
�
HEWLETT
PACKARD HPL�PSC������

PISA SCIENCE CENTER

HEWLETT�PACKARD LABORATORIES May �� ����

P
�
L� a Structured High�level Parallel Language� and its

Structured Support

Bruno Bacci�� Marco Danelutto�� Salvatore Orlando��

Susanna Pelagatti�� Marco Vanneschi�

���Dipartimento di Informatica ���Pisa Science Center

Universit�a di Pisa Hewlett Packard Laboratories

Corso Italia �� Vicolo del Ruschi� �

Pisa � Italy Pisa � Italy

This paper presents a parallel programming methodology that ensures easy programming�
e�ciency� and portability of programs to di�erent machines belonging to the class of the general�
purpose� distributed memory� MIMD architectures	 The methodology is based on the de
nition
of a new� high�level� explicitly parallel language� called P �L� and of a set of static tools that
automatically adapt the program features for each target architecture	

P �L does not require programmers to specify process activations� the actual parallelism de�
gree� scheduling� or interprocess communications� i	e	 all those features that need to be adjusted
to harness each speci
c target machine	 Parallelism is� on the other hand� expressed in a struc�
tured and qualitative way� by hierarchical composition of a restricted set of language constructs�
corresponding to those forms of parallelism that are frequently encountered in parallel applica�
tions� and that can e�ciently be implemented	

The e�cient portability of P �L applications is guaranteed by the compiler along with the
novel structure of the support	 The compiler automatically adapts the program features for each
speci
c architecture� accessing the costs �in terms of performance� of the low�level mechanisms
exported by the architecture itself	 In our methodology� these costs� along with other features of
the architecture� are viewed through an abstract machine� whose mechanism interface is used by
the compiler to produce the
nal object code	

�

Contents

� Introduction �

� The P �L language �

� The target architecture and its abstract machine � � � � � � � � � � � � � � � � � �

� Implementation templates of the P �L constructs � � � � � � � � � � � � � � � � � ��

	� Process networks implementing the P �L constructs � � � � � � � � � � � � � � � � � ��

	�	� The sequential construct ��

	�	� The farm construct ��

	�	� The map construct �

	�	
 The pipe construct ��

	�	� The loop construct ��

	�	� Termination ��

	� Composition and mapping ��

	� The analytical performance models ��

� The structure of the compiler ��

�	� The libraries ��

�	� The front�end ��

�	� The middle�end ��

�	
 The back�end ��

� Related work ��

� Conclusions and future work ��

References ��

�

� Introduction

Many parallel architectures exist on the market� and a language �and a corresponding computa�
tional model� that can be e�ciently ported to di�erent machines is still an subject of research	 In
particular� a big challenge is the de
nition of an easily usable and portable language for massively
parallel processing	

While easy usability of a parallel language depends on its high�level features� i	e	 on the
ability to abstract enough from implementation details of the actual target machine� the concept
of portability is twofold	 It requires not only that a program runs on di�erent machines without
any source modi
cations� but also that the porting is able to exploit the speci
c architectural
features of each machine	 In fact� even when two parallel systems are based upon the same
architectural model �e	g	 they have the same memorymodel� or the same interconnection network
topology�� it is known that degree of parallelism� task granularity� data�process mapping have to
be adjusted to exploit the speci
c features of each machine �e	g	 number of processing elements�
computation�communication ratio� memory size� etc	�	

In this paper we present a new programming methodology that ensures both easy program�
ming and e�cient portability of programs to di�erent machines belonging to the class of the
general�purpose� distributed memory� MIMD architectures �DM�MIMD�	 The methodology is
based on

� a high�level� structured� explicitly parallel language� called P �L �Pisa Parallel Programming

Language� ����

� a set of compiling tools that� exploiting the structured features of P �L� realize the e�cient
portability of applications� and

� an abstract machine �AM�� called P �M � which exports all those features of the underly�
ing architecture that the compiling tools need to restructure the implementation of each
application	

P �L is a high�level parallel language since programmers can abstract from low�level imple�
mentation details� such as process mapping� interprocess communications� process scheduling�
and so on� and can concentrate on the forms of parallelism �i	e	� paradigms of parallel compu�
tation� that must be exploited to parallelize a given application	 Some examples of these forms
of parallelism are the pipeline� the processor farm� the map� etc	 P �L supplies distinct language
constructs for each of these forms of parallelism� and allows them to be hierarchically composed
to express more complex forms of parallel computation	 The possibility of expressing a given
application as a composition of many parallel components� of a manageable size and a de
nite
behavior� allows P �L to be regarded as a structured language	

The choice of the forms of parallelism to include as primitive language constructs in P �L comes
from the experience of programmers of parallel applications	 In fact� applications programmed
to exploit massive parallelismmake use of a limited number of forms of parallelism� which exhibit
regular structures in terms of both partitioning and replication of functions and data� and of
interconnection structures among the processes	 Many of them had already been analyzed and
presented in �������	 These forms of parallelism and their compositions can be implemented on
di�erent massively parallel architectures� taking substantial advantages from exploiting locality	
Furthermore� each of these possible implementations� henceforth called implementation templates�
can be analytically modeled� so that simple performance formulae can be associated with them	

The P �L constructs corresponding to the various forms of parallelism are the only means a
programmer has to give parallel structure to an application	 We were comforted in this choice
by the evolution of programming languages	 In fact� a look at the history of imperative lan�
guages shows the progressive disuse of very basic constructs� e	g	 goto�s� in favor of a set of
constructs with de
nite control �ow behavior� e	g	 while� if� for� etc	 The introduction of
these new constructs has not only improved programmer�s productivity �software development
and maintenance�� but has also made a lot of compiling optimizations possible� allowing more
e�cient implementations to be devised	 Thus� we decided to dismiss basic parallel mechanisms

�

from P �L� such as send�receive or parallel process activation� in favor of a reduced set
of parallel constructs� each expressing a speci
c form of parallelism	 Using P �L to design parallel
applications� programmers have to declare the kind of parallelism they want to use� by structuring
applications by means of the P �L parallel constructs and their hierarchical composition	 The
sequential parts� on the other hand� are expressed by using a sequential language� henceforth
called the host sequential language	

In our programming methodology� the e�cient portability of programs relies on the compiler�
which take great advantage of the structured features of the language	 In fact� the compiler
includes all the knowledge about the implementation templates of the various P �L constructs and
their compositions on di�erent DM�MIMD machines �e	g	 machines adopting interconnection
networks with distinct topologies�	 In order to e�ectively exploit the features of each target
architecture� the compiler tunes each program implementation using the performance model�
and� more speci
cally� the analytical formulae� associated with the implementation templates of
the various P �L constructs	 These formulae are parameterized with respect to the costs of the
low�level mechanisms exported by the target architecture	 For this purpose� in our methodology�
each architecture is viewed through an AM� which exports the interface of the mechanisms to
the compiler along with the associated costs	

The aim of this paper is to discuss in more detail the overall design of the compiler� and
the implementation templates of the various P �L constructs	 The need to consider diverse
architectures as possible targets of P �L suggested a particular modular structure of the compiler
design	 In fact� a set of �libraries�� related to di�erent classes of DM�MIMD architectures� were
introduced	 The libraries can be substituted without modifying the general structure of the
compiler	

As regards the implementation templates of the various P �L constructs� these are particular
static networks of communicating processes that� together with the compiling techniques� we
consider the support of P �L	 In fact� the P �L programs are compiled in terms of these imple�
mentation templates� while the low�level mechanisms of the underlying architecture are employed
by the processes making up each implementation template	

The paper is organized as follows	 Section � brie�y introduces the basic features of the
P �L parallel constructs and their composition	 Section � deals with the characterization of the
target parallel machines� and of the corresponding AM	 Section
 discusses the implementation
templates of each P �L constructs and of their composition	 Section � discusses in detail the
overall design of the compiler� and of each of its modules	 Section � compares our programming
methodology to other proposals	 Section � concludes the paper	

� The P �
L language

The P �L language is a high�level� structured� explicitly parallel language	 Using P �L� parallelism
can be expressed by means of only a restricted set of parallel constructs� each corresponding to
a speci
c form of parallelism	 Sequential parts are expressed by using an existing language� also
called the host sequential language of P �L	

From the point of view of programming� the development of parallel application turns out to
be easier and moremodular	 In fact� programmers have to abstract from low�level implementation
details� such as process activations� interprocess communications� mapping and scheduling issues	
All of these are the responsibility of the compiler� which tunes each implementation taking
advantage of the structure given to applications by the use of the P �L parallel constructs	

However� in so doing� the adoption of a high�level language does not lead to implementa�
tions characterized by poor performance	 In other words� the current opinion that sees a strict
correspondence between high�level programming and poor performance� and between low�level
programming and high performance� does not hold in this case	

As regards the current prototype of the P �L compiler� only a subset of the constructs have
been implemented� while the language adopted as host sequential language was C��	 The

choice of the constructs to include in the current prototype was made to consider
rst the most
interesting forms of parallelism	 C�� was chosen to take advantage of the many tools existing in
UNIX for C��� and� above all� because of the success of C�� in the industrial environment for
the development of large applications	 In fact� existing sequential C�� software can be reused

within P �L applications	

The constructs that are currently included in the P �L prototype compiler� and that can be
used for structuring a parallel application� are�

� the farm construct� which models processor farm parallelism	 In this form of parallelism�
a set of identical workers execute in parallel the tasks which come from an input stream�
and produce an output stream of results	

� the map construct� which models �easy� data parallel computations	 In this form of paral�
lelism� each input data item from an input stream is decomposed into a set of partitions�
and assigned to identical and parallel workers	 The workers do not need to exchange data
to perform their data�parallel computations	 The results produced by the workers are
recomposed to make up a new data item of an output stream of results	

� the pipe constructs� which models pipeline parallelism	 In this form of parallelism� a set of
stages execute serially over a streams of input data� producing an output stream of results	

� the loop construct� which models computations where� for each input data item� a loop

body has to be iteratively executed� until a given condition is reached and an output data
item is produced	

� the sequential construct� which corresponds to a sequential process that� for each data
item coming from an input stream� produces a new data item of an output stream	

When describing the various P �L constructs� we have mentioned some other computations�
namely the workers of both the farm and the map� the stages of the pipe� and the body of the
loop	 All of these are� in turn� other P �L constructs	 By means of this mechanism� hierarchical
compositions of several forms of parallelism can occur	 The sequential constructs constitute
the leaves of the hierarchical composition� because the computations performed by them have to
be expressed in terms of the host sequential language	

The compositional properties of P �L rely on the semantics that can be associated with the
various P �L constructs and their hierarchical compositions	 In fact� each of them can be thought
of as a data��ow module that computes �in parallel or sequentially� a function on a given stream
of input data� and produces an output stream of results	 The lengths of both the streams have
to be identical� and the ordering must be preserved� i	e	

�in�� 	 	 	 � inn� �� M �� �out�� 	 	 	 � outn�

where M is the data��ow module corresponding to a generic P �L construct� �in�� 	 	 	 � inn� is the
input stream� �out�� 	 	 	 � outn� is the output stream� n is the length of both the streams� and every
output data item outi is obtained by applying the function computed by M on the input data
item ini	 The types of the input and the output interface of each P �L construct� i	e	 the types
of every ini and every outi� have to be declared statically	 In fact� the compiler performs the
type checking on these interfaces when the P �L constructs are to be composed	

Figure � shows the syntax of the P �L constructs previously illustrated	 Next to the var�
ious construct syntax� the
gure also shows a network of communicating processes� called the
logical process structure of each construct	 Even though the logical process structure does not
correspond to the actual implementation on the target architecture� it is useful to distinguish
the module�s� corresponding to the nested construct�s�� as well as the various activities �rep�
resented as communication processes� to be supplied by the P �L support to implement each
speci
c construct	

�

farm foo in�int a� int b�

out�int c�

p in�a� b� out�c�

end farm

��
����

��

��
��

�
���

Z
ZZ�

Z
ZZ�

�
���

� ���
��

p

�int�

�int��int� �oat�

��oat� int�

farm foo

emitter collector

p

	a

map foo in�int a����� int b�	��

out�int c�����	��

p in�a�
i�� b�
j��

out�c�
i��
j��

end map

��
����

��

��
��

��
���

Z
ZZ�

Z
ZZ�

�
�����

��
p

� �int��������

�int� �oat� �int�

�int����� �oat����

map foo

map emit

p

map coll

	b

pipe foo in�int a� float b�

out�int c� float d�

p� in�a� b� out�int a�� float b��

p� in�a�� b�� out�int a�� float b��

p� in�a�� b�� out�int c� float d�

end pipe

��
��

��
��

� �� ���
��

�int� �oat� �int� �oat��int� �oat�

pipe foo

p�p� p�

�int� �oat�

	c

loop foo in�float a� out�float b�

feedback�b�

body in�a� out�b�

until
condition�

end loop

��
��

��
��

� � �

�

���
��

��oat�
loop out

��oat� ��oat�

��oat�

��oat�

loop foo

loop in body

	d

foo in�int a� out�int b�

��
seq code� ��

end

� ���
��foo

�int��int�

	e

Figure �� Skeletons and logical structures of the P �L constructs� �a� farm� �b� map� �c� pipe�
�d� loop� �e� sequential	

Figure �	�a� illustrates the declaration of a farm construct	 foo is the user name given to
the farm construct� while p is the user name of the nested construct	 Note that� to declare the
farm foo� it is necessary to declare the types of the data items composing the input and the
output streams� i	e	 the input list in���� and the output list out���� of the parameters	 The
declaration of the input and the output lists characterizes all the P �L constructs� as can be seen
from Figure �	 The logical structure associated with the farm foo shows two processes� i	e	 the

�

emitter and the collector� which perform the distribution of the data and the collection of the
results� respectively	 They are connected to a set of workers� which are instances of the module
corresponding to the nested construct p	 Programmers do not have to supply the code of any of
the distribution and the collection activities� which� in the logical structure� are represented by
the processes emitter and collector� respectively	 Moreover� also the actual number of workers
used in the
nal implementation must not be speci
ed	

Figure �	�b� shows a map construct	 Each input data is decomposed and passed to each
worker p� and the data produced by each worker are recomposed to form a new output data
item	 The workers are instances of the nested construct p	 Looking at the logical structure� the
process map emit performs the decomposition and the distribution of the data� while the process
map coll performs the collection and the recomposition of the results	 They are connected to a
set of workers� which are instances of the nested module corresponding to the construct p	 Also
in this case� the programmer is not requested to specify the code for the activities represented
by the processes map emit and map coll� as well as the the actual number of workers to be
employed	

Figure �	�c� shows a pipe construct	 It is composed of three stages� corresponding to the
constructs p�� p�� and p�	 Note the matching between the output type of each stage and the
input type of the next one	 The logical structure is straightforward	

Figure �	�d� shows a loop construct	 The programmer is requested to specify the call of
the nested construct p �i	e	� the loop body�� and the guard that determines when the iterated
computation of p has to terminate	 The associated logical structure highlights two processes�
namely loop in and loop out� which perform the iterated call of the nested module p	 In fact�
p has to take its input data items either from the input stream� or from the stream of the results
produced by previous calls of itself	 The process loop out takes the results produced by p� and�
in case the
nal condition has been reached� sends out these results� producing a new item of
the output data stream	 Whereas� if the
nal condition has not been reached� since a new call
of the nested module p has to occur� the process loop out sends the results to the other process
loop in� over the feedback channel	 A feedback���� parameter list� appearing in the syntax of
the construct� is associated with this channel	 Finally� the process loop in merges the input and
the feedback streams	 Here too� programmers do not have to specify the code for the processes
loop in and loop out	

Figure �	�e� shows a sequential construct� whose user name is foo	 As for all the other
P �L constructs� programmers have to declare both the input and the output lists of parameters�
while the function computed by the sequential construct must be expressed in terms of the
host sequential language	 In fact� a piece of sequential code �C�� code� in our case�� whose
instructions refer to the parameters composing the input and the output lists� has to be supplied	
In the syntax� this code appears to be enclosed between two particular brackets� i	e	 	f and g		
The logical structure corresponding to the sequential construct is straightforward� as it consists
of a single process with an input and an output channel	

Figure � shows the skeleton of a complex P �L application� in which we can recognize the
various P �L constructs� and their hierarchical composition	 The corresponding construct tree�
which describes the hierarchical composition of the various P �L constructs� is shown in Figure �	
As an example of composition� note that the construct pipe main �the root of the tree� has three
nested constructs �three sons�� i	e	 farm stage�� loop stage�� and map stage�	 The construct
tree structure is extensively used by the P �L compiler for its optimizations	

Figure
 shows the logical process structure of this program� produced automatically by a tool
of the environment from the P �L source code	 The possibility to visualize the logical structure
of a complex program� and thus also the composition of various constructs� is very useful during
the development of the program	

� The target architecture and its abstract machine

Since the goal of P �L is the easy programming of massively parallel applications� we have to
choose architectures that are able to exploit such kind of parallelism	 From the point of view of

�

w� in����� out�����

��
seq code� ��

end

w� in����� out�����

��
seq code� ��

end

w� in����� out�����

��
seq code� ��

end

farm stage� in����� out�����

w� in����� out�����

end farm

loop stage� in����� out����� feedback�����

map in����� out�����

w� in����� out�����

end map

until
condition�

end loop

map stage� in����� out�����

farm in����� out�����

w� in����� out�����

end farm

end map

pipe main in����� out�����

stage� in����� out�����

stage� in����� out�����

stage� in����� out�����

end pipe

Figure �� The skeleton of a sample P �L application	

the architectural model� these architectures must be characterized by scalability and bottleneck�

freedom� which require

� homogeneous processing nodes�

� regular interconnection network�

� distributed memory�

� distributed control	

The most suitable architectures are also known as multicomputers ����� or DM�MIMD ma�
chines	 Since the class of the k�ary n�cubes ��� includes many of the most interesting DM�MIMD
machines� e	g	 two and three�dimensional meshes� hypercubes� etc	� this class has been chosen
as the target of P �L	 Within our methodology� to guarantee portability of programs� all the
members of this class of architectures are viewed through an AM� called P �M �
�	 The interfaces
of the mechanisms exported by this AM are uniform for all the members of the class ����	

In our methodology� the mechanisms exported by the AM are not directly used by P �L

programmers� but are exploited by the implementation templates of the various P �L constructs
and their compositions	 These templates are used by the compiler to produce the
nal object

�

PPPPPPPPP

���������

pipe main

seq w�

farm stage� loop stage� map stage�

farmmap

seq w� seq w�

Figure �� The construct tree of a sample P �L application	

code	 To guarantee the e�ciency of porting� the compiler has to choose among these various
templates� and has to tune each implementation to better exploit the features of each speci
c
target architecture	 The features that the compiler needs to optimize the parallel applications
are also exported by the AM� and can be summarized as follows�

� the network topology of the architecture�

� the costs associated with the mechanisms of the AM	

The topology is needed because the compiler has to choose from distinct implementation tem�
plates� each supplied for a di�erent interconnection network	 The costs are used by the compiler
to perform the optimizations of each implementation template� since these costs exactly cor�
respond to the unbound parameters of the performance formulae associated with the template
itself	

The AM exports a very reduced set of mechanisms� since only standard sequential opera�
tions� process abstraction� and simple message passing between processes allocated to directly
connected nodes are provided	 We will show how this reduced set of mechanisms su�ces to
implement the support of P �L� i	e	 the implementation templates of the various constructs and
their composition	 The advantages of using such a reduced set of mechanisms are

� more accurate costs associated with the mechanisms �non�local communications are usually
associated with costs that range between a worst and a best case��

� simpler and� at the same time� more e�ective compiling optimizations	 In fact� since the
performance models associated with the implementations of each P �L constructs are very
simple� the choices made by the compiler are more e�ective�

farm

farm_emit farm_coll

farm stage1

w1

loop_in loop_out

loop stage2

map_emit map_coll

w2

map_emit map_coll

map stage3

farm_emit farm_coll

w3

pipe main

map

Figure �� The logical graph of a sample P �L application	

�

� simpler and more e�ective implementations of the mechanisms� as more complex and not
frequently used mechanisms are not supplied by the AM�

� better performance of P �L parallel applications� because they use patterns of parallelism
that exploit locality of communications	

The reasons for choosing a reduced set of concurrent mechanisms are similar to the architectural
motivations that led to the development of the RISC technology ����	

Of the various k�ary n�cubes� the
rst architectures we considered as target machines for the
P �L prototype compiler were those which adopt a two�dimensional mesh �i	e	� the k�ary ��cube�
as a network topology	 The mesh is a particular low�dimensional k�ary n�cube network� which�
because of its simplicity� is easily developed and has been adopted by many of the commercial
multicomputers	 If di�erent k�ary n�cubes network topologies are compared by taking into ac�
count the same technological constraints� the architectures which adopt low�dimensional network
topologies� e	g	 the mesh� are better for exploiting parallel programs characterized by locality of

communications ���	 Since for each P �L parallel construct� the compiler accesses implementation
templates giving rise to locality�based computations� P �L applications can take advantage of the
mesh�connected DM�MIMD architectures	

� Implementation templates of the P �
L constructs

When a parallel program has to be allocated to the target architecture� the problem of mapping
the process graph onto the processor graph has to be faced	 The general mapping problem is
known to be NP�hard� and no measure exists to understand how far a solution is from the
optimal one	 In other words� the problem is also non approximable ������	

The solution adopted by P �L consists in restricting the computation model	 This restriction
led to the de
nition of a set of parallel constructs whose implementation templates can easily be
mapped	 These templates can be identi
ed as locality�based computations ����� i	e	 computations
where non�local references are close under some metrics� and are transformed by the compiler
into a bounded set of local communications	

The implementation templates discussed below are static networks of communicating pro�
cesses	 The compiler includes the knowledge about these implementation templates� and exploits
them to produce the
nal network of communicating processes� thus implementing the whole
P �L application	

More speci
cally� the templates presented in this section are related to mesh�based architec�
tures	 Distinct implementation templates must be supplied to the compiler if other architectures�
adopting di�erent network topologies� are considered as target machines of P �L	

��� Process networks implementing the P �
L constructs

In this section we discuss in detail the implementation templates of the P �L constructs and
their compositions	 The templates are those exploited by the current version of the P �L com�
piler to generate the
nal object code for the target machines� and are related to a mesh�based
architecture �and� more speci
cally� to the corresponding AM�	

The implementation templates of each P �L construct will be illustrated by means of directed
graphs	 Each node of these graphs represents a process that must be allocated� without multi�
processing� to a processing node of the AM� while each arc represents a communication channel
that must be assigned� without con�icts� to a bidirectional link of the interconnection network	

The graphs represents the �mapping� of both processes and channels onto a portion of a
mesh network �a sub�mesh�	 Below� we will refer to them as the mapping templates of the
P �L constructs� as they furnish the �topological information� related to each implementation
template	 These mapping templates are employed by the compiler to perform those topological
optimizations that are needed when several P �L constructs are hierarchically composed within

��

a given parallel application	 The whole information related to a given implementation template
can be obtained by considering together both the mapping template and the actual code of the
processes involved �henceforth called process templates�	

Even though in this section we will present a single implementation template for each con�
struct� the compiler actually includes more than one template for each parallel construct	 As we
will see in Section
	�� these templates are di�erent from each other with regard to their topolog�
ical features� while the communicating processes making up each implementation template are
the same	

Furthermore� each implementation template exploited by the compiler to implement a given
P �L construct supplies information about the way in which some speci
c processes and channels
must be arranged and mapped� and� thus� does not correspond to a unique static network of
processes	 In fact� our methodology relies on the capability of the compiler to modify several
parameters of each implementation �parallelism degree� or task granularity�� so that� for each
speci
c implementation template� di�erent implementation instances can be obtained	 Note
that� to illustrate the various implementation templates and simplify the presentation� in this
section we will use particular instances of each template and of the corresponding mapping	

����� The sequential construct

The actual process that is generated by the compiler for each P �L sequential construct has
two channels� an input channel corresponding to the input parameter list� and an output one
corresponding to the output parameter list	 This process is structured as a sequential loop� in
which the process

�	 receives a new task to be executed from the input channel�

�	 executes the task �the sequential code written by the P �L programmer��

�	 sends the result of the elaboration on the output channel	

����� The farm construct

The logical structure of the farm shown in Figure �	�a� highlights three main activities�

�	 the items of the input data stream �on which the tasks have to be computed� arrive at the
emitter process� and are distributed to the workers�

�	 the workers compute the tasks and produce the results�

�	 the items of the output data stream �the results of the task computation� are received by
the collector process� and are produced as output of the whole farm construct	

In the actual implementation� these further requirements have been taken into account�

� the distribution activity has to perform the dynamic load�balancing between the workers
�due to the variable completion times of the tasks��

� the collection activity has to reorder the task results� in case these results arrive out of
order at the collector	

The logical structure of Figure �	�a� cannot be directly mapped onto a mesh	 In fact� the
degree of each processing node of a mesh is
xed �four communication links�� while the fan�out
and the fan�in of the emitter and the collector� respectively� may be greater than four	 Thus�
the implementation template adopted by the compiler is characterized by a process structure
that overcomes this mapping problem� by distributing the activities of the emitter and the
collector to rows of processes	 Moreover� the distribution of the emitter activity prevents

��

��
��

��
��

�
�

�

�

�
�

ro dis �n

ro coll

��
��
��
��

��
��

�
�

�

�

�
�

ro dis �n

ro coll

��
��
��
��

��
��

�
�

�

�

�
�

ro dis �n

ro coll

��
��

��
��

worker

�

collector

��
��

��
��
��
��

��
��

��
��

��
��

��
��

�
�

�

�

�
�

�

�

� �
�

�

�

ro dis ro dis

ro coll �n ro coll

emitter

workerworkerworker worker

Figure �� A mapping of a farm	

the slow�down due to the� otherwise centralized� scheduling policy	 Figure � shows a particular
instance of the mapping template of the farm construct� characterized by
ve copies of the nested
sequential worker	

The emitter �emitter process�� ro dis �distributing router process� and ro dis fin �dis�
tributing
nal router process� implement the data distribution for the elaboration of the tasks�
and guarantee the load�balancing between the workers	 They implement the task distribution

function	

Each worker process receives a data item� computes a task� sends the computed result� and
requests a new task	 Thus� the worker processes implement the task computation function	

The processes collector �collector process�� ro coll �collector router process� and ro coll fin

�collector
nal router process� implement the collection of the tasks� and guarantee the reordering
of the tasks	 They realize the result collection function	

Implementation of the task distribution The emitter� ro dis and ro dis fin realize the
distribution of the tasks by implementing a slotted ring	 Each slot of this ring may be empty or
may contain a task to be computed	 The emitter process inserts the task into the ring� while
ro dis and ro dis fin extract these tasks� and distribute them to the workers	

No scheduling information is provided for each task� i	e	 each slot only contains the data
items for the computation of the task� and does not include the name of the worker that will
have to execute the task	 Moreover� to maintain the input�output ordering� the incoming data
items are tagged with an increasing mark �tag� by the emitter process	

	

��

	

��

	

��

	

��

	

��ww ww ww�

�
�

�
�

�y

to coll

�

�

�

�

�

�

�

�

input
stream

emitter ro dis ro dis ro dis
n

worker

backward out

forward in forward out

backward in

synchto worker

Figure �� Implementation of the task distribution	

��

Figure � shows the ring in more detail	 The black circles in each process represent the slots
of the ring	 The ring moves along the directions of the channels	

The data items are distributed as follows�

� Initialization
At the beginning� the emitter� ro dis and ro dis fin cooperate for the initial distribution
of data	 The goal is to
ll all the slots of ring	

� Steady state
All the processes that implement the ring communicatewith each other� so that the contents
of the slots are moved by one step	

After� all these processes operate on their slots in the following way�

� if the emitter process holds an empty slot� it copies an incoming data item �from the
input stream� to this slot�

� if ro dis and ro dis fin receive �or have received� from the corresponding worker

a request for a new task� and some of their slots are not empty� they send to that
worker the contents of a slot	

The slots are emptied as follows�

if both the slots are full� ro dis and ro dis fin choose the data item associated with
the oldest tag	

The slots are handled in order to maximize the number of full slots present in the ring as
follows�

if the slot corresponding to the backward channels �see Figure �� is full� and the
slot corresponding to the forward channels is empty� the contents of these slots are
exchanged	 This is done by simply copying some pointers	

This tries to guarantee that most of the slots received by the emitter �on the backward channels�
are empty� so that� for each movement of the ring� this process is able to inject a new data item
into the ring	

Implementation of the task computation The worker of a farm �i	e	 its nested construct�
may be every P �L constructs	 Assume that it is a sequential construct	 The sequential process
implementing the sequential workers of the farm is structured as a sequential loop� in which the
process

�	 receives a new task to be executed from the corresponding ro dis �or ro dis fin� process�

�	 sends a new request for further tasks�

�	 executes the task �the sequential code written by the P �L programmer��

	 sends the result of the computation to the corresponding ro coll �or ro coll fin�
process	

Note the di�erence between the implementationof a sequential construct when it is nested in
a farm� and the implementation discussed above� to be used when� for instance� the sequential
construct is a stage of a pipe	 In fact� when this construct is nested in a farm� the corresponding
process needs� besides the input and the output channels� a new channel� i	e	 the synch one
shown in Figure �	 This new channel is used to request a new task to the processes which
implement the distribution of the tasks	

The same channel is also necessary when the nested construct of the farm is a parallel one	 In
this case� the nested construct will be implemented by a process network� and the process that
receives the input stream for this network will need a synch channel to request a new task	

��

� �

	

��

	

��

	

��

	

��

	

�� w w w�

�
� output� �

stream
output

collector ro coll ro coll
nro coll

worker

to coll

input

Figure �� Implementation of the collections of the task results	

Implementation of the collections of the task results The collector� ro coll and
ro coll fin collect the task results	 They implement a slotted chain� where each slot may be
empty or may contain a result to deliver to the collector process	

Figure � shows these processes and the channels between them	 The black circles represent
the slots	 The chain moves following the direction of the channels	 If a ro coll receives a result
from the corresponding worker� and its slot is empty� this result is copied into the slot	 The
slot of the ro coll fin is always empty� because it cannot be
lled by previous processes in the
chain	

In order to maintain the output stream ordered� the following policy is adopted

if a ro coll process receives a result� its slot is occupied by another one� and the tag
of the former is smaller than the tag of the latter� the two bu�ers are swapped	 The
results with smaller tags thus advance
rst	

The collector receives the contents of a slot at each movement of the chain	 If the received
slot is not empty� its contents are inserted into an ordered structure	 This avoids sending out the
results of the tasks with a di�erent order from the input stream order	

Moreover� while a slot is received� the collector may also send out a previously received
result� which is stored in the ordered data structure	 This only occurs if all the task results
associated with smaller tags have been sent beforehand	

����� The map construct

The implementation template for the map construct is derived from that of the farm	 In fact� we
can see the map as a module that� for each input data item� produces sub�streams �data decom�

position� of independent tasks� which are concurrently executed� while the results corresponding
to these sub�stream are combined to form a single output data item �data recomposition�	

The following diagram shows how the map implementation works� where M represents the
module corresponding to the nested construct of the map �i	e	 the worker of the map�	

�in�� 	 	 	 � inn�
�

��in��� 	 	 	 � in
m
� �� 	 	 	 � �in�n� 	 	 	 � in

m
n ��

�
M
�

��out��� 	 	 	 � out
m
� �� 	 	 	 � �out

�
n� 	 	 	 � out

m
n ��

�
�out�� 	 	 	 � outn�

�

where n is the length of both the input and the output streams� while m is the number of
partitions into which each input and output data item has to be decomposed	 In fact� ini and
outi� i � f�� 	 	 	 � ng� represent generic data items of the input and the output data streams�
respectively� while inji and out

j
i � i � f�� 	 	 	 � ng and j � f�� 	 	 	 �mg� represent data partitions of

these data items	

An instance of the mapping template of the map construct is thus the same as that shown
in Figure �	 The only di�erence is that the emitter and the collector processes are replaced
by map emit and map coll� respectively	 In fact� besides the task distribution� and the ordered
collection of the results� map emit has to implement the decomposition of the input data� i	e	 the
transformation ini � �in�i � 	 	 	 � in

m
i � for all i � f�� 	 	 	 � ng� while map coll has to implement the

recomposition of the output� i	e	 the transformation �out�i � 	 	 	 � out
m
i � � outi for all i � f�� 	 	 	 � ng	

The data packets that �ow from map emit to the workers� and from the workers to map coll�
include other information concerning the speci
c partitions of the input and the output data�
respectively	 In other words� a tag i is associated with each partition inki and outki to distinguish
the task� and another tag k is associated with them to distinguish the speci
c partition	

����� The pipe construct

To generate the mapping template of a pipe construct� the processes implementing the various
stages of the pipe are glued together by means of channels	 Note that� if the stages are not
sequential processes� the implementations corresponding to them are� in turn� other networks of
processes	

Figure � shows the mapping of a pipe construct composed of nine sequential stages	 Note
how processes and channels are placed so that the area of the mesh occupied by the
nal mapping
template is characterized by

� regularity� since a two�dimensional squared box encloses this area�

� no waste of computing resources� since all the processing nodes of the box are allocated for
executing some process	

A heuristic is used by the compiler to allocate the processes that belong to distinct stages
and need to communicate � i	e	 the processes that produces the output stream for each stage�
and the processes that receives the input stream for the next stages � as close as possible �e	g	 on
neighboring processing nodes�	 Sometimes� special routing processes are added	 These processes
simply by�pass the data received from the input channel to the output one	

��
��
��
��

��
��

��
��

��
��

��
��
��
��

��
���

�

�
�

�

��
���

stage �

�

�

� �
stage �

stage �

stage �

stage �

stage �

stage �

stage 	stage

Figure �� A mapping of a pipe construct composed of nine sequential stages	

��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��
�

��

�
��

�
��

�
��

�
��

�
��
�
��

�
��
�
��
�
��

� �� �

�

input

�

	

��
�

�

�

�

	a

output

	b

feedback

loop

in l out l
nested
module

mapping of the
nested module

rout

rout

output

input

out l

in l

Figure �� �a� Logical structure of a loop construct � �b� A mapping of the loop and of the
nested construct

	

����� The loop construct

The goal of the implementation template of the loop construct is to allow the tasks coming
from both the input and the feedback channels of the loop to be concurrently computed	 Since
distinct tasks can be concurrently in execution� tasks are tagged �distinct tasks have distinct
associated colors�	

To illustrate how this implementation works� let us consider Figure �� which shows the logical
structure and the mapping of a loop construct	

The in l process implements the merging between the tasks �owing over the input and
the feedback channel� which is implemented as a chain of router processes	 in l performs a
nondeterministic choice between the two channels� but� to avoid deadlock� the priority of the
guard associated with the feedback channel is greater than the priority of the other guard	

The out l process receives the results from the nested module� and checks whether the
nal
condition has been reached	 It sends the result of the task either

over the feedback channel� if the
nal condition is not reached�

or

over the output channel of the loop if the
nal condition is reached	 The ordering
of the stream is maintained by using an ordered structure� in the same way as in the
collector process of the farm does	 The tagging used to distinguish �to color� the
tasks is also used to keep the output stream ordered	

����� Termination

A special function is performed by the process that reads from the input data stream of the
whole P �L application	 When this process encounters the end of the input stream� it sends a
special last packet� called the end�of�stream packet	

��

The processes implementing the sequential constructs of the P �L application check whether
the received input data item is the end�of�stream packet	 If it is� the packet is by�passed� and is
not computed	

The end�of�stream packet is used to start the distributed termination of the parallel program	
This function is performed by the process that produces the output data stream of the whole
P �L application	 It begins the distributed termination of the program on the reception of the
end�of�stream packet� but only after the reception of all the packets with smaller tag than the
end�of�stream one	

��� Composition and mapping

In Section �� we discussed the problem of composing P �L constructs at the language level	 In
this section� we discuss the same problem with respect to the mapping templates adopted by the
compiler for each P �L construct	

As regards the mappings presented in the previous section� they are related to an AM with
mesh topology	 To cope with the composition issues� the compiler associates with each of them
a ��dimensional box� with a pair of input�output channels	 This box is the smallest one that
encloses the process graph implementing the construct	

If the compiler has to deal with architectures characterized by di�erent interconnection net�
work topologies� the dimension number of the boxes associated with the various mapping tem�
plates is di�erent	 For example� if the architecture belongs to the class of the k�ary ��cubes�
i	e	 the interconnection network is a three�dimensional mesh� the various mapping templates are
associated with three�dimensional boxes	

The association of a box with the process network implementing each P �L construct is used
by the compiler to maintain� in a parametric way� the knowledge on each mapping template	 In
fact� the parameters of each mapping template are exactly the features of boxes corresponding to
the nested constructs	 For example� Figure � shows a mapping of a farm with
ve workers� where
each worker is a sequential process	 This is the limiting case of the general mapping template of
the farm� shown in Figure ��� where the workers are regarded as �identical� boxes with the input
and the output channels connected to processes placed on two opposite sides of the box	 Note the
new processes� ro dis mid and ro coll mid� which bypass the data �owing on the distributing
ring and the collecting chain� respectively	

For this
rst prototype of the compiler� we have restricted the shapes of the boxes allowed	
Figure �� shows the possible shapes of the boxes� which we call box templates	 They have a pair
of input�output channels placed either on two opposite corners� or on the two corners of the same
side of the box	 Moreover� they may have di�erent height�width ratios	 In order to compose the
P �L constructs� the compiler may also consider rotating and �ipping each box template �i	e	 the
processes and the channels contained in the box�	

The next section shows how several mapping templates are supplied to the compiler for each
P �L construct	 These mapping templates are di�erent in the characteristics of the enclosing box
templates	 The compiler chooses from di�erent mapping templates for the same construct by
considering the features of the box templates	

As an example of a di�erent mapping template for a farm� if we change the orientation of
the collection chain in the mapping template in Figure ��� we obtain another general mapping
template� where the input and the output channels are both placed on the same side of the
enclosing box	 Note that� to realize this new mapping template� no new processes need to be
introduced besides those presented above	

��� The analytical performance models

Until now we have discussed the mapping templates of the various P �L constructs	 The informa�
tion about these templates is accessed by the compiler� which chooses the most suitable instance
of the selected mapping template for a given P �L construct	 This choice is made by tuning the

��

��
��

��
��

��
��

��
��

��
��
��
��

��
��

�

�

��

�

�

�

�

�

�

�

��
��

collector

�

�
�

�

�

�

�

�

�

worker

ro dis mid

ro dis

emitter

worker

ro dis

ro coll �n

ro coll mid

ro coll

Figure ��� A mapping template of the farm	

expected performance of the
nal implementation� deciding both the degree and granularity of
the parallelism exploited	

For example� once the compiler has selected the mapping template in Figure �� for a farm

construct� it also has to choose the particular instance of the mapping template� i	e	 it has to
decide the actual number of workers to include in the
nal implementation	 The compiler takes
this kind of decision by accessing the costs associated with the mechanisms of the AM� and
considering� at the same time� the performance associated with the mapping�s� of the nested
construct�s�	

The goal of the performance tuning task performed by the compiler consists in minimizing the
completion time �or� equivalently� maximizing the speedup� of each implementation in computing
a set of tasks ����	 The tasks are related to the data items composing the input stream of the
data��ow modules corresponding to the various P �L constructs and their composition	 This kind
of optimization also corresponds to maximizing the bandwidth� of each implementation� provided
that the input data stream is long enough to make the parallelism exploited useful	 In fact� all
the implementations associated with the various P �L constructs are characterized by a transitory
time interval� at the end of which the maximal bandwidth is achieved	

In this section we introduce the analytical performance models which are associated with each
mapping template� and which allow synthetic formulae to be derived and used by the compiler	

�The bandwidth corresponds to the number of tasks that are completed within one unit of time	

��

l l l l l
l l l l l l
l l l l l l
l l l l l l

l l l l l l
l

l
l

input

l l l l
l l l l l l
l l l l l l

	
	
	
	R

�

	
	
	
	R

	
	
	
	R

output output

input

Figure ��� Possible boxes templates that can enclose the various mapping templates	

These formulae are parametric with respect to the costs exported by the AM� as well as the
bandwidth of the nested module�s� of the construct	

As an example� we outline the analytical model used to derive the performance formulae
associated with the farm construct	 These formulae are used

� to devise the useful parallelism degree �i	e	 the number of workers in the farm��

� to return the bandwidth of the
nal implementation of the farm	

As discussed in Section
	�	�� in the implementation of the farm we can distinguish three
pipelined stages�

�	 the distribution stage� composed of an emitter process along with the processes implement�
ing the slotted ring�

�	 the computation stage� composed of a set of identical workers�

�	 the collection stage� composed of an collector process along with the processes implementing
the slotted chain	

In order to maximize the bandwidth� these stages have to run in parallel and have to be
balanced	 These requirements are exactly those needed for optimizing the bandwidth of a general
pipeline structure �in fact� the same model is used to attain the performance and to optimize the
implementation of the pipe construct�	

To de
ne the formulae that model the farm implementation� the following costs must be
considered�

� �p� which is the average time spent inserting an input data item into the distributing ring
�or extracting an output data item from the collecting chain� and moving the distributing
ring �or the collecting chain� by one step	

This time depends on many costs exported by the AM mechanisms	 For instance� �p
corresponds to the time spent to copy a data item in an empty slot� and to perform a
message exchange between neighboring processing nodes	 These times depends on the
costs of copy and communication mechanisms �AM�dependent�� expressed as a function of
the data item size �problem�dependent��

� �w is the average bandwidth of each worker	 If the worker is a sequential process� and �w
is the time taken by the worker to compute a single task� we have that �w � �

�w
	

By using these costs� we can derive that

��

� the bandwidth of the distributing �collecting� stage is �
�p
� because one data item is inserted

into �extracted from� the distributing ring �collecting chain� at each time interval �p�

� the bandwidth of nw workers �nw turns out to be the parallelism degree of the implemen�
tation� is nw�w	

Since we want to balance the bandwidth of the three functional stages of this farm imple�
mentation� the following equation must hold�

�

�p
� nw�w

From this equation we can derive the former formula� stating the best parallelism degree that
can be exploited usefully by this farm implementation� i	e	

nw � d
�

�p�w
e ���

In case the workers are sequential processes� the formula ��� becomes nw � d
�w

�p
e	

Roughly speaking� the number of workers nw determined by ��� may be thought of as the
useful parallelism degree that this implementation is able to exploit	 In fact� if we used more
workers� the distributing ring would not be able to keep all the workers busy� while� if we employed
less workers� sometimes some tasks would not inserted in the distributing ring because the slots
are still full	

The latter formula associated with this farm implementation corresponds to the rate by which
the input �output� stream is computed �produced�� and thus corresponds to the total bandwidth
of the farm�

�farm �
�

�p
���

In order to apply the formula ���� the compiler needs to know the bandwidth of the workers�
namely �w 	 In particular� if these workers are sequential processes� the time �w taken by the
workers to compute a single task has to be known	 In any case� only an average measure
of �w needs to be known	 This average is used to
nd the optimal number of workers nw	
The implementation of the distribution stage by means of a slotted ring performs the dynamic
scheduling of the tasks and guarantees the load balancing even if there is a very large variance
of �w	

We have done tests on a farm with sequential workers� where �w was uniformly distributed
on a given interval	 The number of workers nw was found by using ��� w	r	t	 to the average value
of �w� i	e	 the midpoint of the distribution interval	 The tests showed that� also in this case� the
worker load are perfectly balanced	

Figure �� shows the pro
ling execution of the three workers of a farm construct	 This diagram
is one of the graphical statistical outputs that can be visualized by the emulator of parallel
architectures ����� on top of which our AM� namely P �M � has been implemented	 Note that the
tasks of the farm� represented by the user code bars� do not take the same time to execute	 In
fact� the execution times range uniformly over a given time interval	

The result on the best parallelism degree for the implementation of each construct is very
strong	 In fact� if the input stream can only be read sequentially by a single process �the emitter��
we state that there exists an upper bound on the achievable speedup� which is our best number
of workers nw	 The speedup of this implementation does not scale with the dimension of the
problem� i	e	 with the length of the input stream	 We have found that� even when the input
stream becomes longer� since it is not useful to add further workers� then the actual speedup
does not change	

��

Processor execution modes

Time (x 1000)

P
ro

ce
ss

o
r

Idle
Interrupt handler
User code
Channel send

Channel receive
Process startup/cleanup

90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165
11

12

13

14

15

Figure ��� Example of load balancing obtained by a farm implementation	

Only under some hypotheses� can we augment the size of the packets distributed to the
workers �in this case� a packet contains several tasks� in order to add more workers and attain
better speedups ����	 This is a form of grain optimization� which we are going to exploit in
the next version of the P �L compiler	 Anyway� also when adopting grain optimizations� there
exists an upper bound on the number of workers that can be exploited usefully� i	e	 on the best
achievable speedup	

Similar formulae are used by the compiler for the other P �L constructs	 The map formulae
are the same as those used for the farm� but take into account the further overheads derived
from the decomposition�recomposition tasks	 The pipe formulae are exploited to balance the
granularity of the various stage� while the
nal bandwidth is the smallest one of the bandwidths
of all the stages	 The loop formulae take into account the recursive call of the nested module�
and the overheads incurred in the non�deterministic merging performed by the in l process� and
in the
nal condition check performed by the out l process	

� The structure of the compiler

In the previous section� we discussed in detail the implementation templates of the various P �L

constructs	 The compiler maintains the information concerning these implementation templates
and the strategies to access them within a set of libraries	 This library�based organization is
useful for reducing the parts of the compiler that need to be changed when other architectures�
with di�erent interconnection network topologies� are considered as possible targets of P �L	

The most important library accessed by the compiler is called the mapping library	 It con�
cerns the topological aspects of the implementation templates of each P �L construct �also called
mapping templates�� as well as the analytic formulae associated with them	

The mapping library is accessed by the compiler through a set of rules	 The goal of these
rules is to optimize the implementation by driving the compiler during the selection of the best
mapping template for each construct	 Other rules are used to transform the construct tree
associated with each speci
c application� in case the compiler realizes that either some parallel

��

construct introduces useless parallelism� or further parallelism can be exploited by inserting other
parallel constructs	 All these rules are arranged in another library� called the optimization library	

The last library accessed by the compiler is called process templates library	 It contains the
sequential processes �i	e	 the actual code for these processes� written by using the host sequential
language and the AM mechanisms for concurrency� which implement the mapping templates
included in the mapping library	 For example� the emitter and the collector are two of the
templates included in the process templates library	

To discuss in more detail how all these libraries are actually exploited by the compiler� it
is useful to refer to the general design of the compiler� and particularly� to the front�end� the
middle�end� and the back�end� which make up the P �L compiler�

�	 The front�end parses the source code� checks the types� and produces an internal data
structure� representing the construct tree of the application	 An example of this tree is
shown in Figure �	 Each node of the tree is annotated with information about the parameter
passing between the hierarchically composed constructs� and� in case of the sequential

constructs� with the names of the
les and of the corresponding procedures containing the
user�provided code �which� in our case� is written in C���	

�	 The middle�end processes the information contained in the construct tree� and produces an
internal data structure� mainly stating

� the names of processes and channels�

� the mapping of processes and channels onto an abstract representation of the target
architecture�

� the types of the data �owing over the channels	

The middle�end accesses the mapping templates of each P �L construct	 These templates
are provided parametrically by the mapping library	 The mapping templates refer� in turn�
to some sequential processes� whose actual code in supplied by the process templates library	

Each entry of the mapping library is associated with some performance formulae	 These
formulae are parameterized with respect to the costs exported by the AM� and are used
to optimize each implementation �in terms of the parallelism degree and the granularity of
the parallel activities� and to return its bandwidth �i	e	 the number of tasks produced in a
given time interval�	

Access to the mapping library is guided by a set of rules� contained in the optimization

library	 These rules call the mapping entries taking into account the composition patterns
found in the construct tree	 Some other rules are used to transform the construct tree in
case the parallelism expressed by some construct is not useful for improving the speedup�
or further parallelism can be exploited by introducing other parallel constructs	

�	 The back�end� taking the mapping data structures produced by the middle�end� generates
the actual code for the AM	 This task is carried out by de
ning and mapping both processes
and channels� using the mechanism interface provided by the AM	

In particular� prede
ned processes� included in the process templates library� are used to
generate the code of each process	 The types of data to be transmitted over the channels�
and some special functions �e	g	� for copying between the speci
c data structures associated
with the channels� have to be directly supplied by the back�end for each of these processes	

The general design of the P �L compiler is shown in Figure ��� which also illustrates the
interactions of each part of the compiler with the libraries and the AM	

��� The libraries

We chose a library approach to the design of the compiler to simplify and make more modular and
modi
able the general structure of the compiler� and� above all� the structure of the middle�end

��

Back
end

Middle
end

Front
end

Mapping libs and
performance formulae

�

�

�

PPPPPq

��
����

�

�

Process Templates libs

�

�

�

�

��� ����������� �� �����������������
���������

�

P�L Application

Abstract machine

Target machine

AM code

Optimization libs

Figure ��� The structure of the P �L compiler	

part� which contains all the innovative optimization techniques that our programming method�
ology has made possible	 In addition� the library organization of the template processes make
the back�end part independent of possible new constructs added to the language	

Below we describe in more detail the libraries� assuming that they all relate to an AM ex�
porting a given network topology	 As previously discussed� for the current prototype compiler�
we only developed the libraries for the two�dimensional mesh topology	 Only supplying other
libraries� related to AMs exporting di�erent network topologies� can the compiler produce object
code for other kinds of architectures	

Mapping library The mapping library contains many entries for each P �L construct� each
corresponding to a di�erent mapping template	 Each entry of the library can be selected by
means of the following tuple�

� C�N �B�A �

where

� C is name of the construct �e	g	 farm� pipe� etc��

� N is the data structure representing the mapping of the nested construct �in case C�pipe�
since the pipe has several nested constructs� corresponding to the various stages� more of
these mapping structures are included in N �	 As discussed above� at this level the nested
constructs are thought of as box templates with some constraints on the input�output
channels�

� B corresponds to the bandwidths of the nested construct �if C�pipe� B includes the band�
widths of several nested constructs��

��

� A is a set of attributes on the shape of the requested mapping� i	e	 the shape of the box
template that will have to enclose the process structure implementing the construct C�

The call of each library entry returns a pair �M�B��� where

� M is the data structure representing the
nal mapping of the construct C	 This mapping
will be enclosed in a given box template	 Note that the same data structure M can be used
�as an N parameter� to query the library if the construct C is� in turn� nested in another
P �L construct�

� B� gives the bandwidth of the
nal mapping	 Note that it can be used �as a B parameter�
to query the library if the construct C is� in turn� nested in another P �L construct	

The various entries of the mapping library access to di�erent mapping templates� and to the
performance formulae associated with them	 Using these formulae� along with the bandwidths B
of the nested construct� and the costs exported by the AM� each library entry is able to produce
the optimized implementation for the construct C	

Both the data structures N and M refer to a set of prede
ned process templates �e	g	�
collector� emitter� ro dis� loop in� loop out� etc	�	 These processes are� in turn� included
in another library� the process template library	

Process template library The code corresponding to each process template is written by us�
ing the host sequential language� plus the concurrency mechanisms exported by the AM	 Basically�
this code refers to

� a set of channels� which are used by the communication mechanisms�

� a set of data structures� which corresponds to the data types of the channels	

Depending on the speci
c process template� di�erent operations may be performed on these
data structures	

For example� map emit has to decompose the input data structure� which is transformed into
a collection of other �smaller� data structures	 Unfortunately� all these operations di�er because
of the type associated with the data structures in distinct map constructs	 So� to make the code
of the template independent of the speci
c construct� macros are used for each operation	 In
order to complete the code of each process template� the back�end of the compiler has to supply
the macro de
nitions	 Since the same kind of operation recurs in several process templates� the
compiler only has to be able to provide a few types of macro de
nitions	

Optimization library This library� used by the compiler to optimize the implementation of
the P �L applications� contains a set of rules	 These rules are exploited for selecting the most
suitable entries from the mapping library� as well as for transforming the construct tree when
some of the constructs introduce parallelismwhich is of no use with respect to that speci
c target
architecture �e	g	� the grain of parallelism is too
ne for that architecture�	 Distinct optimization

libraries must be provided for architectures based upon di�erent network topologies	

The two kinds of rules included in the optimization library can be formally described by

P M

OptMap

���

P M

OptTree
�
�

where

�

� P is a precondition concerning the bandwidth of the nested construct�s�	 This precondition
has to hold in order to apply the rule�

� M is a precondition concerning the structure of the construct tree	 In particular� M gives
takes into account the parent of the construct to be mapped	 Thus� M may be regarded
as a sort of pattern matching over the tree� which has to hold in order to apply the rule�

� OptMap corresponds to an action that is activated only if both P and M hold	 OptMap

annotates the construct tree in such a way that� later on� a speci
c entry of the mapping

library can be selected	 It also determines how this entry has to be called� i	e	 the attributes
A used to query the library	

� OptTree also corresponds to an action that is activated only if both P and M hold	 It
is concerned with the transformation of the piece of the construct tree identi
ed by the
matching rule M	

��� The front�end

The front�end of the compiler parses the P �L part of the source program� ensures that it is
syntactically correct� and performs the type checking on the input�output parameters lists of
each P �L construct involved	

In addition� the pieces of C�� code provided by the programmer for each sequential con�
struct are included in C�� procedures� stored in special
les	 These
les are separately compiled
using the host language compiler to check their syntactical correctness	

The front�end was realized by using the standard lex and yacc tools	 Its output is the
construct tree of the program� which describes the hierarchical composition of the P �L constructs	
This tree is exported as a set of Prolog data structures	 In fact� for easy prototyping� the other
parts of the compiler have been written in Prolog	

Figure �
 shows the output of the front�end for a simple P �L program	 For each construct� we
have a Prolog fact� called construct��� that speci
es the name� the kind of the P �L construct�
and the types of the input and output parameters	 The called�� component included in this
fact is used to de
ne the hierarchical structure of the construct tree	

Moreover� for each construct there exists a Prolog fact that de
nes either

� the parameter passing to the nested constructs �e	g	� the Prolog fact farm���� in Fig�
ure �
�� or

� the host language
les including the user�provided code	 This only occurs for the sequential
constructs �e	g	� the the Prolog fact seq���� in Figure �
�	

The most interesting Prolog facts are the seq���� ones� which are associated with the
sequential constructs	 These facts are structures composed of several
elds	 The
rst
eld
is the user�name of the sequential construct	 The second is the call of a C�� procedure
including the code that the user has speci
ed in 	f g		 The third
eld identi
es the
le that
includes the C�� procedure	 The fourth
eld corresponds to other host language modules to be
linked together in order to obtain the
nal process �in this example� we have the m�C module�
which includes the de
nition of the function f�� used by the user�provided code�	 Finally� the

fth
eld de
nes particular host language libraries to be used to produce the
nal process �in
this case� no libraries have been speci
ed by the user�	

��� The middle�end

The middle�end takes the construct tree generated by the front�end� and produces some other
Prolog structures� determining which processes and channels are employed to implement a given
P �L application� as well as mapping them onto the target architecture	

��

w in�int a� out�int b�

��

int f�int��

b � f�a��

��

src�m�C�

end

farm f in�int x� out�int y�

w in�x� out�y�

end farm

front � end

��

construct��w��

type�seq��

inlist��var�formal��a�� int����

outlist��var�formal��b�� int����

called����

��

construct��f��

type�pure�farm��

inlist��var�formal��x�� int����

outlist��var�formal��y�� int����

called���w���

��

seq��w�� �p�l������� ���p�l������C��

src���m�C����

libs������

farm��f�� �

call��w��

inlist��var��x�� actual����

outlist��var��y�� actual����

���

Figure ��� Example of parsing a simple P �L program	

The algorithm adopted by the middle�end is based on a depth��rst visit of the construct tree
associated with each P �L application	 In fact� this algorithm visits the tree from the leaves to
the root� and� for each node of the tree� corresponding to a given P �L construct� selects and calls
an entry of the mapping library� using the rules included in the optimization library	 In some
cases� instead of selecting a mapping library entry� the rule employed modi
es the construct tree	

Now we show how the middle�end algorithm works by means of an example	 Suppose that�
during the visit of the construct tree� the middle�end algorithm has to map a farm construct	
Since the various constructs are mapped from the leaves to the root of the tree� when the middle�

end algorithm encounters the farm construct� the descendants of the farm have already been
mapped	 Therefore� we can suppose that the workers of the farm have already been mapped�
and have been associated with a given box template� whose input and output channels are placed
on two opposite corners	

To better understand the di�erent strategies used by the middle�end algorithm� it is now
useful to consider two di�erent construct trees	 In the former tree� our farm is nested in a loop

construct� while� in the latter� it is nested in a pipe construct	 Figure �� shows the portions of
the two di�erent trees� showing the farm� the parent constructs� and the nested constructs �i	e	
the workers�� here represented by the associated box template	

Several entries of the mapping library may be called to select a given mapping template for
the two farm constructs	 These entries di�er with respect to the kind and the shape of the box
template that will enclose the
nal mapping	 The middle�end algorithm uses the rules of the
type ���� included in the optimization library� to select the most suitable entry	

If the parent of the farm is a loop� as in the example illustrated in Figure ��	�a�� the selected
rule produces a
nal mapping whose box template has the input and output channels placed on
the same side of the box	 In fact� looking at the mapping template of the loop construct �shown
in Figure ��� we can see how the goal of this rule is to attain a feedback channel �implemented
by a chain of routing processes� and going from the loop out to the loop in process� as short
as possible	

Whereas in the case illustrated in Figure ��	�b�� where the parent of the farm is a pipe� the
selected rule produces a
nal mapping whose box template has the input and output channels
placed on two opposite corners	 This kind of mapping simpli
es the heuristics strategy for the
successive mapping of the pipe	

��

��������������������������R

��������������������������R

loop

farm

l l l

l l

l

l

�

�

� �

� � �
�

l l

�b�

ll�

l l ll

��

��

��������������������������R

��������������������������R

� � �

� � �
�

	
	

farm

pipe

�a�

Figure ��� A mapping of a farm depending on the type of its father� �a� loop� or �b� pipe	

In the two examples above we applied two distinct rules of the type ���� which di�er in the
M preconditions� and� of course� in the OptMap actions	 In the former case� we applied a rule
where the matching precondition M is loop�farm�� i	e	 the rule can be applied if the farm is
the nested construct of a loop	 In the latter case� the matching precondition M is pipe�farm��
i	e	 the rule can be applied if the farm is the nested construct of a pipe	 On the other hand�
the P preconditions are the same in both the rules	 They are concerned with the bandwidth
of the implementation of the nested construct� i	e	 the worker of our farm� and only hold if its
bandwidth is less than �

�p
	 Note that �

�p
is the best bandwidth that could be obtained by our

farm implementation	 In other words� the P preconditions only hold if the bandwidth of the
worker is low enough to make it useful to exploit farm parallelism	

Thus� if no P preconditions hold for all the rules of the type ���� the middle�end algorithm
searches for an applicable rule from those of the type �
�� characterized by the same M pre�
conditions �they relate to the same sub�tree�� but whose P preconditions are the negation of
those appearing in the rules of the type ���	 Thus� due to this properties� a rule of the type
�
� will be selected only if the bandwidth of the worker of the farm is very high �i	e	� more
than� or equal to �

�p
�	 Since� in this case� the farm parallelism is not useful� the OptTree action

corresponding to the selected rule modi
es the construct tree of the P �L application� removing
the farm construct from the tree	 Figure �� shows the tree�to�tree transformations for both the
examples in Figure ��	 This kind of transformations preserves the semantics of the P �L programs	

Mapping data�structures produced by the middle�end During the visit of the tree�
each time the middle�end performs the mapping of a construct� it produces some Prolog data
structures� henceforth called mapping data�structures	

��

loop

�worker� �worker�

pipe
��

��

�b�

�
��

�
��

loop

farm

�worker�

farm

pipe

�worker�

�a�

Figure ��� Tree transformations involving a farm construct� whose father is �a� a loop� or �b�
a pipe	

A very small subset of these structures states the mapping of processes and channels onto
nodes and links of the mesh�based target architectures� while the other structures are bound with
this subset by means of special identi
ers	

Flippings and rotations that may be needed to map the various constructs only change the
subset of the data�structures which state the mapping of process and channels	 Furthermore�
if more instances of the same construct are to be inserted into a mapping �e	g	� because that
construct is� in turn� a worker of a farm�� only this subset of data structures need to be replicated	

Consider the simple program shown in Figure �
	 The middle�end receives the tree repre�
sentation of the program� and produces the mapping shown in Figure ��� deciding� at the same
time� the best parallelism degree �in this case� the number of workers has been decided to be
three�	 This
gure was automatically produced by a tool of the environment� using the mapping

data�structures produced by the middle�end	

The following is a small subset of all the data structures produced� and describes the mapping�

map�f
 farm

param��proc�in�

��

�proc�out��

��

�link�io�mitt�

 ���
 dest��
 �����

����

�

� map�real�proc�

�
 proces�emitt����

param��ring�pos�����

�receive�proc�

 ���
 in
 type����

receive�proc�

 ��
 back�in
 type�����

�send�proc�

 ��
 forw�out
 type������

map�real�proc��

�
 proces�coll����

param����

�receive�proc��
 ��
 coll�bus�in
 type�����

�send�proc��
 ���
 out
 type��
���

map�real�proc�

 ��
 proces�ro�dis����

param��ring�pos�����

�receive�proc�

�
 forw�in
 type����

receive�proc�

 ��
 back�in
 type����

receive�proc��
 ��
 synch
 type�����

�send�proc�

 ��
 forw�out
 type����

send�proc�

�
 back�out
 type����

send�proc��
 ��
 in
 type������

��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

� � � ��

��

�

�

�

�

�

�

�

�

�
��

��

� �

�

�

�

int�
int�

ro dis �n��	

ro coll �n���

��
��

ro coll���

bool�

w�
� w�
� w�
�

int�
int�

int�

int�
int�

int�

int�
bool�

int�

int�
bool�

int�

ro dis���

int�

� �

� �

��

int�

ro dis���emitt��

int�
int�

ro coll���coll���

��

��

��

������

��

int�

Figure ��� A mapping of a P �L program	

����

�

��

It consists of a map���� Prolog fact� which contains a list whose elements are� in turn�
map real���� structures describing the mapping a single process along with its channels	

Let us describe the various components of a map real���� structure�

map�real�proc�Ind�
 Ind��

process�Templ�id�

param������

�receive�proc�Ind��in
 Ind��in�
 Channel�name�rec
 Type�id�
 ����

�send�proc�Ind��out
 Ind��out�
 Channel�name�send
 Type�id�
 �����

The
rst component� proc�Ind�
 Ind��� identi
es the processing node onto which
process�Templ id� �appearing as the second component of the structure� is mapped	 Ind� and
Ind� are two numerical indexes identifying a given processing node of a ��dimensional mesh�	
The Templ id key is used to identify all the processes that are identical as far as code and channel
types are concerned	

The third component of a map real����� structure determines speci
c parameters to be
passed to each process	 In the example above� a constant parameter is to be passed to each
process that implements the distributing ring of the farm	 This parameter states the relative
position of each process in the ring� and is exploited by these processes for the initialization	

The fourth and the
fth components are two lists� describing the channels used to receive
and send messages� respectively	 Note that� since each channel connects the node proc�Ind�

Ind�� with another neighboring node� a proc�Ind� in
 Ind� in� �proc�Ind� out
 Ind� out��
information is associated with each receive channel �send channel�	 In addition� symbolic names
are associated with the channels� i	e	 Channel name rec and Channel name send	 These names
are the ones used in the actual code of the processes to refer to these channels	 Finally� an
identi
er Type id is associated with each channel	 Type id identi
es the type of the data to be
sent over the channel	

Besides the mapping data structure presented above� the middle�end produces other informa�
tion� bound with this structure by means of the identi
ers Templ id� and Type id	 In fact� the

�The number of indexes needed to identify a given processing node depends on the number of dimensions of
the speci�c k
ary n
cube network topology	

��

types of the data to be transmitted over the channels are speci
ed by further Prolog facts with
the following structure�

type�def�Templ�id
 Type�id

type�back�end�inf�����

type�task������ ��

For each Type id related to a given Templ id� there are two kinds of data types�

� Problem dependent data� de
ned by the type task���� component	 These data corre�
spond to the input and the output lists of each P �L construct� as speci
ed by the program�
mer	

� Implementation dependent data� de
ned by the back end inf���� component	 Some
examples of implementation dependent data are the tags� associated with each task to
maintain the ordering of the input�output stream� or the end mark� used to distinguish the
end�of�stream packet	

The following are a subset of the type def���� structures produced for our example�

type�def�emit���
 type���

type�back�end�inf���
 end�mark�

type�task��int�����

type�def�emit���
 type���

type�back�end�inf�fe�mark
 �tag�
 end�mark�

type�task��int�����

type�def�ro�dis���
 type���

type�back�end�inf�fe�mark
 �tag�
 end�mark�

type�task��int�����

����

Moreover� since each Templ id must be associated with a process included in the process

template library �see Figure ���� the middle�end also produces other Prolog facts such as the
following�

library�code�Templ�id
 Code�id��

This fact relates a Templ id with a Code id key� which can be used� in turn� to access the process
template library	

The following are a subset of the library code���� structures produced for our example�

library�code�emit���
 emitter��

library�code�coll���
 collector��

library�code�ro�dis���
 ro�dis��

library�code�ro�dis�fin���
 ro�dis�fin��

����

Note that� in the previous Prolog structures� we used the Templ id keys to distinguish the
various processes� instead of directly using the Code id keys	 Suppose that a P �L application
includes more farm constructs	 This implies that we also have more emitter processes� whose
channels are� in principle� of di�erent types	 If we had used the same Code id key to identify these
processes� we could not have associated distinct type def���� facts with each of the emitter

processes	

The following are some of the entries of the process template library that are selectable by
means of the Code id�s�

��

template�seq�emitter
 farm�emitter

�farm�emitter�C�
 src����
 libs����

macros� ��� ���

template�seq�collector
 farm�collector

�farm�collector�C�
 src����
 libs����

macros� ��� ���

template�seq�ro�dis
 farm�ro�dis

�farm�ro�dis�C�
 src����
 libs����

macros� ��� ���

template�seq�ro�dis�fin
 farm�ro�dis�fin

�farm�ro�dis�fin�C�
 src����
 libs����

macros� ��� ���

�����

Each entry of this library identi
es the process call� the
le that contains the code of the process�
and other source modules and host language libraries that have to be linked together	 Moreover�
a set of macro de
nitions which must be supplied by the back�end are identi
ed	 For each of these
macros� which are not presented here� some other Prolog facts are provided by the middle�end	

��� The back�end

The last part of the compiler is the back�end� which heavily depends on the interface provided
by the AM	 The library�based structure given to the compiler has allowed us to make this part
independent of the new constructs added to the language	 In fact� the back�end takes the mapping

data structures produced by the middle�end� and performs a per�process translation� taking into
account the process template library entries involved	

The translation process performed by the back�end produces the static con
guration of the
target AM� as well as the actual code for the process �with the relative channels� to be mapped on
each processing node	 The AM for which the back�end has been developed� namely the P �M AM
����� has a con
guration language that resembles the Prolog mapping data structures produced
by the middle�end	

The translation process performed by the back�end consists of the following parts�

� determine the static mapping of processes and channels	 For each processing node� the
back�end determines the identi
er of the process to be mapped on� while� for each physical
link� it determines the channels and the corresponding data types to be allocated	 Since
our AM is usually programmed by a compiler� the types associated with the channels are
raw blocks of data of a given size	 The type checking on the data to transmitted over the
channels is assumed to be performed by the compiler� before producing the code for the
AM�

� determine the speci
c channel and constants to be passed as parameters to the processes to
be mapped onto the various nodes	 Notice that� since more instances of the same process are
usually mapped on di�erent nodes� these channels and constants make di�erent processes
that are instances of the same template�

� produce the actual code of each process� determining the host�language modules and li�
braries to be linked together	 For this task� the back�end exploits the process template

library� whose entries correspond to the template seq���� Prolog facts	 The back�end�s
task consists of completing the code of each process� adding the de
nitions of the data
structures and the macros used inside this code	

Note that the way in which the code for every process is produced does not depend on the
kind of P �L construct that the process implements	 Thus� this makes the back�end part

��

independent of the new constructs added to the language	 In fact� when a new construct
is added to P �L� the mapping library has to be enriched with other mapping templates�
referring� in turn� to new processes to be included in the process template library	

	 Related work

The research track illustrated in this paper is similar to that followed in the
eld of the universal
models for parallel computation �������	 In that case� however� the goal was to
nd a model that
can be �e�ciently ported� to di�erent kinds of architectures� where the e�ciency of the porting
is exactly measured in terms of the cost of each implementation� expressed as product of the
execution time of the program and the number of processing units employed	

Our approach also tackles the problem of e�ciency of porting� but to a greater extent	 In
fact� our programming methodology guarantees that each program implementation exploits the
greatest degree of parallelism that the speci
c target architecture is able to exploit� without trying
to achieve the universality on those architectures that have been chosen as possible targets	

Moreover� since our programming methodology considers the problem of easy parallel pro�
gramming� our research is similar to a novel approach to the exploitation of parallel machines
by using functional languages ������	 In that case� in fact� the idea consists of encapsulating
certain common algorithmic forms in higher�order functions to facilitate parallel programming
development	 This approach� being based on clear semantic properties� also allows program trans�
formation technologies to be devised� and makes it possible to derive a program implementation
from an initial speci
cation using algebraic identities between higher�order functions	 These al�
gorithmic forms are also called skeletons� as de
ned in ���� which proposes some implementation
of these skeletons on a two�dimensional mesh architecture	

The approach followed by ���� however� does not consider the issue of composing basic forms
of parallelism� as its skeletons re�ect some speci
c strategies employed to implement particular
combinations of more basic forms of parallel computation	 On the other hand� the methodology
proposed by ��� is more general� as each skeleton has a de
nite declarative semantics	 In fact�
the skeletons are de
ned as polymorphic� higher�order functions� and this makes the application
speci
cations independent of any particular implementation	 However� the process of transfor�
mation of a high�level speci
cation of an application into a set of lower�level skeletons relative
to a particular target machine �or� using our terminology� into a combination of implementation
templates� is mainly the programmer�s responsibility� though some performance models and rules
of transformation help this process	

The higher�order functions considered in ��� correspond to both data and control parallel
computations� while those considered in ���� are relative to only the data parallel model� which
restricts the control �ow to only a single thread expressed as sequence or function composition
����	

If we consider other programming methodologies proposed to make the process of the parallel
software development easier� we have to consider the coordination languages and the correspond�
ing computational models	 Linda ���� which is the most important example of this kind of
language� provides the abstraction of a shared� content�addressable memory that can be accessed
by any process	 While Linda is architecture independent� and thus holds those characteristics
of high�levelness that facilitate the parallel programming job and the portability of programs�
the tuning of each Linda application for each speci
c target machine is the responsibility of the
programmer	 Often� the code must be restructured to better exploit the speci
c features of each
machine	

This lack of e�ciency in porting previously coded applications is also the principal draw�
back of the high�level programming environments based on graphical development tools	 Usually
these kinds of environments provide an interface for systems which� by means of a set of libraries
and run�time software� allows a heterogeneous system to be seen as a uni
ed� virtual� parallel
machine	 The most important example of these types of systems is PVM ����	 The same consid�
erations made for Linda also hold for PVM	 Although PVM may allow transparent� architecture

��

independent programs to be developed� performance tuning is always the responsibility of the
programmer� and often program restructuring is needed to better exploit the speci
c features of
a new target system	

 Conclusions and future work

This paper has discussed a new approach to parallel programming of general purpose� massively
parallel� architectures	

The main innovative features of our programming methodology is the introduction of prim�
itive language constructs� which allows programmers to easily express di�erent patterns for the
exploitation of parallelism	 Since these constructs can be composed� a complex application can
be �structured� by using several of these constructs	 Furthermore� di�erent techniques of paral�
lelization can easily be tested� by simply structuring the parallel application by means of di�erent
constructs	

Another important feature is the easy programming of parallel applications� since the infor�
mation that programmers are requested to supply concerns the �quality� of the parallelism to
be exploited� while all the implementation details are the responsibility of the compiler and its
support	 This approach guarantees the portability of programs� provided that the compiler is
able to produce code for the new target architecture	 Furthermore� the possibility of recognizing
the parallel structure of the application has allowed new compiling techniques to be devised	
These techniques� which perform the tuning of several implementation parameters� guarantee
the e�cient exploitation of the features of each target architecture	

The object code produced for the various parallel constructs and their compositions exploits
locality of references	 Locality is one of the main requirements to achieve high performance�
and allows architectures to be expanded without consequences to the scalability of the program
implementations	 Other approaches to parallelism do not exploit locality at all� and sometimes
non�local references depend on the size of the architecture �e	g	 the latency of non�local commu�
nications� which� in turn� depend on the actual parallelism degree of the machine�	

The prototype of the P �L compiler was developed during a joint project� called P
 ����
involving the Department of Computer Science of the University of Pisa� and the Hewlett Packard
Laboratories�Pisa Science Center	

Within this project� the P �M AM interface was implemented on top of an emulator of parallel
architectures �����
�� which is able to produce performance pro
ling
gures for each program run	
This emulator can be con
gured� so that di�erent costs can be associated with each mechanism
of the AM� and di�erent interconnection network topologies can be tested	 The emulator was
very e�ective in validating the performance models associated with the various P �L constructs
and their composition� and thus� to show the feasibility of the general methodology adopted in
the project	

We are currently devising implementation templates� performance models� and process tem�
plates for the other parallel P �L constructs that are currently lacking	 These other constructs
model

� tree computations� and� more speci
cally� a map followed by a reduce operation	 The
reduce consists of the application of an associative operation on a vector T � � �T is a P �L

type� to produce a single item� with T type�

� geometric computations� i	e	 data�parallel computations where data are decomposed in a
geometric way to vectors or arrays of processing nodes� and some limited exchanges of data
between �neighbors� occur during computation�

� MISD farm computations� where distinct functions are computed for each input data item�
i	e	 distinct P �L constructs are to be provided as nested modules	

��

Further future research will consist of porting the environment on an actual parallel DM�
MIMD architecture� namely the Meiko�Computing Surface	 This should involve porting our AM
interface on the target machine	

Other activities on P �L are concerned with porting the language and its environment to
architectures with di�erent network topologies from the mesh	 This work requires theoretical
studies on the implementation templates of the various P �L constructs� and their compositions	
Taking into account the same technological constraints� we hope that it will be possible to com�
pare the architectural models with respect to their ability to run parallel application structured
as hierarchical compositions of P �L constructs	 One possible outcome might be to identify some
classes of network topologies and corresponding architectures on which the forms of parallelism
identi
ed by the P �L constructs can be implemented more e�ciently	

Acknowledgments

We would like to thank Milon Mackey� for implementing the front�end of the P �L compiler� and
for the useful discussion about the interface with the host sequential language �C��� of P �L	

We also thank Mark Syrett� who implemented some parts of the middle�end of the compiler�
and the graphical tools of the environment	

Our research also bene
ted from discussions with Roberto Di Meglio� who was one the
rst
users of the P �L programming environment	

Finally� we would like to thank the Hewlett Packard Laboratories� which supported this
research� and all the P
 team at the HP Pisa Science Center	

References

��� S	 Ahuja� N	 Carriero� D	 Gelernter� and V	 Krishnswamy	 Matching Languages and Hard�
ware for Parallel Computation in the Linda Machine	 IEEE Transactions on Computers�
�������������� August ����	

��� S	 Antonelli and S	 Pelagatti	 On the Complexity of the Mapping Problem for Massively
Parallel Architectures	 Int� Journal of Foundation of Computer Scinece� ������������� ����	

��� F	 Baiardi� M	 Danelutto� R	 Di Meglio� M	 Jazayeri� M	 Mackey� S	 Pelagatti� F	 Petrini�
T	 Sullivan� and M	 Vanneschi	 Pisa Parallel Processing Project on general�purpose highly�
parallel computers	 In Proc� of COMPSAC ��� pp	 �����
�� Tokyo� Japan� ����	

�
� F	 Baiardi and M	 Jazayeri	 An Abstract Machine for Highly Parallel Architectures	 Tech�
nical Report HPL�PSC������� Hewlett Packard Laboratories� Pisa Science Center �Italy��
����	

��� M	 Cole	 Algorithmic Skeletons� Structured Management of Parallel Computation	 Pit�
mann�MIT Press� ����	

��� W	 Dally	 Performance Analisys of k�ary n�cube Interconnection Networks	 IEEE Transac�

tions on Computers� ����������� June ����	

��� W	 Dally	 Network and Processors Architecture for Message�Driven Computers	 In R	 Suaya
and G	 Bithwistle� editors� VLSI and Parallel Computation� Chap	 �� pp	 �
�����	 Morgan
Kaufmann Publisher� Inc	 � San Mateo� California� ����	

��� M	 Danelutto� R	 Di Meglio� S	 Orlando� S	 Pelagatti� and M	 Vanneschi	 A Methodology
for the Development and the Support of Massively Parallel Programs	 FGCS J�� ����������
����	

��� J	 Darlington� A	J	 Field� P	G	 Harrison� P	H	J	 Kelly� R	L	 While� and Q	 Wu	 Parallel
Programming Using Skeleton Functions	 Technical report� Dept	 of Computing� Imperial
College of Science� Technology and Medicine� London� May ����	 Draft	

�

���� D	 Fernandez�Baca	 Allocating Modules to Processors in Distributed Systems	 IEEE Trans�

actions on Software Engineering� SE���������
����
��� November ����	

���� J	L	 Hennessy and D	A	 Patterson	 Computer Architecture� a Quantitative Approach	 Mor�
gan Kaufmann Publisher� San Mateo� California� ����	

���� A	J	G	 Hey	 Experiments in MIMD Parallelism	 In Proc� of Int� Conf� PARLE 	
�� pp	
���
�� Eindhoven� The Netherlands� June ����	 LNCS ��� Spinger�Verlag	

���� H	T	 Kung	 Computational Models for Parallel Computers	 In C	A	R	 Hoare Series editor�
editor� Scienti�c applications of multiprocessors� pp	 ����	 Prentice�Hall International� ����	

��
� M	 Mackey	 The p�m command	 Technical Report HPL�PSC����
�� Hewlett Packard Labo�
ratories� Pisa Science Center �Italy�� September ����	

���� M	 Mackey and T	 Sullivan	 P �M machine interface de
nition	 Technical Report HPL�
PSC����
�� Hewlett Packard Laboratories� Pisa Science Center �Italy�� August ����	

���� M	 Mackey and T	 Sullivan	 Proteus user manual �PA�RISC�	 Technical Report HPL�PSC�
���

� Hewlett Packard Laboratories� Pisa Science Center �Italy�� August ����	

���� S	 Pelagatti	 A Methodology for the Development and the Support of Massively Parallel

Programs	 PhD thesis� Dipartimento di Informatica� Universit a di Pisa � Dipartimento di
Informatica � Italy� March ����	 TD������	

���� C	L	 Seitz	 Concurrent Architectures	 In R	 Suaya and G	 Bithwistle� editors� VLSI and

Parallel Computation� Chap	 �� pp	 ����	 Morgan Kaufmann Publisher� Inc	 � San Mateo�
California� ����	

���� D	 B	 Skillicorn	 Models for Practical Parallel Computation	 Int� Journal of Parallel Pro�
gramming� �������������� April ����	

���� D	B	 Skillicorn	 Architecture�Independent Parallel Computation	 IEEE Computer� pp	 ���
��� December ����	

���� V	S	 Sunderam	 PVM� a Framework for Parallel Distributed Computing	 Concurrency�

Practice and Experience� ��
���������� December ����	

���� L	G	 Valiant	 A Bridging Model for Parallel Computation	 Communications of the ACM�
�������������� August ����	

��

