between statements in the same partition remain unchanged. Data dependences carried onthe distributed loop between statements placed in separate partitions are converted into loop-independentdependences (as in the above example).Loop-independent control dependences that cross partitions are deleted and replaced as follows. First,loop-independent data dependences are introduced between the de�nitions and uses of execution variablesrepresenting the crossing decision. A control dependence is then inserted from the test on the executionvariable to the sink of the original control dependence. The update algorithm is explained more thoroughlyelsewhere [30].7.3 Loop FusionLoop fusion is the dual of loop distribution. Instead of breaking up a loop into multiple loops, it combinestwo loop nests into a single loop nest. Researchers have found loop fusion useful for improving data locality,reducing loop overhead, and enabling loop interchange [14, 31]. Ped supports fusion of adjacent loop nestswhere the outer loops iterate identically, but the loop index variable names need not be the same.Safety Loop fusion is safe if it does not reverse the order of execution of the source and sink of anydependence [48]. If there are no dependences between two loops, fusion is always safe. If there is adependence, it is loop-independent. To test if fusion is safe, dependence testing is performed on the loopbodies as if they were in a single loop. A loop-independent dependence between the original nests eitherremains loop-independent or becomes forward loop-carried or backward loop-carried in the fused loop. If itremains loop-independent, fusion is safe. If it becomes forward loop-carried, fusion is safe but may reduceparallelism. If it becomes backward loop-carried, fusion is not safe because the
ow of values would bereversed.Pro�tability Loop fusion is pro�table if it increases the granularity of parallelism by fusing two parallelloops, since fusion eliminates a synchronization point. Ped will warn the user if parallelism would be lostafter fusion, either by creating new loop-carried dependences or by fusing sequential and parallel loops.
Page 16

i jBeforeSkew AfterSkew jiFigure 4: E�ect of Loop Skew on Dependences and Iteration SpaceLoop fusion can also improve data locality by bring two references closer together in time. Consider theexample below.DO I = 1, NA(I) = I DO I = 1, NENDDO =) A(I) = IDO I = 1, N fusion B(I) = A(I) * A(I)B(I) = A(I) * A(I) ENDDOENDDOIn the version on the left, the write to A(I) occurs N iterations before the subsequent reads. After fusion,the write and the read occur on the same iteration, making A(I) much more likely to still be in cache ora register at the time of the read. Loop fusion can also improve data locality and increase parallelism byenabling loop interchange [14, 31]. Ped does not currently report these cases.Update Updates after loop fusion are straightforward and quick. The loop info structures are merged.If the loop index variables di�er they are both replaced with a new unique name. The control dependenceson the original loop headers are adjusted to the new loop header. Because no global data-
ow or symbolicinformation is changed by fusion, Ped simply rebuilds the scalar dependence graph for the new loop nestand re�nes it with dependence tests. This update strategy proved simple to implement and is quick inpractice.7.4 Loop SkewingLoop skewing is a transformation that changes the shape of the iteration space to expose parallelism acrossa wavefront [29, 48]. It can be applied via unimodular methods using loop interchange, strip mining, andloop reversal to obtain loop-level parallelism in a loop nest [7, 47]. All of these transformations aresupported in Ped.Loop skewing is applied to a pair of perfectly nested loops that both carry dependences, even after loopinterchange. Loop skewing adjusts the iteration space of these loops by shifting the work per iteration,changing the shape of the iteration space from a rectangle to a parallelogram. Figure 4 illustrates aniteration space before and after skewing. Skewing changes dependence distances for the inner loop so thatall dependences are carried on the outer loop after loop interchange. The inner loop can then be safelyparallelized.Loop skewing of degree � is performed by adding � times the outer loop index variable to the upperand lower bounds of the inner loop, followed by subtracting the same amount from each occurrence of theinner loop index variable in the loop body. In the example below, the second loop nest results when the Jloop in the �rst loop nest is skewed by degree 1 with respect to loop I. Page 17

DO I = 1, 100DO J = 2, 100A(I,J) = A(I-1,J) + A(I,J-1)ENDDOENDDO + loop skewingDO I = 1, 100DO J = I+2, I+100A(I,J-I) = A(I-1,J-I) + A(I,J-I-1)ENDDOENDDOFigure 4 illustrates the iteration space for this example. For the original loop, dependences with distancevectors (1; 0) and (0; 1) prevent either loop from being safely parallelized. In the skewed loop, the distancevectors for dependences are transformed to (1; 1) and (0; 1). There are no longer any dependences withineach column of the iteration space, so parallelism is exposed. However, to introduce the parallelism on theI loop requires also performing loop interchange.Safety Loop skewing is always safe because it does not change the order in which array memory locationsare accessed. It only changes the shape of the iteration space.Pro�tability To determine if skewing is pro�table, Ped ascertains whether skewing will expose paral-lelism that can be made explicit using loop interchange and suggests the minimum skew amount needed todo so. This analysis requires that all dependences carried on the outer loop have precise distance vectors.Skewing is only pro�table if:1. 9 dependences on the inner loop, and2. 9 at least one dependence on the outer loopwith a distance vector (d1; d2), where d2 � 0.The interchange-preventing or interchange-sensitive dependences in (2) prevent the application of loopinterchange to move all dependences to the outer loop. If they do not exist, at least one loop may alreadybe safely parallelized, possibly by using loop interchange. The purpose of loop skewing is to change thedistance vector to (d1; d02), where d02 � 1. In terms of the iteration space, loop skewing is needed totransform dependences that point down or downwards to the left into dependences that point downwardsto the right. Followed by loop interchange, these dependences will remain on the outer loop, allowing theinner loop to be safely parallelized.To compute the skew degree, we �rst consider the e�ect of loop skewing on each dependence. Whenskewing the inner loop with respect to the outer loop by an integer degree �, the original distance vector(d1; d2) becomes (d1; �d1 + d2). So for any dependence where d2 � 0, we want � such that �d1 + d2 � 1.To �nd the minimal skew degree we compute� = �1 � d2d1 �for each dependence, taking the maximum � for all the dependences; this is suggested as the skew degree.Update Updates after loop skewing are also very fast. After skewing by degree �, the incremental updatealgorithm changes the original distance vectors (d1; d2) for all dependences in the nest to (d1; �d1 + d2),and then updates their interchange
ags. Page 18

i j i jAfterUnrollandJamBeforeUnrollandJam Figure 5: E�ect of Unroll-and-Jam on Iteration Space7.5 Unroll-and-JamUnroll-and-jam is a transformation that unrolls an outer loop in a loop nest, then jams (or fuses) theresulting inner loops [2, 11]. Unroll-and-jam can be used to convert dependences carried by the outer loopinto loop independent dependences or dependences carried by some inner loop. It brings two accesses tothe same memory location closer together and can signi�cantly improve performance by enabling reuse ofeither registers or cache. When applied in conjunction with scalar replacement on scienti�c codes, unroll-and-jam has resulted in integer factor speedups, even for single processors [10]. Unroll-and-jam may alsobe applied to imperfectly nested loops or loops with complex iteration spaces. Figure 5 shows an exampleiteration space before and after unroll-and-jam of degree 1.Before performing unroll-and-jam of degree � on a loop with step �, we may need to use loop splittingto make the total number of iterations divisible by �+ 1 by separating the �rst few iterations of the loopinto a preloop. We then create � additional copies of the loop body. All occurrences of the loop indexvariable in the ith new loop body must be incremented by �i. The step of the loop is then increased to�(�+ 1).In the following matrix multiply example, loop I is unrolled and jammed by one to bring togetherreferences to B(K,J), resulting in the second loop nest.DO I = 1, 100DO J = 1, 100C(I,J) = 0.00DO K = 1, 100C(I,J) = C(I,J) + A(I,K) * B(K,J)ENDDOENDDOENDDO + unroll-and-jamDO I = 1, 100, 2DO J = 1, 100C(I, J) = 0.0C(I+1, J) = 0.0DO K = 1, 100C(I,J) = C(I,J) + A(I,K) * B(K,J)C(I+1,J) = C(I+1,J) + A(I+1,K) * B(K,J)ENDDOENDDOENDDOUnroll-and-jam could also be performed on loop J to bring together references to A(I,K). Page 19

Safety To determine safety, an alternative formulation of unroll-and-jam is used. Unroll-and-jam isequivalent to strip mining the outer loop by the unroll degree, interchanging the strip mined loop to theinnermost position, and then completely unrolling the strip mined loop. Since strip mining and loopunrolling are always safe, we only need to determine whether we can safely interchange the strip minedloop to the innermost position.Ped determines this by searching for interchange-preventing dependences on the outer loop. Unroll-and-jam is unsafe if any dependence carried by the outer loop has a direction vector of the form (<;>).Even if such a dependence is found, unroll-and-jam is still safe if the unroll degree is less than the distanceof the dependence on the outer loop, since this dependence would remain carried by the outer loop. Pedwill either warn the user that unroll-and-jam is unsafe, or provide a range of safe unroll degrees.Unroll-and-jam of imperfectly nested loops changes the execution order of the imperfectly nested state-ments with respect to the rest of the loop body. Dependences carried on the unrolled loop with distanceless than or equal to the unroll degree are converted into loop-independent dependences. If any of thesedependences cross between the imperfectly nested statements and the statements in the inner loop, theyinhibit unroll-and-jam. Speci�cally, the intervening statements cannot be moved and prevent fusion of theinner loops.Pro�tability Balance describes the ratio between computation and memory access rates [11]. Unroll-and-jam is pro�table if it brings the balance of a loop closer to the balance of the underlying machine. Pedautomatically calculates the optimal unroll-and-jam degree for a loop nest, including loops with complexiteration spaces [10].Update An algorithm for the incremental update of the dependence graph after unroll-and-jam is de-scribed elsewhere [10]. However, since no global data-
ow or symbolic information is changed by unroll-and-jam, we chose the same strategy as for loop fusion. Ped simply rebuilds the scalar dependence graphfor the loop nest and applies dependence tests to the resulting edges.7.6 Implementation StatusAll of the structured program transformations in this paper have been implemented in Ped, includingtheir corresponding incremental update algorithms. We are, as always, in the process of further extendingPed's transformation capabilities. An e�ort is underway to incorporate automatic parallelization strategieswithin Ped in order to provide users with further assistance in the parallelization process [23, 37].8 EditsThis section describes strategies for updates after edits to the program text or direct modi�cation of Ped'sdependence information. We refer to the �rst as program edits and the latter as dependence edits.8.1 Program EditsEditing is fundamental for any program development tool because it is the most
exible means of makingprogram changes. The ParaScope Editor therefore provides advanced editing features. When editing,the user has complete access to the functionality of the hybrid (text and structure) editor underlyingPed, including simple text entry, template-based editing, search and replace functions, intelligent andcustomizable view �lters, and automatic syntax and type checking.Rather than reanalyze immediately after each edit, Ped waits for a reanalyze command from the user.This avoids analyzing intermediate stages of the program that may be illegal or simply uninteresting toPage 20

the user. Both transformations and the dependence display are disabled during an editing session, becausethey rely on dependence information that may be invalidated by the edits. Once the user prompts Ped, thedependence driver invokes syntax and type checking. If errors are detected, the user is warned. Otherwisereanalysis proceeds.8.1.1 Incremental AnalysisUnfortunately, incremental dependence analysis after edits is a very di�cult problem. As we have alreadyseen, precise dependence analysis requires utilization of several di�erent kinds of information. In order tocalculate precise dependence information, Ped may need to incrementally update the control
ow, controldependence, SSA, and call graphs, as well as recalculate live range, constant, symbolic, interprocedural,and dependence testing information.Several algorithms for incremental analysis can be found in the literature; e.g., data-
ow analysis [41],interprocedural analysis [8], interprocedural recompilation analysis [9], as well as dependence analysis [40].However, few of these algorithms have been implemented and evaluated in an interactive environment.Rather than tackle all these problems at once, we chose a simple yet practical strategy for the currentimplementation of Ped. First, the scope of each program change is evaluated. Incremental analysis isapplied only when it may be pro�table, otherwise batch dependence analysis is invoked. Ped will applyincremental dependence analysis when the following situations are detected:No update needed Many program edits fall into this category. It is trivial to determine that changes tocomments or whitespace do not require reanalysis. Other cases include changes to arithmetic expressionsthat do not disturb control
ow or symbolic analysis. For instance, changing the assignment A(I)=B(I) toA(I)=B(I)+1 does not a�ect dependence information one whit.Delete dependence edges Removal of an array reference may be handled simply by deleting all edgesinvolving that reference.Add dependence edges Addition of an array reference may be handled by scanning the loop nest foroccurrences of the same variable, performing dependence tests between the new reference and any otherreferences, and adding the necessary dependence edges.Redo dependence testing Changes to loop bounds or array subscript expressions require dependencetesting to be performed on all a�ected array variables.Redo local symbolic analysis Some types of program changes do not a�ect the scalar dependencegraph, but may require symbolic analysis to be reapplied. For instance, changing the assignment J=J+1to J=J+2, where J is an auxiliary induction variable, requires redoing symbolic analysis and dependencetesting.Redo local dependence analysis Changes such as the modi�cation of control
ow or variables involvedin symbolic analysis require signi�cant updates best handled by redoing dependence analysis. However,the nature of the change may allow the reanalysis to be limited to the current loop nest or procedure. Inthese cases, the entire program does not need to be reanalyzed.8.1.2 Implementation StatusEditing is fully supported in Ped, but di�culties with the underlying editor currently require batchdependence analysis to be performed at the end of an editing session. However, the incremental frameworkis in place. Page 21

8.2 Dependence EditsIn Ped, users are given the opportunity to change the program through edits and structured transforma-tions. In addition, users may directly change the results of program analysis by modifying the dependencegraph or the classi�cation of variables as shared or private. This functionality is needed because programanalysis is necessarily conservative. Ped's user interface provides a mechanism that enables users to rejecta particular dependence or a class of dependences that they feel are overly conservative [6, 16, 23, 32]. Inresponse, Ped no longer considers these dependences during program transformations. Users can similarlycorrect overly conservative variable classi�cations by reclassifying shared variables as private. In response,Ped eliminates from further consideration any loop-carried dependences incident on these variables. Theseuser assertions are retained even after structured transformations and edits. However, if a change resultsin batch reanalysis, any dependence and variable assertions will be lost. Plans are in place to providefacilities in Ped for more persistent user assertions [23].9 Modular DesignThe ParaScope Editor is designed so that its analysis and transformation capabilities can be used through-out the ParaScope programming environment [16]. By separating the calculation of safety and pro�tabilityfor program transformations, we have made them easily adaptable by other tools. Transformation are easilyintegrated into new systems by using Ped's tests for legality and substituting new pro�tability measures.This feature has proven itself to be extremely valuable in practice. The analysis and transformationfeatures of Ped are currently being used by the Fortran D compiler for distributed-memory machines[26], a source-to-source Fortran translator for improving data locality [10, 14], and an on-the-
y data-racedetection system for shared-memory machines [27].10 Related WorkSeveral other research groups are also developing advanced parallel programming tools. Ped's analysisand transformation capabilities compare favorably to automatic parallelization systems such as Parafrase,Ptran, Pips and of course Pfc. Our work on interactive parallelization bears similarities to Ptool,Sigmacs, Pat, Superb, Tiny, and Forge 90.Ped has been greatly in
uenced by the Rice Parallel Fortran Converter (Pfc), which has focused on theproblem of automatically vectorizing and parallelizing sequential Fortran [3]. Pfc has a mature dependenceanalyzer which performs data dependence analysis, control dependence analysis, interprocedural constantpropagation [12], interprocedural side e�ect analysis of scalars [17], and interprocedural array sectionanalysis [24]. The precursor to Ped, a dependence browser named Ptool, interactively displayed Pfc'sdependences to users [25]. Ped integrates and extends Pfc's analysis & transformations and Ptool'sbrowsing capabilities, making them available to the user in an interactive environment.Parafrase was the �rst automatic vectorizing and parallelizing compiler [34]. It supports programanalysis and performs a large number of program transformations to improve parallelism. In Parafrase,program transformations are structured in phases and are always applied where applicable. Batch analysisis performed after each transformation phase to update the dependence information for the entire program.Parafrase-2 adds scheduling, improved program analysis, and transformations [38]. More advancedinterprocedural and symbolic analysis is planned [22]. Parafrase-2 uses Faust as a front end to provideinteractive parallelization and graphical displays [21]. Page 22

Ptran is also an automatic parallelizer with extensive program analysis [1]. It computes the SSAand program dependence graphs, and performs constant propagation and interprocedural analysis [19].Ptran introduces both task and loop parallelism, but currently the only other program transformationsare variable privatization and loop distribution. Sarkar and Thekkath propose a uni�ed framework forapplying iteration-reordering transformations to perfect loop nests [42]. The framework provides rules forcalculating legality and updating dependence vectors and loop bounds, but does not estimate pro�tability.Pips applies sophisticated interprocedural semantical analysis to parallelize programs for shared anddistributed-memory machines [28]. The user can select the precision of analysis desired, inspect theresulting predicates and regions calculated by Pips, and then apply transformations such as privatization,loop distribution, and parallelization to speci�ed procedures or the entire program.Sigmacs, a programmable interactive parallelizer in the Faust programming environment, computesand displays call graphs, process graphs, and a statement dependence graph [21, 43]. In a process grapheach node represents a task or a process, which is a separate entity running in parallel. The call and processgraphs may be animated dynamically at run time. Sigmacs also performs several interactive programtransformations, and is working on automatic updating of dependence information.Pat is also an interactive parallelization tool [45]. Its dependence analysis is restricted to Fortran pro-grams where only one write occurs to each variable in a loop. Pat supports replication and alignment,insertion and deletion of assignment statements, and loop parallelization. It can also insert synchro-nization to protect speci�c dependences. Pat divides analysis into scalar and dependence phases, butdoes not perform symbolic or interprocedural analysis. The incremental dependence update that followstransformations is simpli�ed due to its austere analysis [46].Superb interactively converts sequential programs into data parallel SPMD programs that can beexecuted on the Suprenum distributed memory multiprocessor [50]. Superb provides a set of interactiveprogram transformations, including transformations that exploit data parallelism. The user speci�es adata partitioning, then node programs with the necessary send and receive operations are automaticallygenerated. Algorithms are also described for incremental update of use-def and def-use chains followingstructured program transformations [33].Tiny provides precise data dependence analysis and program transformations for a core subset of Fortran[49]. It is particularly adept at performing complex loop transformations on imperfectly nested loops.Extensions toTiny include precise dependence tests, array kill analysis, and automatic selection of programtransformation sequences [39].Forge 90, formerly Mimdizer, is an interactive parallelization system for MIMD shared anddistributed-memory machines from Applied Parallel Research [5]. It performs data-
ow and dependenceanalyses, and also supports loop-level transformations. Associated tools graphically display call graph,control
ow, dependence, and pro�ling information. Forge 90 can be used to generate parallel programsfor both shared and distributed-memory machines. Computer vendors such as Cray Research Inc. andSilicon Graphics Inc. have also begun providing interactive parallel programming tools similar to Ped.11 ConclusionsOur experience with the ParaScope Editor has shown that dependence analysis can be used in an interactivetool with acceptable e�ciency. This e�ciency is due to fast yet precise dependence analysis algorithms,and a dependence representation that makes it easy to �nd dependences and to reconstruct them after aPage 23

change. To our knowledge, Ped is the �rst tool to o�er general editing with dependence reconstructionalong with a substantial collection of useful program transformations.Ped's ability to analyze and display dependence information has made it into a powerful tool for theexperienced parallel programmer. By reviewing the dependences carried by a particular parallel loop, theprogrammer can avoid the kinds of simple mistakes that may later take months to �nd and correct. Inthis paper we have shown how to keep the cost of providing this information low enough to make Peda practical interactive tool. By separating the calculation of safety and pro�tability, we have also madePed's transformation abilities easily available to other tools.12 AcknowledgmentsWe wish to thank Paul Havlak both for his assistance on this paper and for his role as the principalarchitect of scalar and symbolic analysis in Ped. We gratefully acknowledge Alan Carle, Mary Hall, NatMcIntosh, John Mellor-Crummey, Mike Paleczny, Hariklia Tsalapatas and Scott Warren for their valuablecontributions to the current ParaScope implementation. We are indebted to the Pfc, IRn, and ParaScoperesearch groups past and present for providing the software infrastructure upon which Ped is built. Thee�orts of all these people have made Ped the useful research tool it is today.References[1] F. Allen, M. Burke, P. Charles, R. Cytron, and J. Ferrante. An overview of the PTRAN analysis systemfor multiprocessing. In Proceedings of the First International Conference on Supercomputing. Springer-Verlag,Athens, Greece, June 1987.[2] F. Allen and J. Cocke. A catalogue of optimizing transformations. In J. Rustin, editor, Design and Optimizationof Compilers. Prentice-Hall, 1972.[3] J. R. Allen and K. Kennedy. Automatic translation of Fortran programs to vector form. ACM Transactions onProgramming Languages and Systems, 9(4):491{542, October 1987.[4] B. Alpern, M. Wegman, and K. Zadeck. Detecting equality of variables in programs. In Proceedings of theFifteenth Annual ACM Symposium on the Principles of Programming Languages, San Diego, CA, January1988.[5] Applied Parallel Research, Placerville, CA. Forge 90 Distributed Memory Parallelizer: User's Guide, version8.0 edition, 1992.[6] V. Balasundaram, K. Kennedy, U. Kremer, K. S. McKinley, and J. Subhlok. The ParaScope Editor: Aninteractive parallel programming tool. In Proceedings of Supercomputing '89, Reno, NV, November 1989.[7] U. Banerjee. Unimodular transformations of double loops. In Advances in Languages and Compilers for ParallelComputing, Irvine, CA, August 1990. The MIT Press.[8] M. Burke. An interval-based approach to exhaustive and incremental interprocedural data-
ow analysis. ACMTransactions on Programming Languages and Systems, 12(3):341{395, July 1990.[9] M. Burke and L. Torczon. Interprocedural optimization: Eliminating unnecessary recompilation. ACM Trans-actions on Programming Languages and Systems, to appear 1993.[10] D. Callahan, S. Carr, and K. Kennedy. Improving register allocation for subscripted variables. In Proceedingsof the SIGPLAN '90 Conference on Program Language Design and Implementation, White Plains, NY, June1990.[11] D. Callahan, J. Cocke, and K. Kennedy. Estimating interlock and improving balance for pipelined machines.Journal of Parallel and Distributed Computing, 5(4):334{358, August 1988. Page 24

[12] D. Callahan, K. Cooper, K. Kennedy, and L. Torczon. Interprocedural constant propagation. In Proceedings ofthe SIGPLAN '86 Symposium on Compiler Construction, Palo Alto, CA, June 1986.[13] D. Callahan, K. Kennedy, and J. Subhlok. Analysis of event synchronization in a parallel programming tool.In Proceedings of the Second ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,Seattle, WA, March 1990.[14] S. Carr, K. Kennedy, K. S. McKinley, and C. Tseng. Compiler optimizations for improving data locality.Technical Report TR92-195, Dept. of Computer Science, Rice University, November 1992.[15] D. Chen, H. Su, and P. Yew. The impact of synchronization and granularity on parallel systems. In Proceedingsof the 17th International Symposium on Computer Architecture, Seattle, WA, May 1990.[16] K. Cooper, M. W. Hall, R. T. Hood, K. Kennedy, K. S. McKinley, J. M. Mellor-Crummey, L. Torczon, andS. K. Warren. The ParaScope parallel programming environment. Proceedings of the IEEE, To appear 1993.[17] K. Cooper, K. Kennedy, and L. Torczon. The impact of interprocedural analysis and optimization in the IRnprogramming environment. ACM Transactions on Programming Languages and Systems, 8(4):491{523, October1986.[18] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. E�ciently computing static single assignmentform and the control dependence graph. ACM Transactions on Programming Languages and Systems, 13(4):451{490, October 1991.[19] J. Ferrante, K. Ottenstein, and J. Warren. The program dependence graph and its use in optimization. ACMTransactions on Programming Languages and Systems, 9(3):319{349, July 1987.[20] G. Go�, K. Kennedy, and C. Tseng. Practical dependence testing. In Proceedings of the SIGPLAN '91Conference on Program Language Design and Implementation, Toronto, Canada, June 1991.[21] V. Guarna, D. Gannon, Y. Gaur, and D. Jablonowski. Faust: An environment for programmingparallel scienti�capplications. In Proceedings of Supercomputing '88, Orlando, FL, November 1988.[22] M. Haghighat and C. Polychronopoulos. Symbolic dependence analysis for high-performance parallelizing com-pilers. In Advances in Languages and Compilers for Parallel Computing, Irvine, CA, August 1990. The MITPress.[23] M. W. Hall, T. Harvey, K. Kennedy, N. McIntosh, K. S. McKinley, J. D. Oldham, M. Paleczny, and G. Roth.Experiences using the ParaScope Editor. In Proceedings of the Fourth ACM SIGPLAN Symposium on Principlesand Practice of Parallel Programming, San Diego, CA, May 1993.[24] P. Havlak and K. Kennedy. An implementation of interprocedural bounded regular section analysis. IEEETransactions on Parallel and Distributed Systems, 2(3):350{360, July 1991.[25] L. Henderson, R. Hiromoto, O. Lubeck, and M. Simmons. On the use of diagnostic dependency-analysis toolsin parallel programming: Experiences using PTOOL. The Journal of Supercomputing, 4:83{96, 1990.[26] S. Hiranandani, K. Kennedy, and C. Tseng. Compiling Fortran D for MIMD distributed-memory machines.Communications of the ACM, 35(8):66{80, August 1992.[27] R. Hood, K. Kennedy, and J. Mellor-Crummey. Parallel program debugging with on-the-
y anomaly detection.In Proceedings of Supercomputing '90, New York, NY, November 1990.[28] F. Irigoin, P. Jouvelot, and R. Triolet. Semantical interprocedural parallelization: An overview of the PIPSproject. In Proceedings of the 1991 ACM International Conference on Supercomputing, Cologne, Germany, June1991.[29] F. Irigoin and R. Triolet. Supernode partitioning. In Proceedings of the Fifteenth Annual ACM Symposium onthe Principles of Programming Languages, San Diego, CA, January 1988.[30] K. Kennedy and K. S. McKinley. Loop distribution with arbitrary control
ow. In Proceedings of SupercomputingPage 25

'90, New York, NY, November 1990.[31] K. Kennedy and K. S. McKinley. Maximizing loop parallelism and improving data locality via loop fusion anddistribution. Technical Report TR92-189, Dept. of Computer Science, Rice University, August 1992.[32] K. Kennedy, K. S. McKinley, and C. Tseng. Interactive parallel programming using the ParaScope Editor.IEEE Transactions on Parallel and Distributed Systems, 2(3):329{341, July 1991.[33] U. Kremer, H. Zima, H.-J. Bast, and M. Gerndt. Advanced tools and techniques for automatic parallelization.Parallel Computing, 7:387{393, 1988.[34] D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. J. Wolfe. Dependence graphs and compiler optimizations.In Conference Record of the Eighth Annual ACM Symposium on the Principles of Programming Languages,Williamsburg, VA, January 1981.[35] B. Leasure, editor. PCF Fortran: Language De�nition, version 3.1. The Parallel Computing Forum, Champaign,IL, August 1990.[36] D. Loveman. Program improvement by source-to-source transformations. Journal of the ACM, 17(2):121{145,January 1977.[37] K. S. McKinley. Automatic and Interactive Parallelization. PhD thesis, Rice University, April 1992.[38] C. Polychronopoulos, M. Girkar, M. Haghighat, C. Lee, B. Leung, and D. Schouten. The structure of Parafrase-2: An advanced parallelizing compiler for C and Fortran. In D. Gelernter, A. Nicolau, and D. Padua, editors,Languages and Compilers for Parallel Computing. The MIT Press, 1990.[39] W. Pugh and D. Wonnacott. Eliminating false data dependences using the Omega test. In Proceedings of theSIGPLAN '92 Conference on Program Language Design and Implementation, San Francisco, CA, June 1992.[40] C. Rosene. Incremental Dependence Analysis. PhD thesis, Rice University, March 1990.[41] B. Ryder and M. Paull. Incremental data
ow analysis algorithms. ACM Transactions on ProgrammingLanguages and Systems, 10(1):1{50, January 1988.[42] V. Sarkar and R. Thekkath. A general framework for interation-reordering loop transformations (technicalsummary). In Proceedings of the SIGPLAN '92 Conference on Program Language Design and Implementation,San Francisco, CA, June 1992.[43] B. Shei and D. Gannon. SIGMACS: A programmable programming environment. In Advances in Languagesand Compilers for Parallel Computing, Irvine, CA, August 1990. The MIT Press.[44] J. Singh and J. Hennessy. An empirical investigation of the e�ectiveness of and limitations of automaticparallelization. In Proceedings of the International Symposium on Shared Memory Multiprocessors, Tokyo,Japan, April 1991.[45] K. Smith and W. Appelbe. PAT - an interactive Fortran parallelizing assistant tool. In Proceedings of the 1988International Conference on Parallel Processing, St. Charles, IL, August 1988.[46] K. Smith, W. Appelbe, and K. Stirewalt. Incremental dependence analysis for interactive parallelization. InProceedings of the 1990 ACM International Conference on Supercomputing, Amsterdam, The Netherlands, June1990.[47] M. E. Wolf and M. Lam. A loop transformation theory and an algorithm to maximize parallelism. IEEETransactions on Parallel and Distributed Systems, 2(4):452{471, October 1991.[48] M. J. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press, Cambridge, MA, 1989.[49] M. J. Wolfe. The Tiny loop restructuring research tool. In Proceedings of the 1991 International Conferenceon Parallel Processing, St. Charles, IL, August 1991.[50] H. Zima, H.-J. Bast, and M. Gerndt. SUPERB: A tool for semi-automaticMIMD/SIMD parallelization. ParallelComputing, 6:1{18, 1988. Page 26

