

Edinburgh Research Explorer

In situ data analytics for highly scalable cloud modelling on Cray
machines

Citation for published version:
Brown, N, Weiland, M, Hill, A & Shipway, B 2018, 'In situ data analytics for highly scalable cloud modelling
on Cray machines', Concurrency and Computation: Practice and Experience, vol. 30, no. 1, 4331.
https://doi.org/10.1002/cpe.4331

Digital Object Identifier (DOI):
10.1002/cpe.4331

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Concurrency and Computation: Practice and Experience

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Apr. 2024

https://doi.org/10.1002/cpe.4331
https://doi.org/10.1002/cpe.4331
https://www.research.ed.ac.uk/en/publications/42338fea-de77-4727-a107-e4f74d2147ef

In-situ data analytics for highly scalable cloud modelling on Cray machines

Nick Brown, Michele Weiland
EPCC, University of Edinburgh, Edinburgh, UK

Adrian Hill, Ben Shipway
UK Met Office, Exeter

Abstract—MONC is a highly scalable modelling tool for
the investigation of atmospheric flows, turbulence and cloud
microphysics. Typical simulations produce very large amounts
of raw data which must then be analysed for scientific inves-
tigation. For performance and scalability reasons this analysis
and subsequent writing to disk should be performed in-situ on
the data as it is generated however one does not wish to pause
the computation whilst analysis is carried out.

In this paper we present the analytics approach of MONC,
where cores of a node are shared between computation and
data analytics. By asynchronously sending their data to an
analytics core, the computational cores can run continuously
without having to pause for data writing or analysis. We
describe our IO server framework and analytics workflow,
which is highly asynchronous, along with solutions to challenges
that this approach raises and the performance implications of
some common configuration choices. The result of this work
is a highly scalable analytics approach and we illustrate on
up to 32768 computational cores of a Cray XC30 that there
is minimal performance impact on the runtime when enabling
data analytics in MONC and also investigate the performance
and suitability of our approach on the KNL.

Keywords-Parallel processing; Multithreading; Software per-
formance ; Supercomputers ; Numerical simulation ; Data
analysis

I. INTRODUCTION

The Met Office NERC Cloud model (MONC) [4] is an
open source high resolution modelling framework that em-
ploys large eddy simulation to study the physics of turbulent
flows and further develop and test physical parametrisations
and assumptions used in numerical weather and climate
prediction. MONC replaces an existing model called the
Large Eddy Model (LEM) [3] which was an instrumental
tool, used by the weather and climate communities, since
the 1980s for activities such as development and testing
of the Met Office Unified Model (UM) boundary layer
scheme [11][12], convection scheme [17][16] and cloud
microphysics [1][8].

The simulations that these models run generate a signif-
icant amount of raw data, it is not this raw data itself that
the scientists are most interested in but instead higher level
information that results from analysis on this data. Previous
generations of models, such as the LEM, which exhibited
very limited parallel scalability were able to perform this

This paper has been submitted as an article in a special issue of
Concurrency and Computation Practice and Experience on the Cray User
Group 2017.

data analysis either by writing raw data to a file and
analysing offline, or by doing it in-line with the computation
without much impact on performance. However as modern
models, such as MONC, open up the possibility of routinely
running very large simulations on many thousands of cores,
for performance and scalability it is not possible to write this
raw data to file and do analysis off-line or stop the compu-
tation whilst analysis is performed in-line. This situation is
likely to become more severe as we move towards exa-scale
and run these models on hundreds of thousands of cores.

In this paper we introduce the data analysis framework
approach and implementation that we have developed for
MONC where, instead of computation, some cores of a
processor run our IO server and are used for data analysis.
The computation cores “fire and forget” their raw data to
a corresponding IO server which will then perform the
analysis and any required IO. In order to promote this “fire
and forget” approach, where computational cores can be kept
busy doing their work, the IO server is highly asynchronous
and has to deal with different data arriving at different
times which raises specific challenges. After discussing the
context of MONC and related work by the community in
more detail in section 2, section 3 then focuses on our IO
server, the analytics workflow and specific challenges we
face in order to support scalable and performant analysis.
In section 4 we introduce the active messaging abstraction
that has been adopted to aid with the uncertainty of data
arrival and ordering, before discussing collective writing
optimisations in section 5. Performance and scaling results
of our IO server running a standard MONC test case on up to
32768 computational and 3277 data analytics cores of a Cray
XC30 are presented in section 6, as well as performance
results on a KNL Cray XC40, before drawing conclusions
and discussing future work in section 7.

II. BACKGROUND

MONC runs over many thousands of cores [4], making it
possible to model the atmosphere at scales and resolutions
never before attainable. However these much larger simu-
lations result in much larger data set sizes and the global
size of the prognostic fields (directly computed raw values,
such as pressure or temperature) is often TBs at any point
in time. These large prognostics are often not of primary
concern to the scientists but instead diagnostic fields, which
are values resulting from data analysis on the raw prognostic

data, are far more useful. One such diagnostic might be the
minimum cloud height and the model proceeds in timesteps
with samples taken from the prognostic fields every timestep,
analysed, and then averaged over a specific time frame to
produce the final diagnostic values. For instance every 5
minutes of model time we might output the average lowest
cloud height over that five minute period, this is an example
of time averaging each specific contribution. In MONC data
analysis therefore includes direct analysis on the prognostic
fields (which produces higher level diagnostic fields), and
also time manipulation of both diagnostic and prognostic
fields.

One approach would be to write out the entirety of the
raw prognostic fields to disk and then perform analytics
offline. However for large simulations this could involve
writing out hundreds of GBs every timestep, and much
of the analytics requires contributions from every timestep.
Not only would this post processing approach require very
significant amounts of space on the community filesystem,
as the computational runtime of a timestep is measured in
milliseconds then the additional cost of IO that would be in-
curred is likely to be very significant. Previous generations of
these models, such as the LEM, utilised an in-line approach
to data analytics where cores would do both computation and
analytics on the data as it was generated. However the LEM
was not able to scale beyond 16 million grid points over 192
cores, in contrast MONC has been used to model systems of
over 2 billion grid points on 32768 cores, with the plan being
that it will run on over 100k cores in the future. As data and
parallelism starts to reach such a scale it is important that
the computation runs continuously. Due to the data size and
cost of IO we endeavour to perform our analysis in-situ,
as the data is generated, but don’t want the computational
cores to pause whilst doing this in-situ analysis themselves.
Instead we wish to offload the data as it is generated to an
IO server that will take care of data analysis and writing so
that the computational cores can continue working on the
next timestep.

MONC is written in Fortran 2003, uses MPI for paral-
lelism and NetCDF for IO. The target users are scientists
in the climate and weather communities, these users often
want to add in specific data analytics, but they often do not
have an in-depth HPC programming background. Therefore
it is important to support powerful configuration, easy ex-
tendability, and use existing technologies (such as Fortran)
which the users are already familiar with, not only so they
can modify or add functionality themselves but also because
these technologies are known to scale well and are supported
by their existing software ecosystem.

A. Data analytics requirements

Driven by the planned use of MONC, in addition to the
community itself, we realised that there are a number of
requirements that the data analytics approach adopted must

implement. Many of these raise specific challenges that we
discuss, along with our solutions, later in the paper in more
detail. It is useful to be aware of these specific requirements
at this point as it provides context to the related work
discussed in section II-B.

• Dynamic time-stepping: The MONC computational
model proceeds in dynamic timesteps, where the exact
size of a timestep varies depending on the computa-
tional stability of the system. It is therefore not possible
to predict in advance what data will exactly represent
because its origin point in model time is unknown
until arrival. This adds considerable complexity to the
handling of data, not least because we don’t know the
size of numerous output file dimensions until final write
time. Details about how we solve the challenges that a
dynamic timestep raises is discussed in section III-B.

• Checkpoint-restart of the IO server itself: Whilst
it is common to checkpoint and restart computational
models, for instance for long running jobs, with MONC
we also need to be able to checkpoint and restart the
state of the data analytics. Due to the asynchronicity
that we promote (see section III-B) it is challenging to
get an entire, reliable, snapshot of the data analytics
state at a specific point in time. These challenges and
our solution to them is discussed in more detail in
section III-D.

• Bit reproducibility: The output from MONC runs
need to be bit reproducible which requires that specific
floating point operations are performed in a predictable
and consistent order. This is discussed more in section
III-C.

• Scalability and performance: Designed to be run on
modern Cray machines, the MONC model is designed
to simulate large domains over many thousands of
processor cores. Whilst we accept that there is generally
a runtime cost to enabling additional functionality, it is
important that data analytics does not have a significant
impact on the performance or scalability of the model.
This is discussed more in section VI

• Easy configuration and extendibility: It is important
that scientists can easily configure existing and write
new diagnostics. Additionally some users will wish to
modify the code itself to add or modify more complex
functionality. The predominant language in use by the
weather and climate community is Fortran, hence if
we are to ensure the accessibility of this code to the
community then that is the technology which must be
used. The challenges of configuration and approach we
adopted is discussed in section III-A and extending the
IO server in section III-E.

B. Existing approaches

The XML IO Server (XIOS) [13] is a library dedicated
to IO that was initially developed with the requirements

of climate and weather codes in mind. Cores can also be
dedicated to IO and service the computational cores of the
model. Coupled with numerous models such as the NEMO
ocean model, this C++ library allows one to perform IO in
an asynchronous manner. The central idea is that at each
timestep computational cores will expose some or all of
their data to the IO server through a minimalist interface
which is then processed depending upon the user’s XML
configuration. From [14] it is clear that utilising XML is
a clean and accessible method of configuration and XIOS
defines many different actions that can be performed on data
such as filters, transformation and basic numerical operators.
The authors of XIOS view this asynchronous approach as a
software IO burst buffer and this can smooth out the overall
cost of IO. We have previously experimented with integrat-
ing XIOS in with MONC, however at the time XIOS did
not support dynamic time-stepping (where the difference in
timestep size changes continuously for numerical stability)
which is an important part of our model and adds significant
uncertainty and complexity to some of the analysis as
discussed in section III-B. Whilst the general design of XIOS
and mode of configuration are very convenient, the general
nature of this approach inevitably means that there are facets
which are not required by MONC. A prime example of this
is the calendar, which is an important concept for XIOS but
not relevant in MONC. Whilst it is possible to checkpoint
the current state of the computational cores, it is not clear
from the user guide [15] whether one can checkpoint the
state of XIOS itself and reinitialise XIOS based upon this.
This checkpoint restart, not just of the computational cores
but also data analytics, is an important aspect of the MONC
model.

Damaris [6] is middleware for I/O and data management
and, similar to XIOS, targets asynchronous IO by dedi-
cating specific cores of a processor for this purpose. A
major advantage is that Dameris is integrated with other
common HPC tools such as the VisIt visualisation suite
which enables in-situ visualisation of data. Written in C++
it can be extended through plug-ins written in a variety of
languages, including Fortran and Python, and has mature
Fortran bindings. Similarly to XIOS it is configured by
XML but is currently very much at the framework stage,
where analytics functionality would need to be explicitly
developed and plugged in for different domains and it is a
shame that a library of existing plug-ins is not available.
From the user documentation [7] it is unclear how easy
it would be to combine multiple plug-ins dynamically, for
instance MONC requires specific analytics that involves not
only a number of activities but also field values need to
be collated and manipulated over time. Time manipulation
raises specific issues around bit reproducibility, as discussed
in section III-C, and it is unclear whether Damaris could
abstract this or whether the specific plug-ins would need to
handle it explicitly. It is also unclear whether the framework

could perform checkpoint-restarts of its plug-ins or whether
these would require explicit support.

The Adaptable IO System (ADIOS) [10] aims to provides
a simple and flexible way for data in code to be described
that may need to be written, read, or processed external
to the computation. Configuration is done via XML files
and there are bindings for a variety of languages. However
ADIOS is focused very much around the writing of data
rather than performing analytics on the data as it is gener-
ated. There are some data transformations provided which
transparently modify the data on the fly during the write
phase, but these are focussed around aspects such as com-
pression rather than analysis. An interesting aspect of this
technology is the fact that for performing the physical write
a number of different transport methods are implemented
and the user can easily configure which method(s) to use. A
number of experimental transport methods are also available
which have been developed in order to utilise less mature
IO technologies. As a write layer ADIOS looks like a very
interesting technology, however data analytics is not present
and as such would only fulfil a fraction of our requirements.

The Unified Model IO server [18] is a threaded server
which utilises some of the cores of a system in order to
perform IO. It provides a number of configuration param-
eters and has exhibited good performance in some cases
[18]. However there are some limitations, for instance IO
is serial and routed through an individual process which
will significantly increase memory requirements and limit
performance. It doesn’t support out of order execution either,
which they note in [19] is a limitation and means data must
be processed and written in a strict order. Interesting in [18]
they note that running under MPI THREAD MULTIPLE
mode provides the best performance in contrast to other MPI
threading modes.

It can be seen that the technologies described in this
section make heavy use of XML for user configuration
and the concept of sharing cores between computation and
IO/analytics. Specific technologies, such as Damaris, view
themselves as a framework which users can extend and
plug their specific functionality into. However non of these
technologies, in their current state, support the requirements
of the MONC model. Specific aspects in MONC that are
lacking in these technologies are support for dynamic time-
stepping, the requirement to checkpoint and restart based
on current IO state and seamless bit reproducibility. Whilst
it might seem logical to take one of these existing tech-
nologies and extend it to support these required features,
this would be a considerable undertaking, require significant
re-engineering of the technology and involve design issues
around backwards compatibility. There is also the user
requirement that the code be written in Fortran to reduce
the barrier of extending the IO server by the community in
future.

Figure 1. Computation and data analytics cores

III. MONC IN-SITU DATA ANALYTICS

In the previous section it was seen that no existing IO
and analytics technology met all the requirements of MONC
but many of the design decisions already proven could be
reused. By designing an IO server and analytic approach
specifically based upon the requirements of MONC users
the aim was to provide an implementation that can be relied
upon by scientists and compliment the mature computational
model at scale. In our approach the cores within a node
are shared for both computation and data analysis, as per
figure 1, where typically one core per processor will perform
the analysis (marked D, running the IO server) for the
remaining cores which perform computation (marked C.)
Much of the analytics involves combining local values to
form some final result which is therefore more communica-
tion and IO bound rather than computation bound. In these
situations a data analytics core (running our IO server) will
compute contributions from its local MONC computational
cores before communicating with all other data analytics
cores to produce the final result. Determined by the user’s
configuration, at any timestep a group of raw prognostic
fields may be communicated from a MONC computational
core to its IO server.

A. User Configuration

The IO server is self contained and initialised from a
user’s XML configuration file which controls both the be-
haviour of the server and also the high level data analytics to
be performed. A typical XML IO configuration file contains
three main parts, the first section defines groups of fields
that will be sent from the computational cores to MONC and
this is illustrated in listing 1. Each group of raw data fields
is given a name (in this case raw fields) and a timestep
frequency at which the computational cores will send the
data to its corresponding IO server. Each group is made up of
a number of individual raw fields, in this case fields w and u
are 3 dimensional arrays of doubles in sizes z by y by x, each
MONC computational core will contribute different parts of
the field (hence collective=true) and it is optional for these
to be included in the group or not (hence optional=true).
Explicit field sizes are optional, for instance field vwp local
is a one dimensional array but the data size is not defined
ahead of time so will be inferred at runtime.

<data-definition name="raw_fields"
frequency="2">

<field name="w" type="array" data_type=
"double" size="z,y,x" collective=
true optional=true/>

<field name="u" type="array" data_type=
"double" size="z,y,x" collective=
true optional=true/>

<field name="vwp_local" type="array"
data_type="double" optional=true/>

</data-definition>

Listing 1. XML configuration for receiving raw data

Listing 2 illustrates the second section of a typical con-
figuration file and this part controls the data analytics of raw
fields received from computational cores. In our example we
have defined data analytics to be performed on the vwp local
raw field, generating the final analysed field, VWP mean.
In order to perform this work a number of rules will be
executed, each transforming the raw data as configured by
the user to intermediate or final states. Upon start up the
IO server will read in these rules and perform dependency
analysis, based upon intermediate values, to determine which
rules must be executed before others and which can run
concurrently. For example in listing 2 the first localreduce
operator rule (for summing up all column local values into
one single total sum scalar) will execute first as this gener-
ates an internal variable, VWP mean loc reduced, which is
a dependency for the next rule. This second rule utilises the
intermediate locally reduced values and issues a reduction
communication to sum up these scalar values across all IO
servers. There are two parts to this type of communication,
where it will first sum up all local contributions (made by
MONC computational cores serviced by this IO server) and
then communicate with other IO servers for the global value.
A root process is provided which will be sent the resulting
value, VWP mean g. In the example this is specified as auto
and this means that the IO servers will determine the root
at runtime and balance out roots between rules to aid with
load balance. At this stage only the root has a value and
other, non-root, IO servers will cease executing the analysis
for the field. The root then activates the third rule, invoking
the arbitrary arithmetic operations on the data, which in this
case averages the summed up value to produce a single, final
averaged VWP mean variable. If a user specifies the units
decorator then this meta-data is provided in the NetCDF file
in addition to the diagnostics value itself.

The arithmetic operator rule in listing 2 also illustrates
another design decision we have made in configuring the
data analytics. It is intended that XML configuration is
write once for a particular type of run and decoupled
from the specifics of model execution and configuration.
For instance different domain sizes, termination time other
specific MONC computation configuration options should

not require manual modification of the XML configuration.
The {x size} and {y size} literals are an example of this,
where any value enclosed in braces will be substituted by
the IO server for specific MONC configuration options. For
instance x size and y size are defined in a MONC model
run configuration to determine the size of the domain in
the horizontal dimensions, in this case these values are
substituted in and used during the arithmetic operation. It
means that for a specific run there is a single point of truth
(the overall MONC computation configuration file), rather
than the user having to remember to modify duplicated
options in multiple places.

<data-handling>
<diagnostic field="VWP_mean" type="

scalar" data_type="double" units="
kg/mˆ2">

<operator name="localreduce" operator
="sum" result="
VWP_mean_loc_reduced" field="
vwp_local"/>

<communication name="reduction"
operator="sum" result="VWP_mean_g"
field="VWP_mean_loc_reduced" root

="auto"/>
<operator name="arithmetic" result="

VWP_mean" equation="VWP_mean_g/({
x_size}*{y_size})"/>

</diagnostic>
</data-handling>

Listing 2. XML configuration for data analytics

Listing 3 illustrates the final part of a configuration file
which involves writing both single and groups of fields to
files. In this example a group of fields to be writen is initially
defined, 3d fields, which contains the w and u fields. This
grouping is for convenience as many different fields are often
logically grouped and handled together, and one doesn’t
want to have to explicitly specify them many times through-
out the configuration. An output file, profile ts.nc is defined
to be written every 100 model seconds, containing both the
3d fields group of (prognostic) fields and the VWP mean
analysed (diagnostic) field. All fields can be manipulated
in time, either averaging over a specific model time period
and producing the average value at a configured model
time frequency or writing out an instantaneous snapshot
at specific model time frequencies. This is defined by the
time manipulation option and in listing 3 the VWP mean
diagnostic field is averaged over time with a value being
written out every 10 model seconds, representing an average
of the field values over that period. Conversely a snapshot
of the w and u fields is written to the file every 5 model
seconds, with every other field value being discarded.

<group name="3d_fields">

<member name="w"/>
<member name="u"/>

</group>

<data-writing>
<file name="profile_ts.nc"

write_time_frequency="100" title="
Profile diagnostics">

<include field="VWP_mean"
time_manipulation="averaged"
output_frequency="10.0"/>

<include group="3d_fields"
time_manipulation="instantaneous"
output_frequency="5.0"/>

</file>
</data-writing>

Listing 3. XML configuration for writing to file

Whilst we have intended these rules to be as simple
and abstract as possible, they still require some high level
knowledge and understanding of the data and architecture
involved, which is not necessarily realistic for novice users.
As such functionality to include other IO XML configuration
files has been implemented. A large number of predefined
analysis XML snippets have been implemented which, for
instance, perform analysis for different types of field or write
out values in different ways to the output file. Therefore
many MONC users can simply prepare their configuration
by importing these different snippets, with very little actual
configuration having to be written explicitly by themselves.
One of the challenges here was to ensure that snippets of
predefined and user defined configurations do not conflict;
specifically on the names of fields, variables, groups and
what analysis rules should apply where. To this end it is pos-
sible to specify an optional namespace, where independent
fields of identical names can co-exist in different namespaces
and analytics, along with the writing of values to file, can
explicitly specify a namespace to ensure encapsulation and
avoid conflict. In the examples introduced in this section
we have omitted a namespace which defaults to the global
namespace.

For each constituent rule contributing towards a specific
diagnostic (as per listing 2), the IO server identifies the
corresponding activity implementation (the operator and/or
communication) and forwards the XML arguments to this
facet. It is the activity itself that is responsible for decoding
and making sense of these arguments and-so we are not
constrained to a set of centrally pre-defined hard coded
arguments for all activities. Whilst a large proportion of
analytics involves reductions there are a number of other
forms required such as spectral methods and the tracking of
clouds through the atmosphere. This, in combination with
rule ordering enforced by dependency analysis, means that
user’s can develop complex analytics expressions. Generally

speaking we see users falling into three general groups, the
first are the experts who wish to deeply configure analytics
and add new functionality. In combination with the XML
configuration, the IO server has been designed such that new
activities can be easily developed in Fortran and plugged in
(see section III-E.) The second category of users interact
with the IO server at the configuration (XML) level only
and rely on the existing activity implementations to achieve
their analytics. Thirdly, novice users often wish to have
minimal involvement with the implementation and in-depth
configuration, we see the ability for them to import and
specialise pre-defined configuration snippets as important.

B. Analytics architecture

When the MONC model initially starts up each computa-
tional core registers itself with its corresponding IO server
and at this point some handshaking occurs. IO servers send
back information about the different fields that they expect
from each computational core (based upon the first section of
user’s XML configuration) and the recipient computational
core then responds with local information about these fields
such as their size. This information is then used to build up
MPI datatypes for each specific communication (group of
fields per registered computational core) and buffer space is
allocated so that computational cores can copy their data to
a buffer, “fire and forget” this (via a non-blocking MPI send)
to an IO server and then continue with the next timestep.

Figure 2 illustrates the IO server and analytics workflow,
which is architected around a number of event handlers
driven by two main federators. Each MONC computational
core communicates with the IO server via an entry API. The
IO server probes for external data messages, interprets these
and, depending upon the message itself and corresponding
user configuration, will then send this group of raw prog-
nostic fields as an event to the diagnostics federator for data
analytics and/or the writer federator for direct writing to file.
A variety of functionality is performed by the federators and
conceptually much of this is presented as event handlers
sitting underneath a federator, awaiting specific events from
the federator before activation.

As discussed in section III-A the second section of the
user’s XML configuration defines what data analytics the
diagnostic federator should perform on what fields and the
rules to execute in order to generate these diagnostics. A
specific rule will execute when its dependencies, either
prognostic fields or values generated from other rules, are
available. Rules produce resulting values which are either
the final diagnostic itself or an intermediate field that drives
additional rules. These rules are made up of operators (such
as arithmetic, field coarsening, field slicing and filtering) or
communications (such as reductions or broadcasts.) They
follow a standard template (Fortran interface) and are reg-
istered with the federator when the IO server initialises
to match against specific rule names in the user’s XML

Figure 2. Data analytics architecture

configuration. Operators for instance must implement proce-
dures (via procedure pointers) for execution and determining
whether the operator can run a specific rule or not.

The writer federator in figure 2, defined by the third
section of the users XML configuration as per listing 3,
receives either an analysed diagnostic value from the di-
agnostics federator or raw prognostic fields directly from
a computational core. Time manipulation is first performed
which will either time average values over many timesteps
or produce an instantaneous value at a specific preconfig-
ured point in time. This time manipulation event handler
will receive a field as an event, activate and perform any
necessary computation upon it. It may or may not send an
event back to the writer federator which would represent the
time manipulated field and in which case the writer federator
will store these values internally until they are physically
written to disk. NetCDF-4 is used as the file format and IO
technology, opening a file for parallel write by all IO servers
at preconfigured specific points in model time, for instance
every 100 model seconds. The output file contains both the
field values themselves and meta-data such as the title of
the file, model time, model timestep and field dimensions.
Due to the time manipulation it is likely that there are many
values for each field, each representing specific points in
time, hence each actual field written contains an additional
time dimension. Unique time dimensions are created for
different user configuration setting and the file also explicitly
specifies the time value at each point in the dimension.
Whilst the NetCDF file writer is currently the only IO
mechanism supported this has been defined in a general
manner to allow for other mechanisms to be plugged in
similarly to ADIOS.

In order to promote asynchronicity, which is important for
performance and scaling, we avoid any synchronisation with
the MONC computational cores and hence there is a high
degree of uncertainty about exactly when data will arrive.
But not only this; because MONC handles timestepping

dynamically, where the exact size of a timestep varies
depending on the computational stability of the system, we
can not predict in advance what that data will represent
because its origin point in model time is unknown. Therefore
all groups of fields arriving at the IO server also include
meta-data such as the current model time and timestep, this
is checked and when it matches the write period a file write
will be initiated which defines the NetCDF file and writes
out stored values. Due to the asynchronicity, where one
MONC core is ahead of another core, it is likely that not
all required fields will be immediately available at the point
of initiating writing; these are marked as outstanding and
written when available. Another challenge is that the size of
the timestep might become so large that it steps over multiple
time manipulation periods, especially if these are configured
to be quite short amounts of time. It is challenging to work
with this uncertainty in a way that users can predict the
behaviour of MONC, for instance if it is configured to write
out every 100 model seconds we do not know exactly what
the model time will be when the write is triggered and there
is no way to predict this. For instance at one timestep the
model time might be 98.2 and the next it could be 101.3,
in this case encountering the latter the IO server determines
that a write should occur and will write all values up to
and including the configured write period, so in this case
values representing 0 to 98.2 model seconds inclusive will
be written and the values sent over at 101.3 model seconds
will be stored for the next file.

In NetCDF opening and defining a file is collective, where
each IO server must participate and define parallel fields
collectively. However due to this possibility of jumping over
time manipulation periods one can not be sure the number of
entries in the time dimension until the explicit write point
has been reached. Whilst the unlimited dimension would
have helped with this issue, it is erroneous when writing
in independent mode which we require. Therefore in our
approach file definition does not begin until the write time
has been reached and at this point each IO server has enough
information to determine the number and size of dimensions
required. Before writing, fields are stored in memory and
when all fields have been written to the file and it is closed
this memory is freed for re-use.

So far we have described each federator and event handler
in a synchronous manner, such that it might be assumed
that there is a single thread of execution. In reality each
event handler is highly parallel and processes received events
concurrent via threads. At its lowest level the IO server
provides a shared thread pool and when an event is received
by the handler it will request an idle thread from the pool
and hand off the event to that thread for processing. As
such very many events can be processed concurrently by the
federator and, because the IO server is not computationally
bound, we get good results when running with around a
thousand threads in the pool. If there is no thread available

then the handler will wait until notified by the pool that a
thread is idle and can be utilised. Designing the architecture
around the event based co-ordination pattern means that
we can ensure that tricky aspects such as this will not
result in deadlock. The Forthreads [2] module is used wrap
the pthreads C interface library which effectively gives us
full pthread functionality in Fortran. We found that it was
important to decorate variables shared between different
threads with the volatile attribute, which denotes that these
might be modified by means not obvious from the code
and hence not to rely on values held in cache. The volatile
attribute is one of the features of Fortran 2003 [25] that we
rely upon.

C. Bit reproducibility

For simplicity the event handlers discussed in section
III-B mainly process data (i.e. events) in the order in which
they are received. This approach works well in many cases
of the workflow, however can cause bit reproducibility issues
where the event handler is accumulating field contributions
such as with time averaging. Therefore specific aspects of
the workflow, such as averaging field values over time, must
be performed in a deterministic order due to the lack of
associativity of floating point arithmetic. This relates to
processing events in a deterministic order instead of the
order in which they arrived. Because all data events in our
approach contain meta-data, specifying aspects such as the
timestep and model time, we can utilise this to determine
the correct ordering. In cases where event ordering matters
the handler will order based upon the timestep. From the
user’s configuration the handler is able to determine the
timestep frequency of arrival for all data and hence the
next expected timestep (but not the model time that this
represents due to to dynamically timestepping.) Therefore
events received out of order are stored in a queue until
earlier events have been received and processed. In these
event handlers, the processing of a specific event is therefore
followed by checking the queue and then processing any
appropriate outstanding events which can now be handled
without compromising ordering constraints.

D. Checkpointing

The MONC model can be long running, taking days or
weeks of computational time, but often HPC machines have
a runtime limit for jobs such as three hours on the Met Office
XC40 (MONSooN) and twenty-four to forty-eight hours
on ARCHER, an XC30. As such the model proceeds in
episodes where MONC is run until a specific wall time, then
writes out its state into a checkpoint file and will then restart
from this checkpoint, which is known as a continuation run.
For these long runs a script schedules two jobs, a job to run
the model directly (either starting from initial conditions or
a checkpoint file) and another job in a held state which is
executed once the other job finishes. This second job will

check whether a continuation run is appropriate and if so
schedule another job in the held state dependent waiting
for this job to complete and execute MONC with the latest
checkpoint file.

Checkpointing the computational part of the model is
fairly standard because a snapshot of the model for each core
contains the raw prognostic fields and other data such as the
model time, timestep and size of the timestep. However it is
also necessary to snapshot and restart the state of each IO
server core doing data analytics and this is more complex,
not least due to asynchronicity. Messages from MONC
computational cores or between IO servers can be in flight,
waiting for additional local values before communication
or in the process of being issued, therefore how to handle
this reliably was a challenge. We rely on two facts, firstly
that the majority of this non-determinism is contained within
the diagnostics federator and its sub actions, and secondly
based upon the timestep metadata associated with each field
the writer federator can determine whether it has received
all the expected fields up to a specific timestep or whether
there are diagnostic or prognostic fields still outstanding.

When a checkpoint is triggered we therefore wait until
the diagnostics federator has completed all of its work up
until that specific timestep and made these fields available
to the writer federator. At this point we only store the state
of the writer federator, which is far more deterministic, and
its sub activities such as the fields being manipulated in
time and waiting to be written to file. The state of the
writer federator can be split into five distinct areas (the
writer federator and its sub activities, see figure 2) and each
IO server will progress through each of the distinct states,
serialising them into a stream of bytes for storage. Inside
the checkpoint file each of these five states is represented
by a specific variable which is written collectively by all
IO servers. NetCDF parallel calls enable different processes
to read or write at different offsets in the same variable
concurrently, so all IO servers will write their own state at a
unique point in the variable. Each variable is also associated
with a directory of start points and byte lengths for each IO
server rank so that on restart processes can easily determine
exactly what they need to read in. Once a field is written
to file the memory associated with serialising it is freed and
the IO server will progress onto the next variable.

Internally the state of a specific activity can be viewed as
a tree, where nodes in this tree are sub-states. We have no
way of knowing the size of these sub-states until they are
examined and-so the only way of determining the overall
memory required to serialise and hold a state is by walking
its tree. Naively one might proceed by packaging the state’s
top level into memory, then reallocating memory for all sub-
states and copying data between them, but we found this
very slow due to the significant overhead that many memory
allocations incurs. Instead the process of checkpointing
proceeds in two phases for all activities, the first of walking

all sub-states to determine the local memory size required.
This is then reduced between the IO servers (with a sum)
and used to collectively define the appropriate variables and
dimensions in the NetCDF file. The second stage allocates
the local memory chunk and physically packages up the state
by serialising it into bytes ready for writing to the file. It
is important that the state has not changed between the first
and the second stage, or else the required memory size will
be wrong. Therefore locks are issued during the first state
of checkpointing and only released once a state has been
serialised and packaged.

Another challenge with this approach was the global size
of the serialised variables that are written into the NetCDF
files. With many IO servers it is realistic that the size of the
field will exceed 2GB and the Fortran interface to NetCDF
only supports signed (hence 2GB rather than 4GB) 32 bit
integers. This limits not just the dimension sizes, but also
the specification of start locations and counts for parallel
writes along with the integer data type. Instead we were
forced to call directly to the NetCDF C interface via the ISO
C bindings for storing and reading much of the IO server
state to enable unsigned 64 bit integers, the standardised
C interoperability mechanism is a feature of Fortran 2003
[25] that we rely on. Whilst unsigned integers are more
problematic in Fortran it would be useful if the developers
of the NetCDF Fortran interface extended this to support
long 8 bit integers at least.

E. Extending the IO server

The majority of users will interact with the IO server
at the XML configuration level as discussed in section
III-A. However there are certain aspects where users, who
are generally familiar with Fortran, might wish to create
additional functionality and easily integrate this with the
architecture. This comes back to the Damaris view, of an
IO server as a framework which users can extend via their
own code. An example of where this might be desirable in
MONC are the operations that can be performed on data
as part of analytics and as such as have defined them in a
standard manner. Two Fortran interfaces have been defined
which each operator must implement. The first determines
which fields must be present to execute the operator for
a specific configuration so that the diagnostics federator
can determine dependencies and the ordering of rules for
a specific diagnostics calculation. The second interface that
must be implemented actually executes the operation and
this subroutine takes as arguments the configuration of the
IO server, the source id of the MONC computational core
and the input field data itself. A central operator handler (see
figure 2) uses Fortran procedure pointers to map between the
operator names and their underlying procedure calls. These
procedure pointers are one of the features of Fortran 2003
[25] that we rely on in the IO server implementation.

IV. ACTIVE MESSAGING COMMUNICATIONS

Allowing the MONC computational cores to fire and
forget their data to a corresponding IO server is impor-
tant to avoid interrupting the computation however this
asynchronicity, where different IO servers can receive and
process different data at different times, results in a spe-
cific challenge when it comes to data analytics. Collective
communications between the IO servers is required for
many diagnostic calculations, for instance to calculate global
average, minimum or maximum values and whilst MPI
version 3.0 provides non-blocking collectives, the issue order
of these is still critically important. For instance if there
are two fields, A and B, where one IO server issues a non-
blocking MPI reduction for field A and then the same for
field B, then every other IO server would also need to issue
reductions in that same order. If another IO server was to
issue reduction on field B and then A then the calculated
values would be incorrect. One way around this would be for
all the IO servers to synchronise before issuing reductions
for specific fields to guarantee the issue order, but this
would result in excessive communications, overhead and
code complexity.

Instead we adopted the approach of active messaging
where all communications are non-blocking and an IO server
issues these, such as a reduction, and then continues doing
other work or returns the thread to the pool. At some
point, depending on whether this IO server is the root,
a resulting message will arrive which will activate some
handling functionality. Inside the inter IO communications
of figure 2, an IO server will call an appropriate active
messaging function with common arguments such as the data
itself and meta-data (such as data size and type), but will
also specify a callback handling subroutine and string unique
identifier. It is this unique identifier, instead of the issue
order, that determines which communications match. For
diagnostics the field name concatenated with the timestep
number is generally used as the unique identifier. This is
illustrated in listing 4, where the non-blocking active reduce
subroutine is called for the VWP mean loc reduced vari-
able (as per the user’s configuration of listing 2.) This
variable is a single floating point scalar on each IO server,
which will be summed up and the result available on
the root (in this case IO server rank zero.) The string
unique identifier is also provided, along with the handling
callback. At some point in the future a thread will call the
diagnostics reduction completed subroutine on IO server
rank 0 with the results of this communication operation.
The code in listing 4 is to illustrate this active messaging
approach to the reader, in reality a generalised version of this
has been implemented within the inter IO communications
functionality for active reductions of any size, message type
and operation which is then called at runtime by the IO
server depending upon user configuration.

call active_reduce(VWP_mean_loc_reduced,
1, FLOAT, SUM, 0, "

VWP_mean_loc_reduced_12",
diagnostics_reduction_completed)

....

subroutine
diagnostics_reduction_completed(data,
data_size, data_type,

unique_identifier)
....
end subroutine

Listing 4. Active messaging reduction example

Internal to the active messaging layer, that can be used
throughout the IO server, unique identifiers and their as-
sociated callback subroutines are stored in a map. Built
upon MPI P2P communications, when a message arrives
it is decoded and passed into this layer for handling if it is
deemed to be an active message. A look up is performed
based on the unique identifier and, if found, a thread from
the pool is activated to execute the callback with the message
data and meta-data. In some cases it is possible that a
message arrives on an IO server, but that IO server has not
yet issued a corresponding communication call and hence
no callback is found when it performs the look up. In these
cases the data and meta-data is temporarily stored until such
an API call has been issued locally.

This approach is known as active messaging because
it explicitly activates some handling functionality, running
concurrently, based upon the arrival of messages. In this
manner we need not worry about maintaining any message
ordering, because this is done for us by the active mes-
saging implementation based on the unique identifier. This
also greatly simplifies the higher level data analytics code
because one just needs to provide subroutine callbacks rather
than deal with the tricky and lower level details. Abstracted
from the analytics functionality lower levels of the IO server
deal with issues around receiving data, checking MPI request
handlers and executing the callbacks, rather than having to
explicitly check request handles during analytics execution.
In active messaging the registration of handlers can either
be persistent, i.e. a registration will remain and activate for
all message arrivals, or transient where registrations must
match the arrival of messages and, once called, the callback
is deregistered. In our approach the handlers are transient,
the advantage of this is that error checking can be performed
- for instance if a message is expected but never arrives.

A. Barrier active messaging

The active messaging approach has also proven very
useful to avoid excessive synchronisation in other parts of
the IO server code. NetCDF is not thread safe and as such we

need to protect it with explicit mutexes, additionally when
MPI is run in thread serialised mode we also need to protect
MPI calls using a different mutex. Parallel NetCDF uses
MPI-IO and as such every NetCDF call in the IO server
will not only lock out any other NetCDF calls until this has
completed, but also any MPI communication calls if the IO
server is running thread serialised. It is therefore desirable
to minimise the time spent in NetCDFs call but a number of
these calls, such as defining and closing files, are blocking
collectives. In this case each IO server will wait until every
other IO server has issued the same call which can be very
expensive. Not only is the thread idle and not available in
the pool for other work, but also whilst it is blocked no
other NetCDF operations (on other files for instance) or MPI
communication calls can be issued.

As the writing of files is driven by the arrival of
data, which is asynchronous and non-deterministic, different
servers will trigger IO operations at different times. From
experimentation it was found that there was considerable
drift here, where one IO server could be waiting for a
substantial amount of time in this blocked state before other
IO servers (which might have had more data analytics to
perform or more computational cores to service) issued a
corresponding call.

The barrier active messaging call can be used to address
this, where threads execute the non-blocking barrier call
with a unique identifier and callback function. At some
point in the future, when all IO servers have executed
this active barrier with the corresponding unique identifier,
then a thread is activated on every IO server executing
the callback subroutine which itself performs the NetCDF
blocking call(s). This callback performs the actual NetCDF
file writing operations such as definition or closing of the
file. Because of the semantics of an active barrier being
that a specific callback should be executed only once all
IO servers reach a specific point, we can ensure that the
blocking NetCDF calls are all called at roughly the same
point in time and there is far less waiting in this blocked
state.

B. Termination

The use of active messaging does make termination more
complex. It is no longer enough that all MONC computa-
tional cores have completed, because outstanding analytics
messages might also be in-flight. Therefore in addition to the
computational cores finishing there are two other criteria that
must be satisfied for termination. First that no event handlers
are active, which we can easily find out by checking whether
any threads in the pool are active. Secondly that there are
no outstanding active messages to be handled. The transient
nature of our active messaging layer makes this much easier,
as we can perform a table lookup to ensure that there are no
outstanding callbacks that have been registered in the active
messaging layer but not yet activated.

Figure 3. Illustration of contributed data chunks in the global domain

V. COLLECTIVE WRITING OPTIMISATIONS

In addition to writing out diagnostic values, it is also
sometimes desirable to write out the raw prognostic fields,
for instance when checkpointing or for provenance. However
these fields can be very large and not only is it important
to do the writing collectively, so that each IO server will
write out its specific contribution to the overall global field
at the same time, but we also want to minimise the number
of writes being performed. If each MONC computational
core was to do the writing of its prognostic fields itself then
this would not be an issue because local prognostic data is
contiguous, however with an IO server many computational
cores might be sending their prognostic data for writing
at different points and these represent different, potentially
non-contiguous, chunks of the global domain.

At start-up, once each computational core has registered
with its corresponding IO server, a search is performed by
each IO server over the sub-domain location of its MONC
computational cores. The aim is to combine as many sub-
domains as possible into contiguous chunks in order to
minimise the number of writes. Because it is often the
case that MONC computational cores of a processor are
neighbours, working on geographically similar areas of the
global domain, it is often possible to result in one or two
large writes which is desirable. This is illustrated by figure 3
where the algorithm will search in both dimensions and for
each chunk will determine what larger contiguous chunks
it could be a member of. Starting in the horizontal, the
algorithm would identify that chunks A, B and C could
form a contiguous block, but it will then progress to the
vertical and determine that chunks C, D, E and F can form a
contiguous block. Larger chunks are preferred over smaller
ones, so in this case two regions (and hence writes) are
selected, the first containing chunks A and B, and the second
chunks C, D, E and F.

Memory space is allocated for these contiguous buffers
and prognostic data from local computational cores are

copied into the buffer which is then written to file once all
contributions have been made. The writing of these fields
is collective therefore all IO servers must participate for
every write. A reduction with the max operator is performed
on initialisation to determine the maximum number of
collective writes that any IO server will issue. Any IO servers
with fewer writes than this will issue dummy (i.e. empty, of
zero count) writes so that it is still involved in this collective
operation.

VI. PERFORMANCE AND SCALABILITY

Performance and scalability tests have been carried out
on ARCHER an XC30 (Ivy Bridge CPUs with the Lustre
filesystem) which is the UK national supercomputer and one
of the main targets for MONC and this in-situ analytics. A
standard test case is used which is concerned with modelling
stratus cloud in the atmosphere. 232 diagnostic values are
calculated every timestep and time averaged with a result
every 10 model seconds, the NetCDF file is written every
100 model seconds and the run terminates after 2000 model
seconds. Figure 4 illustrates the performance of the model
with and without data analytics at different core counts. In
this experiment we are weak scaling, with a local problem
size of 65536 grid points and on 32768 cores this equates to
2.1 billion global grid points. It can be seen that there is an
impact of enabling data analytics of 8.14 seconds, or 2.6%,
at 32768 cores. An important point to note about this graph
is that irrespective of whether analytics is enabled or not we
have chosen to keep the number of computational cores the
same. Therefore for the largest data analytics run, where one
core per processor performs analytics, there is in fact a total
of 36045 cores, 32768 for computation and 3277 for data
analytics. Because we are increasing the overall number of
cores there is a question of whether this is a fair experiment,
but the number of computational cores remains the same and
this represents the most common way in which MONC will
be used. If we were to lock the number of overall cores
and instead reduce the number of computational cores when
enabling data analytics it would be more difficult to interpret
the results as any increase in runtime could also be attributed
to the fact that we have less computational power solving
the problem.

In order to further examine the performance and behaviour
of the IO server we have defined a performance metric which
measures the elapsed time between a MONC computational
process communicating a value at a specific model time that
will induce a file write and that write then being completed.
This is the overhead of data analytics and we want this time
to be as small as possible, i.e. as soon as a write can be
performed it is desirable for all the constituent data to be
present and for this write to happen as quickly as possible. If
the overhead of parallelism is too large then the IO servers
might lag behind their computational cores which will result
in excessive time at the end of the simulation whilst IO

Figure 4. Overall MONC runtime when weak scaling with and without
data analytics, 65536 grid points per core

Figure 5. Overhead of IO for different computational core counts weak
scaling, 65536 grid points per core

servers catch up. There are a variety of different factors that
might influence the overhead, such as specific diagnostics
not being completed yet, all threads in the pool busy so
they can not action events in the system and the overhead
of IO. Figure 5 illustrates the IO overhead for the weak
scaling test case runs with 65536 grid points per core as
we vary the number of computational cores. It can be seen
that as one increases the number of computational cores the
IO overhead also increases. This is because considerably
more data is being processed globally and more IO servers
are having to communicate during analysis and NetCDF file
writing.

Table I illustrates the overhead of parallelism measure
for data analytics over 32768 computational cores under

a number of different configurations. It is accepted that
for computational hybrid codes, running in MPI multiple
threading mode is inefficient [5] but [18] mentions that
multiple mode is preferable for the UM analytics. The IO
server supports both multiple and serialized mode, the latter
where the IO server itself protects MPI explicitly. From
this table it can be seen that running in serialized mode
is a better choice for our IO server. This is somewhat of
a surprise because the NetCDF layer uses MPI-IO which
needs to be protected explicitly in serialized mode, but this
is still preferable to the finer grained locking in multiple
mode which incurs other overheads. Hyper-threading often
does not provide a performance improvement in compu-
tationally intensive codes, but by keeping core placement
the same (so it is unchanged for computational cores) and
enabling hyper-threading, the thread pool of the IO server
will automatically take advantage of these extra threads.
It can be seen from table I that there is a performance
benefit to using hyper-threading for the IO server both in
seralized and multiple mode. It is believed that MPI thread
multiple mode benefits from hyper-threading due to the finer
grained locking involved. The experiments of figure 4 ran
in serialized mode with hyper-threading enabled and it can
be seen that the majority of the 8.14s runtime impact is due
to this overhead of the last write at termination hence data
analytics and IO is keeping up with the computational cores.
Whilst some implementations of MPI do not support thread
multiple mode, and some are known to be buggy, empirically
it was found that Cray’s implementation is stable and reliable
with our IO server.

Overhead (s)
8.92 MPI serialized mode

12.02 MPI multiple mode
8.14 Serialized mode + hyperthreading
9.71 Multiple mode + hyperthreading

Table I
CONFIGURATION IMPACT ON OVERHEAD WITH 32768 COMPUTATIONAL

CORES

Figure 6 illustrates both the overhead of IO and overall
model runtime for the same test-case on one Cray XC40
Knights Landing (KNL) machine (ARCHER KNL.) The
node contains one 7210 Knights Landing (KNL) CPU with
64 cores, 16GB of MCDRAM run in quadrant cache mode
and 96GB of main memory RAM attached to the Lustre
filesystem. Each core is capable of up to four way hyper-
threading and for this specific experiment we selected a
global domain size of 3.3 million grid points. The results
represent the overhead of IO and overall runtime as we
varied the ratio of IO servers to computational cores which
are mapped to physical cores, so for instance the ratio of one
results in 32 physical cores for computation and 32 physical
cores for IO. As one would expect from previous results
in this section running with the four way hyper-threading

Figure 6. Overhead of IO and overall test-case runtime on the KNL under
different configurations with a global domain size of 3.3 million grid points

that the KNL supports provides a significant reduction in
overhead and we avoid the large spikes that a lack of hyper-
threading for 8 and 12 computational cores per IO server
exhibits due to having more physical concurrency to execute
the threads processing data. It can be seen that, whilst the
overhead of IO is minimal based upon a ratio of one, because
we only have 32 cores dedicated to computation the overall
model runtime is considerably longer than a ratio of 12 (59
computational cores and 5 IO servers.)

The shared column illustrates the situation where each
KNL physical core runs MONC computation on one hyper-
thread and the IO server on the remaining three hyper-
threads, servicing its local computation. In this case it can be
seen that performance is between that obtained when running
with 8 computational cores to an IO server and 12. Beyond
12 computational cores to an IO server the overhead of
IO grows exponentially, for instance with 32 computational
cores per IO server the overhead of IO is around 500
seconds as there is just too much data for the threads to
process concurrently, the IO server becomes swamped and
gets significantly behind the computation. The conclusion
we can draw from this result is that on the KNL one should
endeavour to have as many computational MONC processes
as possible by selecting a ratio of MONCs to IO servers that
keeps up with computation but doesn’t aim to optimise the
overhead of IO. Beyond this point there will likely be a very
sharp increase in both the overhead of IO and overall model
runtime as the IO servers become swamped and one needs
to find this optimal ratio empirically.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have described our approach and imple-
mentation of in-situ data analytics and file writing in MONC,

where cores of a processor are shared between computation
and data analysis. We have discussed some of the crucial
aspects that this approach raises and lessons learnt such as
the need for out-of-order collectives, which MPI does not
fully fulfil, bit reproducibility, optimisation of large field
writing and the ability to checkpoint analytics. We have
experimented with configuration options and, by adopting
our overhead runtime metric, we can see how some of the
conventional wisdom that applies to the configuration of
computation codes impacts data analytics. Runtimes for a
common MONC testcase have been demonstrated on up to
32768 computational cores of a Cray XC30 and it has been
shown that, for a typical configuration, our approach to data
analytics and writing has limited impact on the runtime of
the code. We have also examined the performance of our
approach on a Cray XC40 KNL machine and illustrated
the optimal configurations as well as raising the interesting
idea of running one IO server per MONC computational
core on the hyper-thread. Whilst Fortran is not a common
technology for data analytics, it was used because this is
what the computational code is written in and the scientists
and their tools are familiar with it. We have shown that
modern Fortran and associated library support is sufficient
and our approach to data analytics is crucially important
in order to support the science that the weather and climate
communities will perform using MONC on current and next
generation HPC machines. The IO server implementation is
fairly specific to the MONC model and we believe that the
major contribution of this work to the wider HPC community
is based around the approaches adopted and lessons learnt
that are detailed in this paper. As the MONC model is
designed as a general purpose framework for atmospheric
modelling there is some opportunity for direct re-use of
the IO server within this context and at the time of writing
scientists are planning on utilising MONC and the IO server
for different forms of atmospheric science than the work was
initially intended for.

In terms of further work, the active messaging layer
which much of the diagnostics relies upon, is currently
implemented on top of MPI P2P communications which is
not necessarily optimal. Due to the fact that this is a lower
level API then it would be transparent to the rest of the IO
server to move this implementation closer to the lower level
communications technology such as implementing it directly
at the Cray DMAPP level or other similar technologies.
We implemented the active messaging layer as part of the
IO server because there was no suitable, mature, existing
library that could be used. Previous research around active
messaging has resulted in a number of technologies, for
instance Charm++ [22]. Whilst Charm++ is mature and well
supported, it requires the programmer to write their code
in C++ and orient the parallelism around their concept of
chars, which is not appropriate for the IO server. Other active
messaging technologies such as AM++[23] and AMMPI[24]

are designed to be used in a more loosely coupled library
call fashion, however these are all very much at the research
stage and exhibit serious shortcomings including the lack of
current development, limitations such as serial execution of
the callbacks and requirement for specific synchronisations.
In short we believe that the development of an active
messaging layer, partly aided by lessons learnt during this
work, would be of significant value not only to our IO server
and in-situ data analytics in general but also more general
codes as well.

The NetCDF file writer can be unplugged and other write
mechanism technologies imported, it would be interesting
to integrate with visualisation packages to enable in-situ
visualisation of a simulation during execution. Whilst our IO
server is currently fairly tied to the MONC model, it would
be easy to extract it and make it more freely available for
other models to utilise.

Due to the community’s familiarity with Fortran, up
until this point the major focus has been on developing
the entirety of the IO server in Fortran 2003 so that they
can easily modify, extend and maintain the code. However
moving forward it would be useful to support the integration
of other languages specifically in terms of configuration. For
instance in addition to the XML configuration that we have
discussed in this paper it would be advantageous to enable
users to write Python code snippets that also direct the
analytics. Whilst the current configuration has been designed
to be as expressible as possible, defining data analytics in
a technology such as Python would increase accessibility
for some people. Technologies such as f2py [21], which
already ships as part of Numpy, support the integration of
Python and Fortran codes so the complexities would be
around the policy side, ensuring that integration is seamless,
and performance, to understand whether there would be a
runtime impact when using Python.

ACKNOWLEDGEMENTS

This work was funded under the embedded CSE pro-
gramme of the ARCHER UK National Supercomputing
Service (http://www.archer.ac.uk)

REFERENCES

[1] Abel SJ, Shipway BJ. A comparison of cloud-resolving model
simulations of trade wind cumulus with aircraft observations
taken during rico. Quarterly Journal of the Royal Meteoro-
logical Society, 2007, 133(624). DOI: 10.1002/qj.55

[2] Awile O, Sbalzarini I. A pthreads wrapper for fortran 2003.
ACM Transactions on Mathematical Software (TOMS), 2014,
40(3):1-15. DOI: 10.1145/2558889

[3] Brown AR, Gray MEB, MacVean MK. Large-eddy simulation
on a parallel computer. Turbulence and diffusion, 1997, (240).

[4] Brown N, Weiland M, Hill AA, Shipway BJ, Maynard C,
Allen T, Rezny M. A highly scalable met office nerc cloud
model. In In Proceedings of the 3rd International Conference
on Exascale Applications and Software (EASC ’15). EASC
2015, 132-137.

[5] Bull JM, Enright J, Guo X, Maynard C, Reid F. Performance
evaluation of mixed-mode openmp/mpi implementations. In-
ternational journal of parallel programming, 2010, 38(5-
6):396-417. DOI: 10.1007/s10766-010-0137-2

[6] Dorier M, Antoniu G, Cappello F, Snir M, Orf L. Damaris:
How to Efficiently Leverage Multicore Parallelism to Achieve
Scalable, Jitter-free I/O. CLUSTER - IEEE International
Conference on Cluster Computing, Beijing, China, 2012, 155-
163.

[7] Dorier M. Getting Started with Damaris At
http://damaris.gforge.inria.fr/doc/DamarisUserManual-
1.0.pdf, [1 June 2017].

[8] Hill AA, Field PR, Furtado K, Korolev A, Shipway BJ.
Mixed-phase clouds in a turbulent environment. part 1. large-
eddy simulation experiments. Quarterly Journal of the
Royal Meteorological Society, 2014, 140(680), 855-869. DOI:
10.1002/qj.2177

[9] Kornblueh L, Kleberg D, Schulzweida U, Jahns T, Pospiech
C, Ptz M. cdi-pio: A package for parallel i/o in climate and
numerical weather prediction models. The IBM HPC Systems
Scientific Computing User Group, 2014.

[10] Liu Q, Logan J, Tian Y, Abbasi H, Podhorszki N, Choi JY,
Klasky S, Tchoua R, Lofstead J, Oldfield R. Hello adios:
the challenges and lessons of developing leadership class i/o
frameworks. Concurrency and Computation: Practice and
Experience, 2014, 26(7), 1453-1473. DOI: 10.1002/cpe.3125

[11] Lock AP. The parametrization of entrainment in cloudy
boundary layers. Quarterly Journal of the Royal Me-
teorological Society, 1998, 124(552), 2729-2753. DOI:
10.1002/qj.49712455210

[12] Lock AP, Brown AR, Bush MR, Martin GM, Smith RNB. A
new boundary layer mixing scheme. part i. scheme description
and single-column model tests. part ii. tests in climate and
mesoscale models. Monthly Weather Review, 2000, 128(9),
3200-3217. DOI: 10.1175/1520-0493

[13] Meurdesoif Y. Xios: An efficient and highly configurable
parallel output library for climate modelling. In The Second
Workshop on Coupling Technologies for Earth System Mod-
els, 2013.

[14] Meurdesoif Y, Caubel A, Lacroix R, Drouil-
lat J, Nguyen MH. Xios: XIOS TUTO-
RIAL. At http://forge.ipsl.jussieu.fr/ioserver/raw-
attachment/wiki/WikiStart/XIOS-tutorial.pdf, [1 June 2017].

[15] Meurdesoif Y. Xios: User guide
At http://forge.ipsl.jussieu.fr/ioserver/raw-
attachment/wiki/WikiStart/XIOS user guide.pdf, [1 June
2017].

[16] Petch JC. Sensitivity studies of developing convection
in a cloud-resolving model. Quarterly Journal of the
Royal Meteorological Society, 2006, 132(615), 345-358. DOI:
10.1256/qj.05.71

[17] Petch JC, Gray MEB. Sensitivity studies using a cloud-
resolving model simulation of the tropical west pacific.
Quarterly Journal of the Royal Meteorological Society, 2001,
127(557), 2287-2306. DOI: 10.1002/qj.49712757705

[18] Selwood P. Met office unified model i/o server. 4th ENES
Workshop on High Performance Computing for Climate and
Weather, 2016.

[19] Foster M. Towards Zero Cost I/O: Met
Office Unified Model I/O Server At
http://www.ecmwf.int/sites/default/files/elibrary/2012/13995-
towards-zero-cost-io-met-office-unified-model-io-server.pdf,
[1 June 2017].

[20] Thakur R, Gropp,W, Lusk E. Optimizing noncontiguous
accesses in mpi–io. Parallel Computing, 2002, 28(1), 83-105.
DOI: 10.1016/S0167-8191(01)00129-6

[21] Peterson R. F2PY: a tool for connecting Fortran and
Python programs. International Journal of Computational Sci-
ence and Engineering, 2009, 4.4, 296-305. DOI: 10.1504/I-
JCSE.2009.029165

[22] Kale LV, Bhatele A. Parallel Science and Engineering
Applications: The Charm++ Approach CRC Press, 2013

[23] Willcock JJ, Hoefler T, Edmonds NG, Lumsdaine A. AM++:
A generalized active message framework Proceedings
of the 19th international conference on Parallel architec-
tures and compilation techniques, 2010, 401-410. DOI:
10.1145/1854273.1854323

[24] Bonachea D. AMMPI: Active messagesover MPI - quick
overview http://www.cs.berkeley.edu/bonachea/ammpi/, [1
June 2017].

[25] Reid J. The New Features of Fortran 2003 SIGPLAN Fortran
Forum, 2007, 10-33. DOI: 10.1145/1243413.1243415

