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Abstract

Linda is a coordination language designed to support
process creation and inter-process communication within
conventional computational languages. Although the Linda
paradigm touts architectural and language independence, it
often suffers performance penalties, particularly on local
area network platforms. Instructional Footprinting is an
optimization technique with the primary goal of enhancing
the execution speed of Linda programs. The two main
aspects  of Instructional Footprinting are instructional
decomposition and code motion. This paper addresses the
semantic issues encountered when the Linda primitives, IN
and RD, are decomposed and moved past other Linda
operations. Formal semantics are given as well as results
showing significant speedup (as high as 64%) when
Instructional Footprinting is used.

1. Introduction and Motivation

Parallel programming languages typically provide two process oriented activities -
computation and coordination. Historically, paralle] programming languages have been
architectural and language specific. Concomitantly, equivalent process coordination
primitives are not always available in such languages, and are definitely not the same on
different machines. Linda [CARRI89b], on the other hand, does not suffer the
architectural and language limitations of its predecessors. More specifically, Linda itself is
a coordination language [CARRIS9b, GELERY2 and ZENIT90] rather than a
conventional paralle! programming language. This means that the semantics of Linda

primarily address process creation and communication.

Additionally, Linda is not tied to any particular computational language; it can be (and has
been) introduced into many different base languages to provide parallel programming



capabilities. In particular, Linda has been embedded in a wide variety of languages
including C++, Fortran, various Lisps, PostScript, Joyce, Modula-2, and Ada
[BORRMS88, CARRI90 and GELER90]. Not only is Linda language independent, it is
also architecturally independent. Currently, many different architecture platforms are
hosts for Linda [ARTHU91], including workstations such as Sun, DEC, Apple Mac II and
Commodore AMIGA 3000UX, as well as a network of DEC VAX machines. In addition,
Linda has also been ported to many parallel machines like the Sequent, S/Net and the
Hypercube [BJORN89a, BJORNS9b, CARRIS6a, CARRI86b, CARRI87 and
LUCCO086], including a machine directly supporting the Linda paradigm [KRISH87 and
KRISHS8].

Tuples and Tuple Space (TS) are the basis for process creation and communication in
Linda. TS is an associative, process shared repository of information used to store data
and process specifications [CARRIS7, CARRI89a, GEILLER85a and GELER85b]. By
virtue of being associative, multiple copies of identical tuples can co-exist in TS. Retrieval
of such tuples is based upon the matching of types and values of tuple fields. Tuples are
placed in TS with the Linda primitive OUT, are removed from TS with the IN operation,
and copied with the RD. Processes are created and placed in TS with the EVAL primitive.
The IN and the RD are blocking operations, and as such, will cause the requesting process
to wait until matching tuples are found in TS. Linda also provides two non-blocking
versions of the IN and the RD, called INP and RDP. These predicate versions return a

status indicating whether a matching tuple is found, and if so, the tuple value(s) also.

The implementation of Linda (and in panicular the Tuple Space component) may vary
from machine to machine. Some systems have implemented TS in shared memory with
each Linda process performing its own operations on TS. Other implementations utilize a
separate process in order to manage TS [CARRI87 and SCHUMGO1] -- this is particularly
true of network implementations of Linda [CARRI87, SCHUMO1 and WHITESS].

Several implementations of Linda, on both shared and distributed memory parallel
(MIMD) machines, have shown good performances [BJORNSS, BJORNS89 and
CARRI8B7]. Nonetheless, performance often suffers on full-scale local area network
configurations. The primary goal of the research described in this paper is to provide
Linda systems (and particularly those implemented on network platforms) with the means
of producing programs with acceptable, and often enhanced performance.




In support of enhanced performance, Instructional Footprinting [LANDR92] is introduced
as an optimization technique with the goal of speeding up the execution of Linda
programs. When applied to Linda programs, the optimization attempts to overlap (or
parallelize) the norma computation of Linda programs with attendant processing
associated with the TS manager (a separate process). This is achieved by initiating any IN
or RD primitive earlier in the code and then receiving the returned tuple right before it is
" needed. The span of code between the carly initiation of an IN/RD and the delayed receipt
of the returned tuple is called the footprint of the instruction. An important part of
footprinting in Linda is the instructional decomposition of the IN and RD primitives. For
the purpose of footprinting, these primitives are decomposed into INIT and RECV
operations to initiate a non-blocking request for a tuple and then to receive the returned
tuple values, respectively. The following example illustrates how an IN is transformed

into its two component operations,

IN("Matrix", i, J, 2element) =s===c= INIT( "Matrix", i, s 2element)
RECV("Matrix", i, j, 2element)

The optimization goal then is to move the INTT instruction backward in the code SO as to
initiate the IN as early as possible. The RECY instruction is then moved Jorward in the
code so that the (blocking) request for the tuple (and its values) is made as late as
possible. This achieves maximal paralle] activity between the TS manager and a Linda
process.

The problem one faces when moving INIT and RECV instructions around in program
code, however, is the ability (or inability) to preserve program semantics. There are two
aspects to this problem:

1) The impact of moving INIT/RECV instructions past computational code, and
2) The impact of moving INIT/RECV instructions past Linda operations.

The first impact deals with the contlict of the read and write sets associated with program
statements. To a certain extent, Berstein's conditions [MAEKAS87] enable us to address
this issue. Even so, pointers, function calls, and £o10s, continue to complicate matters. A
closer examination of this problem can be found in [LANDR92]. This paper, however,
focuses on the second aspect of code motion, i.e., the effect of moving INIT/RECV

instructions past other Linda operations.




In [LANDR92], one of the example programs that is optimized is a Linda program that
solves the dining philosophers problem. Figure 1 shows the main code that a philosopher

process executes.

while (ProcessCycles > o) {
think(};
IN{"Rocm Ticket");
IN("Chopstick"”, Phil ID);
IN("Chopstick", Phil ID % Num_Phil};
eat();
OUT{ "Cheopstick", Phil ID);
OUT( "Chopstick", Phil ID % Num Phil);
OUT( "Room Ticket");
--ProcessCycles;

Figure 1. CmmﬂmnmeUmﬁpmwmnmwmgmemm@pmbwmwmpmNmn

In this program, three TNs are performed in order to gain access to the table and to allow
a philosopher to eat. The optimized (and instructionally decomposed) version of this code

segment is show below in Figure 2.

while (ProcessCycles > 0y {
INITiyx("Room Ticket");
INITyy{"Chopstick”, Phil 1ID);
INITry("Chopstick”, Phil ID % Num Phil);
think();
RECVIyn("Room Ticket"};
RECVyy( "Chopstick”, Phil ID);
RECVIyN("Chopstick", Phil ID % Num_ Phil);
eat();
OUT( "Chopstick", Phil_ID);
OUT("Chopstick”, Phil 1D % Num Phil);
OUT("Room Ticket");
--ProcessCycles;

Figure 2. OmmhaﬂmMapmmmnmwmgmedmmgmMMmmmspmMHn



In Figure 1, each IN, acting as a semaphore, is initiated ope right after another before the
think() routine s called. Effectively, there is an implied sequence of operations
associated with and amon § each of the IN primitives. For each IN, a request for a tuple is
first made, with the Linda process blocking until the tuple is returned. This Sequential
nature is violated when INTTs for INs (and RDs) are pushed past non-corresponding
RECVs. The problem ig that the TS manager does not guarantee that requests will be
satisfied (and hence returned) in the same order requested. Suppose for example that the
first INIT for the "Room Ticket" fails to find a matching tuple in Tuple Space. The
request is shelved unti] potentially matching tuples arrive, Because an INTT does not
block, the next ITNTT is processed, and if g matching tuple is found, the requested tuple is
sent back to the Lindy process before the first request for a tuple is satisfied. The
requesting Linda process eventually blocks on the first RECV which is for the "Room
Ticket". In this example, because there is no actual data being returned ip the three tuples,
and because Linda primitives are stjj] serviced in order of thejr request in our

implementation of the TS manager, the program still works properly.

Although the dining  philosophers program described above does work, other
implementations of Linda using Instructiona] Footprinting on IN and Rrp primitives that
return data can, and will, cause the semantics of the associated Linda program to be
changed. The issue at hand, however, ig broader than Just whether an TNTT Operation can
Cross over a RECV operation (or vice versa) in order to maximize the footprint of an TN
Or a RD. The question that should be asked is when ¢an an INIT or RECV Operation
Cross over any Linda operation without changing the intended semantics of the original
program.

Recall that the goal of Instructional Footprinting is to speedup Linda programs. Thjs
speedup, however, must Not come at the expense of sacrificing program semantics. So,
why not simply disallow TNTIT and RECV operations from Crossing over any Linda
operation (or at least other INITs and RECVS)?  As it turns out, when INITs are
executed one right after another (as opposed to alternating INITs and RECVs) significant
speedup can be achieved. The primary reason is implementation specific, and is directly
related to the buffering mechanisms of sockets (many distributed Systems implementing
Linda use sockets for communication) [SCHUM91}, and secondarily to the reduced
blocking time of RECys. In our experiments, Speedups as high as 64% have been
experienced when footprinting a series of Ty operations results in the grouping together
of the INITs and RECVs, Therefore, it is to our advantage to determine under what



conditions one can push INTTs and RECVs over other Linda primitives (or possibly, their
decomposed counterparts) and exploit the benefits of maximizing the distance between
INIT and RECV pairs,

The remainder of this paper is organized into 5 sections, each expanding on various
aspects of the above premise. The next section formally describes the semantics of the
INIT and RECV operations based upon the TS formalization work of Jensen [JENSEY0].
Section 3 describes reasons why INITs and RECVs cannot be naively moved past certain
Linda operations and presents when it is safe to do so. Section 4 defines Tuple
Sequencing and Tuple Identification, and describes their use in preserving program
semantics. Resultant speedups of several programs are shown in Section 5 followed by

conclusions in Section 6.

2. The Semantics of INTT and RECV

In order to accurately and precisely discuss the movement of INITs and RECVs past
other Linda operations we must tirst provide a formal semantic definition describing their
behavior. We base our definitions on earlier work by Jensen [JENSE90], where he

formally characterizes Tuple Space and the Linda primitives that operate on it.

Before giving a formal definition of INIT and RECV, however, it is first appropriate to
examine the operations informally and within a framework simplifying the Tuple Space
(TS) model. Assuming that there is a single TS where all regular Linda primitives operate,
let us define a complimentary tuple space (TS0) for the purpose of explaining the
semantics of INITs and RECVs. To the Linda programmer, only TS exists. For the
purpose of illustration, however, when INs and RDs are transformed into their component
INIT and RECV operations, TS0 is needed to describe their operation.



TS

B ( "Data, 5 )

( "Datz—l", 5 )_

[(EOT

: T
INITINE( "Data", 27 ) —® EVAL(E("Data", 2J) )
. RE Oy INCi)
RECVINi( Data", 23 ) IN( "Data", 21 ) ——oI
Fi ()
{
INyg( "Data”, ?value );
OUTtg0( "Data", Value );
RETURN 1i;
}

Figure 3. Description of INTT and RECY oOperations for an TN,

Figure 3 shows an example of how the INIT and RECV for an TN are implemented with
the use of TSO. The INIT behaves like an EVAL, while the RECV is perceived as two IN
operations. The function being EVALed, Fj (), has the task of INing a tuple from TS
(using the same tuple template) and then OUTing it to TSO. For example, in Figure 3 the
tuple ("Data",5) is found in TS and then OUTed to TSO by Fi (). By virtue of
returning i, a second tuple is also placed in TSO by Fj () and has as its contents the

unique designator value associated with i.

The RECV operation is implemented as a series of two IN operations performed on TS0.
The first IN retrieves the uniquely valued data tuple and the second IN removes the
resultant tuple produced by the EVAL. In our example, the RECV operation first performs
an IN(1) to retrieve the synchronizing data tuple, and thereby forcing it to block until



the corresponding INTIT has been completed. This is followed by an IN( "Data", 2J)
to retrieve the data tuple (in this case ( "Data" ¢5)).

Implementing TNTTS

and RECVs in terms of other Linda operations allows us to define

their semantics using existing formalization machinery aiready in place. The foliowing
definitions provide a formal description of the ITNIT and the RECV for IN and RD
operations based on Jensen's work and our "modified" view of Tuple Space.

DEFINITIONS
INITy

p IMTin[ST'} p.r
TSU{tf[p]} INTTin( ST TSU{tr[pf]}
TS o foﬂngSi:: TS 0 U {t H}

When a process state transition from P to P' occurs, Tuple Space (which is
TS unioned with the live tuple t' containing process state P) is transformed
into a new Tuple Space consisting of TS unioned with the live tuple t' with
the new process state P'. In addition, the live tuple t" is added to TS0,

INIT,

p ]NTTrd!ST,'_p pl
TSU {t ![p:[} INIT-a( 5i TSU{tf[p!]}

TSU fMﬂ—d;St TSU U{tlrr}

When a process state transition from P to P' occurs, Tuple Space (which is
TS unioned with the live tuple t' containing process state P) is transformed
into a new Tuple Space consisting of TS unioned with the live tuple t' with
the new process state P'. In addition, the live tuple i" is added to TS0,

RECVry /RECV,,

RECV! Si} I,
2 RECVTS £ matchrsi(si, t)
TSU{tp —88US L1y {t'[p'}

TSoU{rp Ui} —8EVE g,

TSO.

When a process state transition from P to P' occurs, Tuple Space (which is
TS unioned with the live tuple t' containing process state P) is transformed

into a new Tuple Space consisting of TS unioned with the live tuple t' with
the new process st

ate P'. In addition, two tuples, t and i, are removed from




where
S denotes a tuple template,
p denotes a processing environment,
t denotes a tuple,
t{p] denotes the process environment p executing within the active tuple t,
t"is an active tuple whose jobis to perform an IN(S;) from TS, place the a new
tuple in TS0, and then terminate leaving tuple { i } in TS0, and
t" is the same as " but it RDs from TS instead of INs.

The INs, RDs, and OUTs associated with t" and ¢" (i.e. the function Fj ()) have slightly
different semantics than found in [JENSE90], but only in that they are dealing with both
TS and TSO rather than TS alone,

3. Code Motion and Linda Operations

Given the formalization of INIT and RECV operations in Section 2, it is now possible to
better describe the code motiop of INITs and RECVs relative to the preservation of
program semantics. In this section we first present two examples of code motion that
Cause program semantics to be altered, followed by a description of a bifurcated
classification scheme for these semantic violations. We also presents a discussion of the
cases in which it is safe to perform code motion.

Example 1

Moving an INITy up past a RECV;y of a different Lindg operation can alter program
semantics by potentially allowing multiple access to critical regions delineated by other
Linda operations. The following example illustrates this potential problem,

[ :
"spawn task 1 to update "spawn task 1 to update
current checking balanee” current checking balance"
IN("Task 1") INIT("Task 1")
IN("Checking", ?bal) ====> INIT("Checking", ?bal)
: RECV("Task 1")

: RECV("Checking", ?bal)




In the unoptimized code above, suppose that a "checking balance” tuple has previously
been OUTed and that a task (task 1) has been spawned to update it before the current
program segment accesses it. Without any optimization, the current program segment will
wait for task 1 to finish by performing an IN("Task 1"). Effectively, the first TN will
block until a matching tuple is found, meaning that Task 1 has finished. The second IN
will then remove the "checking balance" tuple from TS. Recall that in Instructional
Footprinting, INITs behave like EVALs and can be setviced in any order. In the
optimized code, if the INTT for the "checking balance" tuple is satisfied before the TNTT
for the "Task 1" tuple then it is possible for the "checking balance" tuple to be taken out of
TS before the new value is placed in it (assuming task 1 is not finished and has not written
an updated checking balance tuple). The reason Program semantics are altered is because
the second IN (in the unoptimized code segment) operates under the assumption that the
first TN has completed, meaning Task 1 js complete. However, this assumption is violated
in the optimized version because the INTT requesting check balance data has been moved
up past the intended synchronizing RECV for task 1 completion. In effect, the second TN
in the unoptimized version has the potential for bej ng serviced before the first TN,

Examg]e 2

Suppose Instructional Footprinting allows us to move a RECVgy down past an OUT. [t
turns out that performing this move can also alter program semantics also. The following
example shows that, when optimized, a RD request can be satisfied by an ouT operation

that would otherwise (in an unoptimized scenario) be impossible,

RD("Data", 7x) INIT("Data", 2x)
oUT("Data’, y) ========> OUT("Data", y)
RECV("Data", ?x)

If the code above is not optimized, then the RD will block if there are no "Data" tuples in
TS. It is impossible for the RD to be satistied by the ouT following it. However, such is
not the case when the code s optimized. In the optimized code segment, suppose that
when the INIT is executed there are no "Data" tuples in TS, in which case, the service is
delayed. The next TS operation then performed is the oy which does place a "Data"
tuple in TS. Once this happens, the INTT request that was delayed can and wil] be

satisfied. Clearly, such is 5ot the intent of the original unoptimized code segment,

10




Both of the above examples have one aspect in common - 3 femporal influence hag
inadvertently provided the potential for program semantics to change. In patticular,
program semantics can change because lexically prior code that should finish execution
before successor code s cncountered does not finish (as in Example 1), or because the
execution of successor code jg started before prior code has completed execution (as in
Example 2).

Code motion of an instruction can be viewed as performing a series two instruction swaps,
thereby, propagating an instruction up or down in a program. Consider, for example, a
code segment containing instructions A and B where A Immediately precedes B
lexicographically. In normal execution, instruction A would initiate, execute, and then
finish before instruction B is reached. Initiating instruction B before A can potentially
modity the process state that instruction A js expecting and therefore alter the operational
effects of A. Similarly, the effect of instruction A can be altered by delaying A's
completion until after instruction B starts executing, If the operation of instruction A is
affected, the code motion performed is said to have an Anzerior Impact on program

semantics because instructjon A is temporally anterior with respect to the two instructions,

It is also possible for instruction B to be oOperationally affected by the same two types of
code motion, that is, initiating instruction B before A or allowing B to start executing
before instruction A is finished. The process state that instruction B expects is one in
which instruction A has completed exccuting, Therefore, the effects of instruction B can
change if the process state that is expected by B is different because instruction A has not
completed execution. Therefore, if instruction B is affected, the code motion performed
has had a Posterior Impact on program semantics because instruction B is temporaily
posterior with respect to the WO instructions,

For further discussion, it is important to examine the components of code motion in terms
of moving INITs and RECVs. Each movement involves two component instructions - a
primary and a secondary component. The primary component is the instruction being
moved (i.e. the INIT in the first example and the RECV in the second), and the secondary
Component is the instruction being moved over (the "other" Linda operation). In Figures
4a and 4b, the two instructions being moved, the INTT and the RECV, respectively, are

the primary components,

11



(some linda operation) RECV( ..... )
INIT( ..... ) (some linda operation)
RECV(..... )
(a) (b)

Figure 4. The code motion basics of TNTTs and RECVs,

As Figure 4 shows, there are only two types of code motion being considered. The first
type (4a) is moving an INIT up past some Linda operation and the second type (4b) is
moving a RECV down past some Linda operation. The Linda operation (also called the
secondary component instruction} can be an INIT1y, INITRp, RECVyy, RECVgyp,
OUT, EVAL, INP, or a RDP.

The following example using an IN (a RD can be used just as well) shows unoptimized
code on the [eft, instructionally decomposed code in the middle, and optimized code on
the right. '

(Some Linda op) (Some Linda Op) INITTN( cven. )
IN(..... ) m====> INITiy(..... ) =====> (Some Linda Op)
’ RECVry(ee..., ) RECVN(.0un. )

In the unoptimized code, the IN contains the primary component instruction (the INIT)
and the Linda op is the secondary component instruction. If the code is optimized by
performing the INIT for the IN before the Linda Op, an anterior impact can occur if the
operation of the Linda op is affected. Likewise, a posterior impact can occur if the IN is

semantically altered because of the code motion.

Both anterior and posterior impacts can also occur when a RECV is moved down past a
Linda operation. The example below using an RD shows unoptimized, instructionally

decomposed, and optimized code respectively.

INITRp(vew-.. ) INITRp (s )
RD(..... ) =====> RECVpp(..... ) =mm== (Some Linda Op)
(Scme Linda Op) (Some Linda op) RECVpp(..... )

12



In this case, the RD containg the primary component instruction (the RECV) and the Linda
Op is the secondary component instruction. An anterior impact can occur when the
operation of the RD is affected. If the Linda op has its operationally affected then a

posterior impact has occurred.

An example of an posterior effect oceurring is when an INIT for a RD is moved above
both the INIT and RECV for an IN. The following example shows the posterior effect.

IN("Some Tuple") INITRp( "Some Tuple")
RD("Some Tuple") Som====> INITTy("Some Tuple")
RECVyn("Some Tuple")
RECVpn( "Some Tuple")

If there is only one matching tuple in Tuple Space (TS) then the original code will block
on the RD because the IN removed the tuple from TS. In the optimized code, the
INITRp removes the matching tuple intended for the IN (i.e. the INITy/RECV TN
pair). This results in the RD being adversely affected by a previous instruction that did not

execute but should have.

An example of a anterior effect happens when a RECV for an TN is moved past an OUT

operation. The following example shows the anterior effect.

IN("Some Tuple") INIT1n("Some Tuple")
OUT("Some Tuple") ======> OUT( "Some Tuple")
RECVyy("Some Tuple")

In the unoptimized code, if there are no matching tuples in TS when the IN is executed
then the IN will block. However, in the optimized code the ouT places a matching tuple
in TS that will satisfy the INTITyy. This results in the IN being adversely affected by an

instruction (supposedly) yet to be executed.

Although it turns out that most movements of INIT and RECV operations across Linda
operations can potentially alter program semantics, there are three situations where it is
. safe. Interestingly enough, 2 of the 3 cases involve moving INITs (for both TNs and
RDs) up past EVAL operations.

13



Why is moving and INIT up past an EVAL so different than other movements that it has
no effect on program semantics? Part of the answer lies in the fact that the impact of an
EVAL, by definition, is not time contrained. Recall, all that is guaranteed by an EVAL
operation is that it will create a process tuple in tuple space; it does not guarantee when it

will execute, and thereby, create a data tuple. Consider the following example,

INITyn("Data”, 2x)
EVAL("Data", F()) s=====> EVAL("Data", F())
IN("Data", 2x) RECVIn("Data”, 2x)

In the unoptimized version above, the EVAL produces a live tuple in TS that consists of
two fields - "Data" and a process evaluating function F(). Control returns to the IN
operation as soon as the live tuple is placed in TS (i.e. it does not wait for the process
evaluating F( ) to finish).

If the code is optimized by executing the INTT before the EVAL, program semantics are
not altered because the EVAL is non blocking. In other words, it is not guaranteed that
the EVAL will finish processing before the IN is executed. In fact, it is not even
guaranteed that the process created by the EVAL will be started before the IN is reached.
Therefore, executing the INTI'T for the IN before the EVAL is consistent with original

program semantics.

The third safe movement involves moving an INIT for a RD up past a RDP operation.
The reasoning involved in considering this movement as safe stem from the systematic

elimination of the three possibilities that can alter program semantics, i.e.

1) The alteration of TS,
2) The detection of tuple presence in TS, and
3) The blocking nature of certain Linda operations.

Effectively, when trying to determine if a movement does or does not alter program

semantics, it is necessary and sufficient to explore these three possibilities. In the case of
moving an INITyp, up past a RDP, the following questions are asked:

14




1) Is TS altered by either operation?
2) Is the detection of tuple presence affected?

3) Is unnecessary blocking(or a lack thereof) causing an adverse effect?

These questions must be asked from the point of view of both the RD and the RDP. As it
turns out, the initiation of a RD does not alter TS, does not block, and therefore does not
affect the detection of tuple presence in TS for other operations. In addition, the RD is not
effected by not previously executing the RDP because the RDP does not affect TS, does
not block and therefore does not affect the detection of tuple presence in TS for other
operations.

The following table summarizes which INITs and RECVs for INs and RDs can be safely
moved past other Linda operations. For example, the first entry in the last row is a NO,
which indicates that a RECVy, cannot be moved down past an INITyy without possibly
altering program semantics. We can also view the same scenario as moving an INITyy
up pas a RECVgp. [ts corresponding entry in the table also indicates such a move can

have an adverse impact on program semantics.

INIT;y RECVy, INIT,  RECV,,  OUT EVAL INP RDP

INIT,, NO NO NO NO NO YES NO NO
RECV | WO NO NO NO NO NO NO NO
INIT,,|  NO NO NO NO NO YES NO YES
RECV,,| WO NO NO NO NO NO NO NO

Figure 5. Summary of acceptable INIT/RECV movements.

4. Tuple Sequencing and Tuple Identification

The table in Figure 5 paints a fairly bleak picture about the prospects of code motion as it
relates to the movement of INITs and RECVs across Linda operations. In fact only 9%
(3 out of 32) of the possible movements are safe. Is there a way to increase this
percentage without sacrificing program semantics and still achieve speedup? The answer

is a qualified - yes.

15



Recall that the motivation behind moving INITs and RECVs across Linda operations is to
gain significant speedups by maximizing the footprint size. In our implementation of
Linda - a distributed system using a separate process as a TS manager which employs
sockets as the communication mechanism, it is possible to increase the percentage of safe
movements from 9% to 75% through Tuple Sequencing and Tuple Identification. Tuple
Sequencing is a technique which ensures that Linda operations in a particular process are
executed (and completed) in the order they are sent to TS. Tuple Identification ensures
returned tuples are matched up with the correct RECVs. The following table summarizes

which movements are safe if Tuple Sequencing and Tuple Identification are used.

INIT;y RECV;y INIT,, RECVy,, OUT EVAL INP RDP

INIT NO YES NO YES NO YES NO NO
RECVy,|  YES YES YES YES YES YES YES YES
INIT,, NO YES NO YES NO YES NO YES
RECV,,|  YES YES YES YES YES YES YES YES

Figure 6. Summary of code motion using Tuple Sequencing and Tuple Identification

To illustrate the impact of Tuple Sequencing and Tuple Identification, it is helpful to
analyze which cases of code motion are now safe to perform and which ones are still
unsafe. It is also important to recognize that the basic problem encountered with both
anterior and posterior temporal influences is that the order of operations explicitly laid out
by the programmer in the unoptimized code is violated by the optimized code, which in
tumn, causes program semantics to be altered. Notice that in all cases where a NO (in
Figure 5) is not changed to a YES (in Figure 6) involves moving an INIT. In all other
cases it is changed to a YES because Tuple Sequencing and Tuple Identification enables
us to guarantee that the original order of operations (or at least the original order of

initiation) is preserved. For example, consider the following code.

IN("Task 1") INIT("Task 1")

IN("Task 1", "Checking”, ?bal) ==== INIT("Task 1", "Checking", ?bal)
RECV("Task 1", "Checking”, ?bal)
RECV("Task 1™")

16




Moving one RECVyy down past another RECVy is "safe" when Tuple Sequencing and
Tuple Identification is employed because the original order of the INTTs has not changed.
That is, Tuple Sequencing and Tuple Identification guarantee that INIT("Task 1"y will
be serviced before INIT("Task 1","Checking",?bal) - as it should be. Whereas
moving an INITpy up past another INITy is not safe because the original order of the
INITs is altered.

The way in which Tuple Sequencing helps is that when multiple Linda requests are made
to the TS manager from the same process, the requests are serviced one at a time and in
order that they are received by the TS manager. This means that if two INITs are sent to
the TS manager from the same process, the second INIT is not processed until the first
INIT finds a matching tuple. This ensures the original, intended order of Linda
operations is maintained while still realizing substantial speedups by allowing the RECVs
to be moved maximally downward. Two INITs from separate processes need not be

considered because ordering is not implied by asynchronous processes.

Tuple Identification allows tuples returned to a process to be tagged with a unique
identifier to indicate for which RECV it is intended. This is necessary because if Tuple
Sequencing is used in the code segment above, the first tuple being sent back must reflect
that it is intended for the second RECV executed and not the first one. Moreover, when
Tuple Identification is employed, not only must each tuple be uniquely tagged but
provisions must be made for returned tuples to be stored (most likely on the process side)
in the event the returned tuple is not the one currently being requested (RECVed).

5. Results

In order to show the effectiveness of Instructional Footprinting, three programs were
executed with and without Instructional Footprint optimization. Tuple Sequencing and
Tuple Identification were used, as needed, to preserve program semantics. The three
programs are the dining philosophers problem, a distributed banking simulation, and a
raytrace program. In all three cases, the reason for our observed speedup is because
INITs and RECVs cross over other Linda operations. We also not that in each case, our
footprinting algorithm groups several INITs together which apprears to have an
additional positive impact on speedup. The reason why grouping INITs together for
execution causes (sometimes dramatic) program speedup may be one of several reasons.

Recall that these Linda programs are being executed on a network platform with TS
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implemented as a separate process using sockets for communication. We hypothesize that
total speedup is due to ( 1) exploiting socket butfering parameters by executing several
INITs together , and (2) reducing the blocking time of each RECV by maximizing the
distance (of the footprint) between each RECV and its respective INIT in the program

execution profile.

Dining Philesophers Problem _

The dining philosophers is a classic problem used to illustrate the expressiveness (or lack
thereof) of a programming language. Although the dining philosophers problem does not
represent a typical "real world" problem in terms of utility, it is used for two reasons:

1) the solutions are generally known to most researchers, and
2) the programming structures and techniques used are common to solutions
of real world problems.

This particular solution spawns (using the EVAL) N philosopher processes, each of which
executes M life cycles where g life cycle is thinking, sitting down at the table, eating, and
then getting up from the table, Each life cycle requires three IN operations (one room
ticket! and two chopsticks) to be performed before the philosopher can eat, and then three
OUTs (putting the INed tuples back into TS) to be executed after the philosopher is
finished eating.

The code is optimized by taking the three IN operations and performing their INITs in
immediate succession followed by their three RECVs. The following graph provides a
comparison of the execution times for various runs of the original solution to those of
their corresponding optimized versions.

1 The “room ticket" is used to ensure against deadlock. If there are N seats at the table (i.e. N
philosophers), then N-1 room tickets are issued, and therefore only allowing N-1 philosophers to
eat at the same time. This prevents the situation where all philosophers want to eat at the same
time, and each pick up their left chopstick and wait forever for their right chopstick.
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Figure 7. Graph of Dining Philosopher's Execution Times vs. Number of Life Cycles.

Each tun reflects a different number of life cycles (varying from 1 to 10); the speedups
range from a low of 26% to a high of 45%. Moreover, when tests were run varying the
number of philosophers from 1 to 10 (and holding the number of life cycles constant at 5),
execution speedup leaped as high as 64%,

Distributed Banking Simulation

This Linda program simulates a distributed database of checking accounts, with pieces at
each of three different banks2. The simulation takes several checking accounts (database
records) and duplicates each at the different sites. The simulation then reads in a series of
transactions for each site and posts them against the databases. The simulation spawns
processes to manage the data at each site and to handle the transactions. The following
graph shows the speedup achieved when optimized as compared to the original

(unoptimized) solution.

2 This problem is similar to the one presented in [LANDR92]. In fact it solves the same prablem
but is written by another programmer and hence is slightly different. This difference allowed for
better optimization than did the one presented in {LANDR92].
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Figure 8. Exscution Times for the Distributed Banking Simulation.

Through the use of Instructional Footprinting, INs and RDs are decomposed into INITs
and RECVs, of which, 25 of the TNITs were executed in groups ranging from 2 to 4 in

size. The resulting program executed on the average about 23% faster than the original
code.

RayTrace Program

The raytrace program reads in an ASCII file describing a scene to be traced. The program
generates a file containing the raytrace image in Utah Raster RLE format. Worker
processes are EVALed to compute individual scan lines for the raytrace image. The
following graph shows execution times for the original code as compared to code
optimized by Instructional Footprinting.
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Figure 9. Execution Times for the Raytrace Problem.

The chart above shows timings for total program execution and for the execution of the
raytrace cleanup routine. The reason for showing the timings for the cleanup routine is
because this is where all of the optimizations were performed (and hence where all the
speedup really comes from). For each worker process, the cleanup routine INs several
tuples from TS containing statistics. These TN operations are optimized to execute the
INITs in one group and the RECVs in another. The resulting speedups averaged about

15% for the entire execution of the program and about 51% for the cleanup routine.

6. Conclusions

Instructional Footprinting is an optimization technique used in Linda systems to speedup
the execution of Linda programs. I and RD operations are decomposed into two parts -
an initiation (INIT) and a receive (RECV). The initiation is executed as early as possible
while the receive is executed as late as possible. This span between the initiation and the
receive is the footprint of the IN or RD.

There are many difficulties in assuring that program semantics remain unaltered when

moving INITS and RECVs around in code. One such difficulty pertains to identifying
whether program semantics are altered when an INIT or a RECY is moved past a Linda
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operation. By defining detailed semantics for TNTT and RECV operations, it is possible to
identify which movements can potentially alter program semantics. Anterior and Posterior
Temporal Influences provide a means of classifying movements which can cause semantics
to change. we have shown that, in many cases, the use of Tuple Sequencing and Tuple

Identification can ensure that program semantics are not changed.

Results from several programs show significant speedups with the use of Instructional
Footprinting. In each case, Tuple Sequencing and Tuple Identification permitted an
increased amount of optimization, and subsequently, played a critical role in the amount of
speedup observed. We contend therefore that, Instructional Footprinting, together with
Tuple Sequencing and Tuple Identification, contributes significantly to increased
performance of programs written from the Linda perspective.
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