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Abstract—This paper deals with the use of hybrid simulation to

build and compose heterogeneous simulation scenarios that can

be proficiently exploited to model and represent the Internet

of Things (IoT). Hybrid simulation is a methodology that

combines multiple modalities of modeling/simulation. Com-

plex scenarios are decomposed into simpler ones, each one

being simulated through a specific simulation strategy. All

these simulation building blocks are then synchronized and

coordinated. This simulation methodology is an ideal one to

represent IoT setups, which are usually very demanding, due to

the heterogeneity of possible scenarios arising from the massive

deployment of an enormous amount of sensors and devices. We

present a use case concerned with the distributed simulation

of smart territories, a novel view of decentralized geographical

spaces that, thanks to the use of IoT, builds ICT services to

manage resources in a way that is sustainable and not harmful

to the environment. Three different simulation models are

combined together, namely, an adaptive agent-based parallel

and distributed simulator, an OMNeT++ based discrete event

simulator and a script-language simulator based on MATLAB.

Results from a performance analysis confirm the viability of

using hybrid simulation to model complex IoT scenarios.

Index Terms—Hybrid Simulation, Multilevel Simulation, Par-

allel and Distributed Simulation (PADS), Internet of Things,

Smart Cities

1. Introduction

The Internet of Things (IoT) is a recent term coined
to identify the rapidly growing multitude of sensors and
mobile users’ terminals connected to the Internet. The term
“Internet of Things” is employed in several different do-
mains, often exploited as a buzzword in many scientific
and technological domains. The term was originally coined
by K. Ashton to refer to a system of ubiquitous sensors
connecting the physical world to the Internet. In [83], IoT
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is defined as a “dynamic global network infrastructure with

self configuring capabilities based on standard and interop-

erable communication protocols where physical and virtual

things have identities, physical attributes, and virtual per-

sonalities and use intelligent interfaces, and are seamlessly

integrated into the information network”. In documents from
the European Commission, the IoT is seen as a general
“evolution of the Internet from a network of interconnected

computers to a network of interconnected objects”.
The interactions of these things and the data they pro-

duce (or sense) might be somehow utilized and managed to
offer novel services in smart cities and territories in gen-
eral [9], [11], [26], [32]. Examples of services can be found
in a broad range of applications areas. As an example, smart
transportation systems can be built where cars, equipped
with propers sensors, and static sensors deployed in the
streets interact to form a crowd-sensing platform, whose
data can be exploited, for instance, to reduce congestion,
optimize emergency services response times, lower fuel us-
age, reduce pollution, offer parking availability information,
promote the development of smart safety systems, etc. But
in general, when the big data coming from these sensors
are released as open data, this information can be used in
a variety of applications, which might be quite different
from the original applications they have been generated for.
This leads to the possible development of novel (social)
applications based on crowd- sourced and sensed data [72].
Not only, the interactions among things might lead to novel
opportunistic and self configuring services in rural territo-
ries, exploiting both infrastructured and infrastructure-less
communication networks [11], [36], [37], [38].

In many cases, these devices are equipped with a very
little amount of memory and computational power, con-
strained software and administration capabilities, e.g., lim-
ited administration utilities and few system updates. Being
able to understand and to simulate the IoT will soon become
essential. The complex networks obtained by the interaction
of IoT devices are hard to design and to manage. In real
deployment scenarios, many configurations of IoT networks
are possible. Devices connectivity is influenced by their geo-
graphical location, communication and network capabilities,
device distribution.

Thus, modeling an IoT environment can result in a dif-
ficult task, due to the heterogeneous possible scenarios. IoT
simulation is necessary for both quantitative and qualitative
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aspects. To name a few issues: capacity planning, what-if
simulation and analysis, proactive management and support
for many specific security-related evaluations. For instance,
through the modeling and simulation of the IoT, it is possible
to understand the amount of sensors to deploy in a given
area and identify their optimal location. It is possible to
simulate specific, critical scenarios, which cannot be tested
in real situations and understand the adequacy of the specific
configuration of things in a given area.

The scale of the IoT is the main problem in the usage
of existing simulation tools. Traditional approaches (that are
single CPU-based) are often unable to scale to the number
of nodes (and level of detail) required by the IoT.

This paper deals with the use of hybrid simulation to
build and compose heterogeneous simulation scenarios that
can be proficiently exploited to model IoT environments.
Hybrid simulation is a field of modeling and simulation,
which comprises several methodologies proposed by differ-
ent authors in different domains [34]. In our view, hybrid
simulation combines multiple modalities of different model-
ing and simulation techniques in order to build sophisticated
tools for the analysis of any kind of systems. Complex
scenarios can be decomposed into simpler ones, each one
being simulated through a specific simulation strategy and
possibly a domain-specific simulator. Hence, different levels
of detail and types of simulation can be exploited to model
peculiar aspects of the system being simulated. Synchro-
nization, coordination and interaction of these simulation
building blocks are needed to realize sophisticated hybrid
simulation tools, avoid causality errors and guarantee the
expected runtime performance of the combined simulator.
This novel simulation technique allows for high scalability,
especially when combined with adaptive Parallel and Dis-
tributed Simulation (PADS) approaches.

We claim that hybrid simulation can be proficiently
employed to effectively simulate the IoT. As mentioned, the
range of issues that need to be accounted for in IoT is wide.
Classic simulation approaches could not be able to consider
all these aspects within a single simulator. Rather, hybrid
approaches allow creating complex simulation models that
consider all relevant issues, when needed. Multi-level tech-
niques can be employed so that a simulator can trigger, only
when needed, the execution of a finer-grained simulator, able
to mimic with high detail certain issues of interest.

We demonstrate the validity of the proposed approach
by focusing on the simulation of “smart territories” [37],
[38]. This is a novel view of devising smart services over
urban and decentralized environments. Indeed, in these last
months/years focus has been given on the development
of smart cities services, i.e. a set of strategies aiming at
improving and optimizing services offered to citizens living
in metropolitan areas. As a matter of fact, the possibility
to offer services for territorial districts with low population
density is an almost ignored problem. There is a need
to devise smart, cheap and sustainable services in decen-
tralized geographical spaces, without the need of costly
(communication) infrastructures. Such services would make
good use of a deployment of cheap sensors in these areas,

together with ad-hoc configurations of mobile devices. We
show that the design and configuration of smart services
in (decentralized) territories impose the simulation of wide
area networks; however, in certain cases a highly detailed
simulation is required. This need for scalability and high
level of detail can be reached by resorting to properly
configured hybrid simulation techniques. An advantage of
this approach is that the detailed (and thus, more costly)
simulation can be performed only when needed, in a limited
simulated area, only for the needed time interval of the
simulation.

As a use case, we focus on the simulation of a “smart
market scenario”. We assume that users can subscribe their
interest for certain kinds of products to a service that informs
them upon availability of interesting events, sales, availabil-
ity in markets within their neighborhood. Thus, users can
decide to order products or move to the market location for
some shopping. On their way, they need to be guided to find
the specific place and then the products.

The developed hybrid simulator is composed of three
distributed, interacting simulators, executing at two different
levels of detail. A coarse level simulates the whole smart
territory, where different actors produce products, subscribe
their interests, move towards different geographical areas.
This has been implemented using a discrete event simulator
following an agent-based modeling approach, equipped with
PADS capabilities called GAIA/ARTÌS [31]. The arrival of
customers (through a transportation system) to the location,
and the parking deployment strategies in the neighborhood
of the market have been implemented as a simulator that
exploits the equation-based ADVISOR tool [2] that is im-
plemented on top of MATLAB. Finally, the interactions of
pedestrian users within the smart market have been devel-
oped through an instance of an OMNeT++ discrete event
simulation; this simulator considers wireless communication
issues, fine-grained interactions and movements. We pro-
vide an experimental evaluation of the proposed distributed
hybrid simulator and of its simulation components, that
confirms the viability of the proposed approach.

The remainder of this paper is organized as follows.
Section 2 describes the background and state of the art
about simulation and IoT/Smart-Territories. The proposed
approach, based on hybrid simulation, is introduced in Sec-
tion 3. In Section 4, this approach is applied to a “smart
shires” case study. Section 5 presents some results on a
performance assessment on the hybrid simulator we utilized
to model the use case. Finally, Section 6 provides some
concluding remarks.

2. Background and State of the Art

In this section we provide the background, needed in
the rest of the work, and an overview of the state of the
art. In particular, we first provide a discussion on Discrete
Event Simulation (DES), followed by the background of
modern techniques, which are based on the parallelization
and distribution of DES, i.e., PADS. Then, we briefly outline
the possibility of employing adaptive schemes to migrate



distributed simulation entities (e.g., agents) and cluster them
together, so that interacting simulation entities are executed
into the same logical processes. We then provide a general
introduction on hybrid modeling and simulation, which will
be discussed in more detail in the next section.

Finally, we introduce the background related to the use
case which is considered in detail in this paper, i.e., Internet
of Things and smart territories.

2.1. Discrete Event Simulation

In a computer simulation, a process models the behavior
of some other system over time [40]. In some cases, the
simulated system is real but more often it has yet to be
designed or implemented. In practice, simulation is about
methodologies and techniques that are needed for the per-
formance evaluation of complex systems.

The motivations behind the use of simulation are many.
To name a few: cost reasons, testing on the real system is
too dangerous, many different solutions must to be evaluated
to support the system design (i.e. dimensioning and tuning).
Due to the increasing complexity in the systems to be built,
simulation is used more and more often.

Discrete Event Simulation (DES) [54] is one of the many
simulation paradigms that have been proposed. With respect
to other approaches, it has good expressiveness and it is
quite easy to use. A DES is represented by a simulated
model (that is implemented using a set of state variables)
and its evolution (that is represented by a sequence of
events processed in chronological order). Each event occurs
at a given instant in time and represents a change in the
simulated model state. This means that the whole evolution
of the simulated system is obtained through the execution
of an ordered sequence of events that are: created, stored
and processed. For example, the events in the simulation
of Vehicular Ad Hoc Networks are the updates of the cars
positions and the transmission of data packets. At the basics,
a DES is a set of state variables (i.e. describing the modeled
system), an event list (i.e. the pending events that will be
processed for evolving the simulated state) and global clock
(i.e. the simulation time) [54]. Each event is tagged by a
timestamp that specifies the simulated time at which it has
to be processed. DES models usually embody some kind of
randomness in the generation of events. This means that, in
order to have a comprehensive and clear understanding of
the simulated system, during the experimental assessment
the simulation runs must be repeated several times. This
allows performing some statistical analysis on the obtained
metrics.

In a sequential (i.e. monolithic) simulation, a single
Physical Execution Unit (PEU), for example a CPU core, is
in charge of creating new events, updating the pending event
list and processing the events in timestamp order. In other
words, a program executed on a single CPU core manages
the whole simulated model and its evolution. This approach
is simple and easy to implement but it has some drawbacks.
Among others, the simulation scalability both in terms of

execution time (to complete the simulations runs) and size
of the system that can be represented [33].

2.2. Parallel DES and PADS

As an alternative, the tasks described above can be paral-
lelized using a set of interconnected PEUs (e.g. CPU cores,
CPUs or hosts). This approach is called Parallel Discrete
Event Simulation (PDES) [41]. In this case, very large and
complex models can be represented and executed since each
PEU is only in charge of a part of the simulation model.
That is, each PEU manages a local pending events list and
some events are delivered by means of messages to remote
PEUs. In addition, the PEUs must run a synchronization
algorithm to guarantee the correct simulation execution. In
many cases, a PDES approach can speedup the simulation
execution, at the cost of a more complex implementation
and setup of the simulator.

A Parallel and Distributed Simulation (PADS) is a sim-
ulation that is run on more than one processor [69]. There
are many good reasons to rely on this approach, among
them: execution speed, model scalability, interoperability
and composability purposes (e.g. to integrate different off-
the-shelf simulators and to compose many already existing
simulation models in a new simulator) [40].

With respect to a monolithic simulation, a PADS lacks
a global model state. That is, a single representation of the
simulated model is missing. In fact, each PEU in the PADS
manages only a part of the simulated model. Following
the PADS terminology, the model components executed on
top of each PEU are called Logical Processes (LPs) [24].
As shown in Figure 1, a PADS is obtained through the
interaction among LPs; each LP deals with the evolution
of a part of the simulated model and interacts with other
LPs (for synchronization and data distribution) [40].

The performance of the network that interconnects the
LPs has a strong effect on the PADS design and the sim-
ulator execution speed. When the LPs are run on PEUs
interconnected by a shared memory, then it is called paral-
lel simulation. Conversely, loosely coupled LPs, i.e. where
every LP is an autonomous independent system connected
to other LPs via some network infrastructure, are referred
as distributed simulation [17]. More often, the execution
architecture used to run PADS are a mix of parallel and
distributed PEUs [28].

In short, the main issues in a PADS are:

• the simulated model is partitioned in a set of
LPs [86]. The partitioning is a complex task since it
must be done by considering both the minimization
of the network communication (among LPs) and the
load balancing in the parallel/distributed execution
architecture;

• the results obtained by the PADS are correct only
if they are exactly the same given by the sequential
simulator. This can happen only if there is a syn-
chronization algorithm that properly coordinates the
LPs evolution;



Figure 1: Parallel and Distributed Simulation: model parti-
tioning.

• each LP generates updates (events) that are pos-
sibly relevant for parts of the simulated model in
other LPs. For performance reasons, broadcasting
all events is not feasible. Data distribution is about
the efficient delivery of state updates and it is often
based on a publish-subscribe approach [46].

Implementing a PDES using PADS means that each
event generated by a LP must be sent to other interested
LPs. As mentioned, LPs associate timestamps to generated
events. Then, events are encapsulated into messages to be
transmitted for the inter-LP delivery.

As defined by Lamport: “two events are in causal order if
one of them can have some consequences on the other” [53].
Clearly, to get a correct simulation execution, the causal
order of events must not being violated. This is easy in a
monolithic simulation but it is complex in parallel and dis-
tributed architectures due to the different execution speeds of
each PEU and the network delays. In a PADS, to guarantee
that all events are executed in non-decreasing timestamp
order, the LPs have to run a synchronization algorithm. The
synchronization can be handled in many ways but the main
approaches are the following:

• time-stepped: the simulated time is divided in
timesteps of fixed-size. The simulation model is
updated at every timestep and the lower bound to
the flight time for interactions between the model
components is the size of the timestep. When a
LP completes the tasks for the current timestep,
it broadcasts to all the other LPs an End-Of-Step
(EOS) message and then waits the EOS messages
from all other LPs before proceeding to the next
timestep [82];

• conservative: in this approach the causality errors are
prevented. That is, before processing each event, it
is checked if the event is “safe” or not (with respect
to the causality constraint). If the event is tagged as
safe by the synchronization algorithm then it can be
processed. Otherwise, the LP must stop processing
while waiting for more events (or better information
about the safety of events). This safety check can be
implemented in many different ways, a widely used
algorithm is the Chandy-Misra-Briant [63];

• optimistic: in this case the events are processed by
the LPs in receiving order. This means that, very
likely, the causality order will be violated. In fact,
when a violation is found by the synchronization
algorithm, the LP that has found it implements a
roll-back to the (most recent) previous state that is
correct. Furthermore, it propagates the roll-back to
all the other LPs that have been affected by the
violation [45]. In this way, the whole PADS goes
back to the most recent globally correct simulation
state and it starts again processing the events.

2.3. Adaptive PADS

As described before, the partitioning of the simulated
model in PADS is a complex task. Over the years, many
static and dynamic approaches have been proposed to auto-
mate and enhance the partitioning of parallel and distributed
simulations. The most relevant partitioning approaches have
been discussed in [31]. In the same paper, we have proposed
an approach in which the simulated model is represented
by a multi-agent system. The simulated model is parti-
tioned in small model components (also called Simulated
Entities, SEs) and the model evolution is obtained through
the exchange of interactions among SEs. In this way, the
LPs are containers of SEs and it is possible to move
(migrate) a SE from one LP to another. This permits to
avoid the static partitioning of the simulated model and to
adaptively reallocate the SEs for better computational and
communication load balancing. In many cases, this leads
to a speed up in the simulation execution and enhanced
scalability. This adaptive PADS approach is implemented
in the GAIA/ARTÌS simulator [7].

2.4. Agent-based Simulation

A particular type of simulation is the Agent Based
Modeling and Simulation (ABMS) [22]. In ABMS, the
simulated entities are called agents. Agents can represent
any actor entity within a simulation. The model specifies
the behavior of each agent (i.e., microscale model). Such a
behavior is usually influenced by the information that agents
obtain from the environment. Thus, events generated in the
environment have an impact on the agents states, and the
whole simulation evolves based on these interactions among
agents and the environment. Typically, the simulation model
specifies one or more classes of agents; each agent of a cer-
tain class executes the same behavior procedure. The variety
of the possible outcomes of a simulation is thus due to some
kind of randomness (introduced in the specification of such
a behavior) and the different interactions and situations each
agent is involved in.

Over the years, a huge number of agent-based models
have been developed and it has been demonstrated that in
some circumstances ABMS offers some advantages with
respect to other approaches [60].

In massively populated simulation environments (such as
in the IoT, where each thing is an agent) certain problems



may become too big to be solved in a serial computing
environment. The memory and computational requirements
cannot be supplied by a single CPU. Hence, parallel and
distributed agent-based simulation comes into the picture.
However, as in the previous scenarios, parallelization and
distribution do not come for free. It is important to distribute
the model as evenly as possible, try to minimize message
passing requirements between LPs, synchronize all the LPs
to ensure a correct and consistent simulation.

There are examples of classic ABMS tools that provide
some kind of extensions to distribute the computation. For
instance, D-MASON is the distributed version of the pop-
ular MASON tool, a Java-based ABMS [77]. The ABM++
framework is a tool to implement agent-based models to
be deployed on distributed memory Linux clusters [1]. The
framework provides the necessary functionality to allow
applications to run on distributed architectures. The us-
age of distributed discrete-event simulation techniques for
the simulation of multi-agent systems [57] involves some
common problems of PADS such as the lack of a shared
state, the interest management and the load balancing of
the distributed execution architecture. Other aspects, such as
the “spheres of influence” are from agent-based modeling
but, in this case, must be addressed in a distributed setup.
Some efforts have been done to implement the distributed
simulation of agent-based systems using the High Level
Architecture (IEEE 1516) standard [56]. The simulation of
systems with million of agents has led to the development of
frameworks that are able to run on GPUs [73] and clusters
composed of multiple GPUs and multi-core processors [8].

Other examples in literature are works on specific im-
plementations of distributed agent-based simulation tools to
be used in specific use cases. Just to mention a few, LUNES
is a parallel and distributed agent-based Large Unstructured
NEtwork Simulator, which allows to simulate complex net-
works composed of a high number of nodes [25]. In [66],
a distributed platform, termed Global-Scale Agent Model
(GSAM), is presented. It is thought to build agent-based
epidemic models for the simulation of disease outbreaks. In
[23], a case study is discussed on the use of the OpenMP
toolkit and MPI to distribute a large-scale epidemiologic
agent-based model.

2.5. Hybrid Modeling and Simulation

Common techniques employed in simulation, being
DES, PADS, Monte Carlo, agent-based, equation based
modeling techniques and so on, are typically applied in
isolation one from another. Hybrid simulation rests on the
idea of employing different simulation techniques together.
Even if there is no a cohesive and overall accepted definition
for hybrid simulation [34], it is clear that the idea of mixing
analytic and simulation models is not new [76], [79] and, in
the past, it has been already implemented in a few simulation
packages [64]. In our view, a definition of hybrid simulation
should consider hybrid models that are based on two or more
simulation models such as linking discrete event simulation
(DES) with either system dynamics (SD) or agent based

(ABS) [34] but also other analytical models (e.g., continuous
simulation). It is worth noting that our approach is partially
different from [76], in which hybrid models and hybrid
modeling have two very different definitions. Indeed, in
[71] a conceptual analysis of hybrid simulation typologies
is provided. In that paper, a distinction is made between
“hybrid simulation” and “hybrid modeling and simulation
(M&S)”. The former is referred as the application of multi-
ple techniques in the model implementation stage of a sim-
ulation. And it is true that the majority of papers referring
to hybrid simulation focus on the model implementation
phase of a simulation study [10], [34], [64], [79]. The latter
deploys the use of inter-disciplinary methods and comprises
several stages other than implementation, concerned with
problem formulation stage/conceptual modeling, data col-
lection, validation and verification, model execution, data
analysis etc. [29].

Even if, in the last years, hybrid simulation has been
mostly used in specific fields such as healthcare [10], other
fields could benefit from its application. For example, pro-
duction planning [20], operations research [71], biological
systems [50] and computer systems [78].

2.6. Internet of Things and Smart-Territories

In the previous section, we already mentioned the trend
towards the design of novel services, built by interconnect-
ing various heterogeneous devices, deployed in geographical
areas [70]. Smart services can be built that exploit data
collected by things deployed in a geographical location such
as a metropolitan, crowded area or even a rural country-
side [37], [38]. In fact, sensors are relatively cheap in terms
of cost. Thus, their massive deployment is feasible both in
populated centres and in more decentralized areas [37]. Such
sensors can be interconnected to form a sensor network.
Data sensed by the sensors’ devices can be disseminated and
collected by some information processing system, treated
as open data and managed through a context-aware data
distribution service, to be used by applications [9].

Clearly enough, the larger the audience for a service the
higher the amount of resources that can be possibly devoted
to support the service. Conversely, the more decentralized
the location the higher the need for the devised solutions to
be cheap and sustainable. In particular, the presence of an
available infrastructured wireless communication network,
typically present in urban areas, promotes the use of soft-
ware solutions where the (big) data produced or sensed by
things are collected, aggregated and exploited by intelligent
services hosted in cloud (or fog) computing architectures.
These smart services can integrate such data with crowd-
sensed and crowd-sourced data coming from mobile users’
terminals [49], [55], [67].

Conversely, in a decentralized (rural) area, self-
configuring opportunistic solutions might be preferred, pos-
sibly not strictly dependent on the presence of a classic
networking infrastructure [32]. Whatever the distributed
software solution, the main idea is that the IoT represents



the substrate to build smart services to foster the creation of
“smart territories”.

The complexity of the possible scenarios coming from
this picture suggests that effective simulation tools are
needed. These simulation tools must take into consideration
issues concerned with complex networks, aspects typical of
pervasive computing and low-level details concerned with
wireless communications. In the next sections, we will
discuss existing methods and viable strategies to ensure
scalability of the simulation, without introducing oversim-
plifications and inaccuracies, due to the lack of the level of
detail.

2.6.1. Simulation of the Internet of Things. The design
of complex IoT setups requires the support of large scale
testbeds or the usage of scalable simulation tools. In the case
of simulation, the number of nodes in the scenario and the
level of detail required by the interaction among nodes are
key elements for the scalability of the simulator. Put in other
words, a simulator of the IoT should be evaluated based on
its ability to scale and to offer methods to simulate diverse,
highly detailed aspects related to the interaction among
things. This is evident from the need of simulating a massive
amount of things, and the diverse application scenarios
and issues to be simulated, ranging from smart services in
smart cities, (social) applications based on crowd- sourced
and sensed data, intelligent transportation systems, up to
opportunistic and self configuring communications in rural
territories [9], [37], [36].

In [43], the authors identify the requirements for the next
generation of IoT experimental facilities, they discuss some
drawbacks of simulation-based approaches and provide a
survey of existing testbeds (some of them also supporting
co-simulation). An approach based on the federation of
testbeds is possible but it has many drawbacks. In most
cases, existing network simulators are inadequate for the
scale and level of detail required by IoT models.

SimIoT is a new simulator described in [81] in which the
back-end operations are executed in a cloud environment for
better performance. The use case proposed in the paper is a
health monitoring system for emergency situations in which
short range and wireless communication devices are used to
monitor the health of patients. The preliminary performance
evaluation is based on 160 identical jobs submitted by 16
IoT devices.

In [58] the massive-scale of many IoT deployments
is considered. In this case, the authors firstly present a
survey of large-scale simulators and emulators and then
they propose MAMMotH, a software architecture based on
emulation. To the best of our knowledge the development
of MAMMotH stopped in 2013.

Brambilla et al. propose to integrate the DEUS general-
purpose discrete event simulation with the domain specific
simulators Cooja and ns-3 for the study of large-scale IoT
scenarios in urban environments [18]. In this case, the
performance evaluation is based on 6 scenarios with up to
200000 sensors, 400 hubs and 25000 vehicles. The execution
time with respect to the number of events shows a quite good

scalability. On the other hand, to the best of our knowledge,
the DEUS simulator has a monolithic architecture and it is
implemented in Java.

In [80], the authors propose an IoT-based smart home
system, in which the performance evaluation is based on
different simulation methods such as Monte Carlo.

DPWSim is a simulation toolkit that supports the mod-
eling of the OASIS standard “Devices Profile for Web
Services” (DPWS) [44]. Its main goal is to provide a cross-
platform and easy-to-use assessment of DPWS devices and
protocols. In other words, it is not designed for very large-
scale setups.

The approach followed in [19] uses a model-driven
simulation (based on the standard language SDL) to describe
the IoT scenario. Starting from this, an automatic code
generation transforms the description into an executable
simulation model for the ns-3 network simulator.

An interesting approach is proposed in [51]. The author
proposes a hybrid simulation environment in which the
Cooja-based simulations (i.e. system level) are integrated
with a domain specific network simulator (i.e. OMNeT++).

Finally, in [32], the authors present a preliminary ap-
proach to the design and performance evaluation of large
scale IoT deployments. More specifically, a multi-level
simulator composed of two DES-based simulators is pro-
posed and evaluated. The proposed architecture is extended
(i.e. hybrid) and revised in this paper to address more
general IoT scenarios.

2.6.2. Hybrid Simulation of the Internet of Things and

Smart-Territories. As concerns the use of IoT to build
efficient services for making “smarter” territories, from a
simulation point of view there are many requirements that
the simulation tool must provide. Above all, the main issue
is scalability, both in terms of amount of modeled entities
and granularity of events. Even a small size smart territory
will be composed of thousands of interconnected devices.
Many of them will be mobile and each with very specific
behavior and technical characteristics [37]. If a proactive
approach is needed (e.g. simulation in the loop), in order to
perform “what-if analysis” during the management of the
deployed architecture, then the simulator should be able to
run in (almost) real-time, at least with average size model
instances.

We claim that a multi-level simulation is needed in order
to simulate a smart territory scenario with a reasonable IoT
model. In fact, running the whole model at the highest level
of detail is unfeasible. Indeed, imagine the computational
efforts required to simulate all technical aspects related to
each single sensor and device deployed in a territory of in-
terest, together with all the details related to communication
issues and the network infrastructure. Not only the amount
of these things to simulate make it unfeasible, but it would
be quite complex to model all these characteristics with a
single simulation tool. In essence, the main problems relate
to scalability and expressiveness of the simulation models.
A better approach is to bind different simulators together,
each one running at its appropriate level of detail and



with specific characteristics of the domain to be simulated
(e.g. mobility models, wireless/wired communications and
so on). A further benefit is that each simulator can be
activated on demand by the simulator orchestrator (being
either a human or a computer program), only when needed.
We will discuss this approach in the next section.

Agent-based simulation is a perfect tool to create models
that mimic urban systems in general [47]. According to
the agent-based simulation methodology, one can specify
a general (pseudo-random) behavior of a simulated entity
(agent), once. Then, multiple instances (agents) of these
entities can be deployed into the simulated world, each
one acting in a similar (but different) way. This approach
allows studying the emergent behavior of a global system,
by specifying single and local interactions. In the context of
urban systems, it suffices to define the behavior of one or
more types of entities, e.g., mobile users, vehicles, and then
create and deploy several instances to study the properties
of the global urban system. In other terms, agent-based
simulation is a powerful tool that offers bottom-up un-
derstandings to complex consequences in decision-making
and problem-solving processes, as opposed to traditional
aggregated modeling approaches [21].

Agent-based simulation, together with land-use transport
interaction model and cellular automata are applicable in
planning support systems. These models can be applied
at different time scales, such as short-term modeling, e.g.
diurnal patterns in cities, and long-term models for ex-
ploring change through strategic planning. Tools such as
MASON [59] and SUMO [52] allow simulating moving
entities (e.g. mobile users of vehicles) that can interact with
static ones. These tools have been successfully exploited to
study intelligent traffic control systems [14], [48], [84], [87],
mobile applications that resort to crowdsensed data [72] and
so on. The main problem of these approaches is that, due to
their nature, they do not allow creating massive scenarios,
with many interconnections.

CupCarbon is a multi-agent and discrete event, smart-
city and Internet of Things Wireless Sensor Network (SCI-
WSN) simulator [62]. Its allows designing, visualizing and
validating distributed algorithms in a network. It employs
the OpenStreetMap framework to deploy sensors directly
on the map. The main goal of this tool is to help trainers to
explain the basic concepts and how sensor networks work
and it can help scientists to test their wireless topologies,
protocols, etc. The main problem of scalability remains.

Moreover, it is worth mentioning that there are a number
of image and 3D based simulators, such as CanVis, Second
Life, Suicidator City Generator, Blended Cities. Among
them, UrbanSim is a software-based simulation for urban
areas, with tools for examining the interplay between land
use, transportation, and policy [6]. It is intended for use by
Metropolitan Planning Organizations and others needing to
interface existing travel models with new land use forecast-
ing and analysis capabilities. UrbanSim does not focus on
scenario development, as most of these tools do, but rather
on understanding the consequences of certain scenarios on
urban communities. However, typically these tools do not

cope with issues concerned with wireless communications
and pervasive computing, which are the keywords related to
the IoT world.

3. Hybrid Simulation of the Internet of Things

Since many IoT models are composed of a very large
number of nodes, the usage of a single simulator that embod-
ies all the possible aspects of the simulated world would be
quite complex [27], [32], [43], [58], [51]. For instance, the
use of a fine grained simulation model, according to which
all low level details of devices and their interconnections are
considered, might lead to scalability problems. In essence,
a monolithic simulator, that handles all the nodes in the
IoT and implements a fine grained level of detail, is unable
to provide the simulation results in an acceptable amount of
time [25], [63], [69]. This forces the simulationist to employ
a limited amount of simulated entities.

It is also worth noticing that the use of a monolithic
simulator requires that such a simulator has already been
built, or it should be implemented from scratch. This might
somehow hinder code re-utilization. A modular approach
may have some benefits.

On the other hand, using a fine-grained model, for
the whole simulation, in a PADS over High Performance
Computing execution platforms, might be quite costly. In
fact, a more detailed simulation corresponds to higher com-
putations and a higher amount of messages to be exchanged
among logical processes. This might also correspond to
higher costs related to resource provisioning and mainte-
nance. Moreover, it is important to notice that in certain
situations the price paid for such fine-grained simulation
might be useless, i.e., sometimes all the details might be
useless (for example, considering wireless networking issues
when no communications have to be simulated); thus, it
might be preferable to use a higher level of abstraction.
However, in general, reducing the level of detail in the simu-
lation model might lead to misleading (or wrong) simulation
results due to the excessive amount of details removed from
the simulated model.

Thus, in this work, we focus on the use of a hybrid
simulation approach, coupled with PADS, for large scale IoT
setups. That is, a simulation in which multiple simulation
models are linked together [61], each one with a specific
task, possibly working at a different level of detail.

Under the implementation viewpoint, this means using
a “high level” (preferably PADS) simulator, that works at
a coarse grained level of detail and that coordinates the
execution of a set of domain specific “middle” or “low level”
simulators to be used only when a fine grained level of detail
is necessary (e.g., OMNeT++ [4], ns-3 [3], SUMO [5]).
The switch between coarse and fine grained models can
be automatic or triggered by the simulation modeler. For
example, if a given simulated area is populated by too many
wireless devices, then a detailed simulation model could
assess network capacity or congestion problems. The main
issues with this multi-level approach are the interoperability
among the simulators and the design of the inter-model



interactions (e.g., synchronization and state exchanges at
runtime between model components).

Figure 4 shows two examples of hybrid simulation sce-
narios. In both examples, at bootstrap the whole scenario
is executed at Level 0 (L0, that is, with a minimal details).
Hence, the high level simulator manages the evolution of
all the model components and their interactions following a
time-stepped synchronization approach [16]. In the example
shown in Figure 2, at timestep t2, it is found that a part
of the simulated scenario (for example a specific zone in
the simulated area or a specific group of modeled nodes)
has to be simulated with more details. This means that, in
the figure, a part of the simulated area is still modeled at
Level 0 while a specific zone is now managed by the Level
1 model. If necessary, in the following of the simulation,
a specific area can be further detailed using a Level 2
simulation model. To simplify this discussion, if we consider
only two levels, then all the model components managed by
the Level 0 simulator are evolved using t-sized timesteps
and all the others use t′-sized timesteps. Timestep t2 (that
is the same as t′

1
for Level 1) is the moment in which

a part of the model components is transferred from the
coarse grained simulator to the finer one. The components
at Level 0 will jump from t2 to t3 while the components
simulated at Level 1 will be updated at t′2, t′3 and t′4 (that
is the same as t3 for Level 0). Following that, since there
is no more need for the fine-grained level of detail, all the
components simulated at Level 1 are transferred again to the
Level 0 simulator. Following the constraints imposed by the
time-stepped synchronization algorithm, all the interactions
among Level 0 simulated components can happen at every
coarse grained timestep while the interactions at Level 1 can
happen at every fine grained timestep. Finally, the interaction
between components managed at different levels can happen
only at the coarse grained timesteps. That is, when there is
a match between the timesteps at the different levels.

This was an example of a stratified generation of mul-
tiple levels of simulation models. Figure 3 shows a differ-
ent example, according to which different simulators are
separately employed to provide finer-grained simulations
in different areas of the simulated world. For the sake of
simplicity, in the figure the two Levels 1a and 1b have
been triggered during different simulation time intervals, i.e.,
Level 1a occurs during the [t2, t3] Level 0 simulation time
interval, while Level 1b occurs during the [t3, t4] Level 0
simulation time interval. In this example, it is important to
notice that the two finer level simulators might be executed
concurrently if they are executed in different regions of the
simulated area; otherwise, when the two simulators act in the
same area, they must be somehow properly synchronized. In
this case, since in the example these finer grained simulation
models (Level 1a and Level 1b in the figure) are indepen-
dent, the timesteps employed by these two simulators might
be of different (time) size. (However, the constraint, that a
single timestep of the higher level simulator L0 should be
composed of multiple timesteps of a low level simulator,
remains.)

It is worth noticing that Figure 4 emphasizes the differ-

ences on the granularity of the temporal dimension related
to different levels of simulation. However, there are other
aspects to deal with when crossing these levels, e.g. objects,
fidelity, resolution, etc. In fact, when multiple simulators
and/or different simulation methodologies are utilized, the
transfer of objects and data, related to simulation entities,
can result as a hard task. There might be problems concerned
with model fidelity, granularity, as well as interoperability
among different simulators and models. The level of gran-
ularity of each of these aspects is related to the specific
simulation that has to be performed. For instance, in some
cases one might need increasing the spatial resolution (since
a higher precision is required on the position of the sim-
ulated entity), while in other ones it might be necessary
adding novel features to be considered (e.g., imagine a
simulated entity representing a user, equipped with a mobile
device, entering an area with an available WiFi network-
ing communication infrastructure; thus, wireless networking
protocols might have to be simulated). All these simulation
aspects and features have to be considered in order to be
interoperable for all these different levels of simulation.

The use of a hybrid simulation approach does not change
the total number of simulated nodes active in the whole sim-
ulation model, but the level of detail used in the simulation
is adapted to the needs of the simulation, at runtime. In
other words, the level of detail, and the specific features that
are simulated at a finer (coarser) level of detail, is adapted
and changed during the simulation, dynamically. Hence,
it is possible to obtain a better scalability with respect
to traditional simulation (monolithic or PADS) approaches.
On the other side, it is clear that hybrid modeling (as
every kind of model approximation) might introduce some
(approximation) error in the analysis. As in every simulation,
appropriate verification and validation techniques need to be
used [34].

Another aspect that must be considered is usability. It
is well known that PADS technologies, after many years of
research and development, still have usability issues [42],
[24]. The hybrid simulations can have the same usability
problems combined to the interoperability issues of using
multiple simulators. Even if, the agent-based approach can
reduce some of the PADS problems and the usage of domain
specific simulators can simplify the modeling of complex
systems, there are still problems that need to be addressed.
In our view, the main ones are: 1) the need of method-
ologies and tools for the definition of conceptual models;
2) the availability of simulation paradigms that are easy
to use; 3) well-defined interfaces for the interoperability
among simulations (e.g. simulation standards that are widely
accepted and used); 4) new approaches for the composability
of simulators; 5) automatic mechanisms for the deployment
and the management of simulators on distributed (e.g. cloud)
infrastructures. It is clear that, most of these problems are
not specific of the hybrid simulation approach but more
general.



Figure 2: stratified multilevel simulation.

Figure 3: separate simulation models.

Figure 4: Hybrid simulation: examples of stratified multilevel simulation and separate simulation models.

4. Case Study

4.1. Smart territories

As an application scenario, we consider a main use
case concerned with the need to provide smart services
to territories, being cities or more decentralized areas. In
particular, we focus on “smart shires”, a novel view of
decentralized geographical spaces able to manage resources
(natural, human, equipment, buildings and infrastructure) in
a way that is sustainable and not harmful to the environ-
ment [32], [37], [38]. The idea is to create novel, smart and
cheap services, easily deployable without the need of costly
infrastructures, that would improve the life of citizens and
tourists.

The need for cheap solutions forces the use of crowd-
sensed and crowd-sourced data coming from the IoT. Sen-
sors are relatively cheap in terms of costs. Thus, their de-
ployment in a countryside is feasible. These sensors need to
be interconnected through the use of smart communication

approaches [70]. Data sensed by the sensors’ devices are
managed by a distributed information processing system,
hence enabling a context-aware data distribution [15].

A wide range of application scenarios are possible,
ranging from proximity-based applications (e.g. proximity-
based social networking, advertisements for by-passers,
smart communication between vehicles, etc.), security and
public safety support, services related to the production
chain in rural environments (smart agriculture, smart animal
farming) and smart traffic management systems.

4.2. A use case with a smart market

As a specific use-case example, recently the “km 0”
phenomenon gained a lot of interests in Italian and European
foodie circles. This abbreviation for “zero kilometers” sig-
nifies local, low impact primary food ingredients. The idea
is to prioritize the use of local and seasonal foods, avoid
the use of genetically modified organisms so as to improve
the quality of provided products and promote sustainable



cooking. In spite of the growing interest in local products,
there are relatively few places where one can buy these
products directly from the producer. Thus, customers have
to look for specialized weekend farmers markets or for farm
direct purchases. Customers might be single users, ethical
purchasing groups or restaurant owners. And quite often,
this products research reveals to be not a simple task for
customers. Thus, smarter scenarios are possible.

Let’s imagine a service that allows consumers subscrib-
ing to the availability of a certain product. Upon availability
of such a product by a producer (e.g. the farmer), he can
publish a notification, which informs subscribers of prod-
uct availability plus other related information such as, his
presence in next, near markets or other possible purchasing
opportunities. In view of such details, the consumer can plan
to visit the market (so as to have the opportunity to select the
products directly), order some specific items, quantities and
so on. There are plenty of publish-subscribe mechanisms
that might help these producer/consumer interactions in
order to build smarter services. However, more sophisticated
services are possible. The arrival at the market might be
guided by services that help the user find a parking spot. The
location might not be equipped with associated parking, thus
the service might reduce the time spent by customers to find
proper parking, hence improving the quality of experience,
increase their willingness to come back in the future, and
also reducing vehicle emissions.

Once there, the market could be crowded with several
(apparently similar) producers and the customer might not
know the exact location of producers. Thus he might need
to be guided to the producers locations dynamically. More-
over, he might also be interested in finding other possible
interesting products.

To cope with these issues, producers can provide infor-
mation on the fly, thanks to proximity-based services that
may guide customers in a smart and effective market tour.
Based on the available technologies of the market, such
services can be deployed in different ways. For instance,
if a wireless infrastructure is available, then all the commu-
nications can pass through this network. Otherwise, some
ad-hoc solution should be dynamically built, with producers
that exploit their smart devices (e.g. smartphones) to build
multihop wireless communication and information dissem-
ination strategies [38]. Moreover, in case of intermittent
connections, seamless communication strategies should be
employed using multihoming [39]. Message dissemination
about the market (e.g. advertisements, general information)
might be viably performed using some kind of epidemic
dissemination protocol over a dynamic, opportunistic ad-
hoc overlay, used in conjunction with application filtering
techniques [35], [36], [85].

4.3. The distributed hybrid simulator

The efficient simulation of such a wide scenario in a
smart territory is not an easy task, since it involves several
activities concerned with different domains and requires

very different levels of granularity. Needless to say, a solu-
tion might be to employ a classic agent-based simulator to
model all the aspects concerned with this use case. However,
this would require implementing all the features and issues
that need to be considered in this scenario. Moreover, as
already discussed the use of a single simulator, that keeps
the whole simulation at a high level of detail, might not
scale. Indeed, in this case, hybrid simulation can come into
the picture. One can imagine different levels of granularity,
as shown in Figure 5. We employ three different simula-
tion models, that act at two different levels, i.e., a coarse
simulator that can trigger the execution of two Level 1 sim-
ulators that can be executed sequentially. Such simulators
are distributed and executed in different hosts. The coarse
level (L0 in the figure) simulates the whole smart territory,
where different actors produce products, subscribe their
interests and move towards different geographical areas.
This has been implemented using an agent-based simulator
with adaptive PADS capabilities [31].

The arrival of customers (through a transportation sys-
tem) to the location, the parking deployment strategies in
the neighborhood of the market, etc. can be simulated using
some specific tool able to model transportation systems and
related issues, such as the analysis of tailpipe emissions (see
L1a in Figure 5). This enables studying the goodness of
the parking and transportation solutions, and estimating the
amount of time users spend entering the market, if they
will. This level has been implemented by resorting to the
MATLAB based ADVISOR tool [2].

Finally, once pedestrian users enter the smart market
(or the location where it takes place) there is the need to
simulate the specific interactions within that specific area. In
this case, more simulation details (and probably a different
simulator) are needed to consider wireless communication
issues, fine-grained interactions and movements. Thus, a
more detailed level of simulation (based on a domain spe-
cific simulator) is triggered (i.e. L1b in the figure). In this
case, each simulation step of the coarse grained simulation
layer (e.g., t3, t4 of L0 in Figure 5) is decomposed into
multiple substeps at the fine grained layer. Following this
approach, the Level 1 simulator is able to notify Level 0 with
its simulation advancements. The specific interactions within
the smart market impose more simulation details, so as to
consider wireless communication issues, fine-grained inter-
actions and movements. Thus, an instance of OMNeT++
simulation has been implemented.

The main issue is to provide means to let the simulators
interact. In fact, when needed L0 triggers the execution of
L1a, passing some arguments serving as configuration and
initialization parameters. Then, the finer level simulator must
run for a certain amount of timesteps, producing outputs that
are passed to L1b. Results are passed to L0 at the end of
each timestep. In turn, Level 0 must ask simulators at Level
1 to continue or end their simulation. In the following, we
outline the main characteristics of the three simulators and
then we show how they are managed and coordinated into
the distributed hybrid simulation system.

In terms of the simulation model implemented by the hy-



Figure 5: Smart Territory/Market hybrid simulation.

brid simulator that is proposed in this paper, a rigorous and
correct modeling approach would be to define a conceptual
model, following a methodology such as that described in
[74] and [75]. However, in this work we prefer to focus on
the implementation aspects resulting from the combination
of PADS, monolithic DES and continuous simulation tools.
In other words, in this experience we investigate the possi-
bility of building efficient distributed hybrid simulators and
initiate a discussion on the performance metrics that should
be used for evaluating this kind of simulators.

4.4. Level 0: agent-based simulator

Smart Shire Simulator (S3) is a prototype based on the
GAIA/ARTÌS simulation middleware [7], [28]. ARTÌS per-
mits the seamless sequential/parallel/distributed execution
of large scale simulation runs using different communica-
tion approaches (e.g. shared memory, TCP/IP, MPI) and
synchronization methods (e.g. time-stepped, conservative,
optimistic). The GAIA part of the software tool aims to
ease the development of simulation models with high level
application program interfaces. Furthermore, it implements
communication and computational load-balancing strategies
(based on the adaptive partitioning of the simulation model),
for reducing the simulation execution time.

The current version of S3 implements a limited set of
functionalities. The many elements composing the smart
shire are represented as a set of interacting entities. Some
entities are static (e.g. sensors, traffic lights and road signs)
while the others (e.g. cars and smart-phones) follow specific
mobility models. All the entities in the simulated model are
equipped with a wireless device.

The interaction among entities is based on a “geo-
location Priority-based Broadcast” (geoPbB) strategy that
implements a novel probabilistic broadcast approach with
geolocation filtering capabilities. In geoPbB, every message
that is generated by a node is broadcast to all the nodes
that are in proximity of the sender. The message contains a
Time-To-Live (TTL) and geographical information to limit
its lifespan and the forwarding is based on three conditions.
First, the relay of a message is performed only with a
certain probability (i.e. probabilistic broadcast). Second, the
distance between the sender and receiver is measured before
relaying a message; in substance, a message is forwarded

only if the distance between the nodes is larger than a
given threshold. Put in other words, only nodes in the
external annular ring of the transmission range participate to
the gossip procedure. Under the implementation viewpoint,
this can be done using a positioning system (e.g. GPS)
if available. Otherwise, the network signal level associated
to each received message is used. Third, the message is
relayed only within a certain geographical area (geolocation
filtering). In fact, we assume that the geographical position
of the message originator is an important data in a proximity
based service, such as those we are dealing with in this case
study. Hence, once a message “leaves” a specific area of
interest, the message is discarded and not relayed anymore.

4.5. Level 1a: ADVISOR based simulator

The transportation system related issues are imple-
mented through a simulator based on the ADvanced Ve-
hIcle SimulatOR (ADVISOR) [2]. ADVISOR is a MAT-
LAB/Simulink based simulation tool for the analysis of
the performance and fuel economy of conventional (gaso-
line/diesel), electric, and hybrid vehicles. It allows inter-
changing a variety of components, vehicle configurations,
and control strategies. The goal of the simulator is to allow
testing efficiency of automobiles, especially in terms of
tailpipe emissions, fuel economy, acceleration and grade
sustainability. To this aim, the simulator works using a
component-based approach, where components are typically
modeled through a set of equations and quasi-steady approx-
imations. While the typical use of the tool is based on a
graphical interface, it provides means to perform batch sim-
ulations. We employed the batch execution mode to make
the simulation work and interact with other components of
our hybrid simulation software.

Thanks to features provided by the ADVISOR simulator,
Level 1a simulates vehicles arriving at the neighborhood of
the market place and the parking activity of these customers.
Level 1a measures the amount of emissions, that are then
passed to the Level 0 simulator. Moreover, this level of
simulation has detailed information on vehicles arriving to
the car park; thus, this simulator establishes how many users
park their vehicle and enter the market place. In substance,
Level 1a provides Level 1b with the number of novel



customers entering the market place. Thus, the execution
of these two Level 1 simulators is sequential.

4.6. Level 1b: OMNeT++ simulator

The fine grained simulator of the smart market was
implemented using OMNeT++ v. 4.4.1, with the INET
framework v. 2.3.0. It simulates a grid of fixed nodes
(during the tests, a 10× 10 grid was used), representing the
market sellers. Each seller is equipped with a WiFi enabled
technology. In the simulated scenario, no WiFi infrastructure
was present, hence nodes organize themselves as a MANET
exploiting DYMOUM [30], an implementation of the Dy-
namic MANET On-demand (DYMO) routing protocol [68].

In such a MANET a number N of mobile nodes, repre-
senting pedestrian users, was introduced by the higher Level
0 simulator. These N nodes are equipped with a mobile
device with a WiFi networking technology. Pedestrian users
move at walking speed. The user application running on the
mobile client broadcasts messages looking for the identifier
of the specific seller. The seller replies with his geograph-
ical position. All these messages are delivered through the
mentioned MANET routing protocol. Based on the provided
position, the mobile user moves towards his destination.

4.7. Interaction among the simulators

An interaction among the Level 0 and Level 1 simulators
is needed in order to let simulators interoperate and synchro-
nize. This means that simulators must exchange their inputs
and outputs, and that L0 must coordinate the execution of
Level 1 simulators. Moreover, the implementation of the
different simulators impose their execution into different
operating systems. In fact, L0 and L1b are based on Linux
systems, while the MATLAB based L1a runs on top of a
Windows system. With this in view, the hybrid simulator is
a distributed system where different instances of simulators
can be executed. A message-passing approach is utilized,
which has been realized through the use of TCP socket
connections.

Figure 6 shows the distributed architecture of the hybrid
simulator. The L0 instance can run as a PADS into one
or multiple Linux hosts. Since the two Level 1 simulators
are thought to be executed sequentially, for the sake of a
simpler implementation, we created a Level 1 wrapper that
coordinates the execution of the two Level 1 simulators
and synchronizes their sequential activities with the Level
0 simulator. In the figure, as an example, we depicted two
instances of such a wrapper (L1 wrapper), mimicking that two
instances of Level 1 have been generated at a certain point of
the simulation. Thus, L0 triggered two L1 wrappers, passing
all the configuration details (arrows (1) in the figure).

The L1 wrapper has been realized as an OMNeT++ com-
ponent. It sequentially launches an instance of L1a and, once
completed, the OMNeT++ L1b instance, passing the output
of L1a to L1b, i.e., the amount of novel customers entering
the market. In order to do it, since L1a instances run on

Windows operating systems, we created a Windows appli-
cation that basically acts as a listening server waiting for
novel connections (L1a factory in the figure). Thus, L1 wrapper

connects to L1a factory passing all the configuration param-
eters (arrows (2) in the figure). Then, L1a factory generates
an instance of a properly configured L1a instance (arrows
(3) in the figure). Once completed, L1a returns its output to
L1 wrapper (arrows (4) in the figure), that in turn generates a
novel instance of the L1b OMNeT++ simulation (arrows (5)
in the figure). Once completed, the L1b OMNeT++ simulator
returns its output to L1 wrapper (arrows (6) in the figure), that
in turn returns its output to L0 (arrows (7) in the figure).

While these Level 1 instances are active, L0 waits for
messages from the L1 wrappers at properly configured socket
connections. At the end of each Level 0 timestep, L1 wrapper

sends a set of messages which describe its status and waits
for a response. L0 receives the data sent by L1 wrapper and
decides what message has to be sent (i.e., continue or end the
lower level simulation). The TCP connection is maintained
until the L0 simulator decides that the lower level simulation
must end.

In essence, this strategy allows interactions between the
simulators without requiring a complete re-engineering of
the simulators. In this approach, the higher level simulator
must be able to freeze the simulation of certain parts of the
simulated scenario, waiting for updates from other sources.
Moreover, lower level simulators should be enabled to obtain
input from outside, and notify results outside. However,
no knowledge on the external simulators are needed. This
is an example demonstrating that existing products can be
employed to create more complex multi-level simulations.

4.8. Implementation details

The L1a factory process, and its child processes, work on
a Linux-like Cygwin environment that operates on top of a
Windows 8.1 operating system. The orchestration between
the L1 wrapper and the L1a subsystem is a little bit complex
because each L1a process, as shown in the Figure 6, is
composed of a couple of processes, a father and its child.
The father inherits, from the L1a factory process, the TCP
connection with the L1 wrapper process from which receives
the simulation parameters. The father increments a counter
and uses this unique value to generate the name of a couple
of files that uses as input and output with its process child.
The father writes the simulation parameters into the input
file and creates a child process giving to it the pathnames
of both the input and output files. Then, the father waits
for the termination of the child process. The child process
runs a bash script that executes the MATLAB simulation
launching a MATLAB script into a MATLAB engine. This
is done by means of the following command line:

matlab -nodesktop -nosplash -r

"L1a_simfunc(${fileinput},
${fileoutput}); quit

force"



Figure 6: Distributed hybrid simulation architecture (with two depicted Level 1 simulation instances).

The two initial parameters select the console version
user interface of the MATLAB engine and avoid its graph-
ical user interface. The rest of the command line pro-
vides the MATLAB engine with the name of the function
(L1a simfunc) that implements the L1a simulations and
the name of the input and output files to be used. The final
command (quit force) closes the console of the MATLAB
engine at the end of the simulations. The simulation function
L1a simfunc uses the parameters loaded from the input
files and executes a sequence of MATLAB functions that
sets the ADVISOR scenario and simulates the transportation
subsystem. Finally, the MATLAB script saves the simulation
results into the output file, closes the MATLAB engine and
terminates the child process. At the end of the MATLAB
script, the bash script terminates the child process and
signals the father process. The father process wakes up and
loads the simulation results from the output file, then it sends
the results through the TCP connections to its L1 wrapper.
Finally, the father deletes both the input and output files
and terminates itself and its TCP connection.

5. Performance Evaluation

Assessing the performance of a hybrid simulator can be
a hard task, since several components must be evaluated
as well as their interactions. When these components are
distributed, the network can be a further variable that can
strongly influence the performance of the simulation. With
this in view, in this section, firstly we evaluate the scalability
of Level 0 simulator alone. Then, since Level 1a (L1a) is
ancillary to Level 1b (L1b), we assess L1b and its perfor-
mance with the Level 0 (L0) simulator. Finally, we assess
the performance of the whole distributed hybrid simulator
(that is L0 + L1a + L1b).

All the results reported in this section are averages
of multiple independent runs. This performance evaluation
has been performed using two hosts interconnected by a

Fast Ethernet LAN. The Linux components (L0 and L1b

simulators) were run on a DELL R620 with 2 CPUs and
128 GB of RAM. Each CPU is a Xeon E-2640v2, 2 GHz,
8 physical cores. Each CPU core supports Hyper-Threading
and therefore the number of logical cores is 32. The com-
puter is equipped with Ubuntu 14.04.5 LTS, GAIA/ARTÌS
version 2.1.0, OMNeT++ v. 4.4.1 (with the INET framework
v. 2.3.0). The L0 simulator S3, the L1 wrapper, L1 factory and
L1b OMNeT++ models used for the multi-level simulator
will be freely available as source code in the next release
of GAIA/ARTÌS [7] or upon request. The Windows-based
components L1a factory were executed on a host with Win-
dows 8.1 Pro operating system, Intel core i7-5600U, 2.5
GHz, 8 GB of RAM.

To sum up, in this performance evaluation the whole
hybrid simulation was a distributed simulation, embodying
a parallel simulation at Level 0 and multiple sequential
simulations at Level 1.

5.1. Level 0: agent-based simulator

The performance evaluation of S3 is based on a bidimen-
sional toroidal space (with no obstacles) that is populated by
a given number of devices called Simulated Entities (SEs)
(that are static and dynamic nodes in the smart shire such
as cars, people, signaling devices and so on). A subset of
the SEs follows a Random Waypoint (RWP) [65] mobility
model while the others are static. The interaction among
SEs is based on proximity and implements the geoPbB
strategy previously described in Section 4.4. In particular,
each node is enabled with a caching mechanism to discard
(some of) the duplicated messages (based on a last-recently-
used replacement algorithm) and with a geolocation filtering
mechanism. Moreover, with the aim of reducing the amount
of messages that are relayed by nodes, we implemented
an additional filtering scheme, according to which nodes,
whose distance from the sender is lower than a certain



threshold, do not relay the message. Hence, only nodes in
the external annular ring of the transmission range partici-
pate in the gossip procedure.

The message filtering strategy described above is inte-
grated in the gossip dissemination mechanism as defined
in our smart shire proposal. For this reason, this model-
specific filtering strategy is implemented at the Level 0
simulation model. It is well known that the overhead caused
by the model level communication has a big impact on
the scalability of PADS. For this reason, many relevance
filtering techniques have been developed for being used
in both Distributed Interactive Simulation (DIS) and High
Level Architecture (HLA) standards [12], [13]. These tech-
niques are more general than the gossip filtering approach
implemented in S3 and their integration in GAIA/ARTÌS is
left as future work.

Table 1 shows the main parameters of this performance
evaluation. Some of such parameters are strictly dependent
on the specific scenario characterized by the geographical
and architectural issues of the smart shire deployment, while
others are more general. In our view, simulation tools are
necessary to support the design of IoT architectures and for
the tuning of the many runtime parameters.

First of all, we investigate the smart shire simulation
model. In particular, the geoPbB dissemination strategy is
evaluated, in presence of an increasing number of SEs. Fig-
ure 7 shows the number of simulated messages, exchanged
by SEs (i.e., simulated devices and things in the smart
territory), during the simulations. In the chart, the amount of
messages depends on the varied number of SEs. As shown
in the figure, the number of delivered messages is high and
it increases linearly with the number of nodes in the sys-
tem. As frequently happens in gossip-based dissemination
schemes, a large part of the delivered messages are forwards
(that is, relayed messages). The impact of both caching and
geofiltering mechanisms is almost negligible. More specif-
ically, as shown in Figure 8 the caching is slightly more
efficient, in terms of filtered messages, than geofiltering.
The first result of this performance evaluation is two fold.
A proper tuning of the dissemination parameters avoids the
generation of a massive amount of delivered messages in
the simulated system. This aspect is fundamental for the
scalability of both the smart shire system and the simulator.
On the other hand, the overhead in the geoPbB dissem-
ination strategy is too high and the filtering mechanisms
that are commonly used in such kind of system, such as
caching and geofiltering, have unsatisfactory performances.
This means that more complex changes to the dissemination
protocols, based on gossip strategies, need to be designed,
implemented and evaluated for the deployment on this kind
of wireless networks. For completeness, Figure 9 reports
the number of simulated messages, exchanged by SEs, in
presence of a bad tuning of the dissemination parameters
(i.e., dissemination probability set to 0.6, forwarding range
¿ 100 spaceunits). As it can be seen comparing the results in
Figures 9 and 7, the changes in the dissemination parameters
have a huge impact on the number of delivered messages. In
fact, in the bad tuning case the delivered messages increase

of over 600 times.
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Figure 7: Model characterization: number of simulated mes-
sages, exchanged by SEs during the simulations.

 100

 1000

 10000

 100000

 1x106

 1x107

 0  5000  10000  15000  20000  25000  30000  35000

N
um

be
r 

of
 m

es
sa

ge
s 

(lo
g 

sc
al

e)

Number of SEs

Level 0 simulator, number of messages

# of delivered messages
# of forwards

# of cached messages
# of geo-filtered messages

Figure 8: Model characterization: number of simulated mes-
sages, exchanged by SEs during the simulations (log scale).

After characterizing the message traffic of the simulated
model, in the following of this section we evaluate the
performance of the Level 0 simulator in both sequential
(i.e. LP=1) and parallel (i.e. LP>1) execution setups (see
Section 2.2). In the case of parallel execution, the SEs have
been randomly partitioned among the LPs. In a previous
work [31], we have demonstrated that, in this kind of system,
static partition of SEs leads to unsatisfactory results and
that adaptive partitioning approaches should be preferred.
Figure 10 reports the Wall-Clock-Time (WCT)1 required
to complete a simulation run of the Level 0 simulator

1. To improve the precision of WCT measuring, the execution time is
calculated using the data provided by the operating system in which the
simulator is executed. In presence of multi-level setups, the highest level
simulator implements a blocking approach (e.g. it waits for the completion
of all the low level simulators before terminating its execution).



Model parameter Description / Value

Number of SEs [1000, 32000]

Mobility of SEs 50% Random Waypoint (RWP)
50% static

Speed of RWP Uniform in the range [1,14] spaceunits/timestep

Sleep time of RWP 0 (disabled)

Interaction range 250 spaceunits

Density of SEs 1 node every 10000 spaceunits2

Forwarding range > 225 spaceunits

Simulated time 900 timesteps

Simulation granularity 1 timestep = 1 timeunit

Time-To-Live (TTL) 6 hops

Dissemination probability (gossip) 0.2

Prob. of each SE to generate a new message 0.001 (per timestep)

Cache size (positions) 128

Geofiltering distance 1000 spaceunits

Max forwarded messages per SE 10 (per timestep)

TABLE 1: Simulation model parameters.
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Figure 9: Model characterization: number of simulated mes-
sages, exchanged by SEs during the simulations. Bad tuning
of the dissemination parameters.

with respect to the number of SEs. The line for LP=1
reports the amount of time required by the simulator in
a sequential (that is monolithic) setup. All the solid lines
(i.e. LP=1,2,4,8,16) refer to setups in which only physical
CPU cores are used. With LP=32 (dashed line), the number
of LPs exceeds the number of physical CPU cores, in other
terms, in this case all the logical CPU cores provided by
Hyper-Threading are employed. When the number of SEs
is very limited (i.e. up to 2000), the sequential setup (LP=1)
has the best WCT. With 4000 SEs, the best performance is
obtained with 2 LPs; for higher amounts of SEs, the best set-
ting is 8 LPs. This behavior is due to the balance between the
load sharing of computation given by the parallel execution
architecture and the costs of the communication between
the CPU cores on which the different LPs are run. In other
words, when there is a limited amount of computation, the
best choice is a setup without communication among the
CPU cores (this happens when LP=1). Increasing the num-

ber of SEs increases both communication and computation
in the simulated model. Up to 8 LPs there is a gain in adding
more computational resources, but above this number of
LPs, the costs of communication is not balanced by the load
sharing given by the additional CPU cores (e.g. 16 LPs). The
behavior of the setup with LP=32 is slightly different, due to
the characteristics of the logical cores provided by Hyper-
Threading. In this case, the Hyper-Threading is unable to
offer a gain. This means that, as expected, the logical cores
have lower performance than the physical ones, while adding
a relevant amount of costly communication.
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Figure 10: Level 0: Scalability evaluation (WCT) – increas-
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Figure 11 reports the speedup (i.e. the ratio between
the WCT of the sequential simulation and the WCT of the
parallel execution) of the Level 0 simulator in the different
setups. One might expect that the higher the amount of
employed CPUs the higher the speedup, and that adding
more CPUs to the execution architecture would lead to a
linear increment of the speedup. Actually, this does not
happen in most of real world applications. This is due to
the fact that not all the computation can be parallelized and



that the parallelization introduces some overhead (e.g. co-
ordination and synchronization). The best speedup is 2.42
and is obtained with 32000 SEs when 8 LPs are used.
Given the very high communication requirements of the
simulated model, it is not possible to expect large values
of speedup, as those that are common in embarrassingly
parallel workloads. On the other hand, as discussed above,
the worst performances are obtained when low intensity
computational workloads (i.e. a small number of SEs) are
parallelized using many LPs (e.g. 16 or 32). In this figure,
the poor performance obtained by Hyper-Threading (LP=32,
dashed line) is even more evident.
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5.2. Level 0 and Level 1b
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Figure 12: Level 0 + Level 1b: Scalability evaluation (WCT)
– increasing number of SEs transferred from Level 0 to
Level 1b

In this section, we assess the performance of the com-
bined simulator as composed of the L0 agent-based simula-

tor and L1b (OMNeT++). Both of them are run on the Linux
server. In this case, our goal is to study the performance
of the simulator with an increasing number of SEs that
are transferred from the Level 0 simulator to the Level 1b.
Figure 12 shows the WCT required to complete a sequential
simulation (LP=1) with 16000 SEs when a single L1b spawn
is triggered. The lines for LP=2,4,8 refer to simulations in
which every LP triggers a single L1b spawn that is run in
parallel with the others L1b instances. The WCT increases
with the number of SEs handled by the Level 1. Such
increment is linear but significant and it is manly due to
the sequential architecture of OMNeT++. This confirms our
design in which the part of the SEs are handled at Level
0 and costly Level 1 simulations are triggered only when
strictly necessary.

In presence of more than 1 LP at Level 0 (i.e. a parallel
Level 0 simulation), each LP is able to trigger its own
Level 1 spawns. The cost of such spawns, when they run
concurrently, is quite limited, in fact, they can be run in
parallel. When both the number of LP is high (e.g. LP=8)
and the number of transferred SEs is larger than 8 then the
WCT sharply increases. This is mainly due to the amount
of memory that is consumed by the Level 0 instances.
Consequently, the memory use is so high to cause a virtual
memory thrashing effect. When the model requires many
Level 1 instances, that are also quite populated, then dis-
tributed setups should be explored, in which the Level 1
instances are partitioned on a set of interconnected hosts.

5.3. Level 0, Level 1a and Level 1b

In the last part of this section, we assess the perfor-
mance of the whole distributed simulator as composed of
the L0 agent-based simulator, L1a (ADVISOR - MAT-
LAB/Simulink) and L1b (OMNeT++). It is worth nothing
that L0 and L1b are run on the same Linux server, while
L1a is run on an interconnected Windows PC. In this per-
formance evaluation, the number of SEs that is transferred
from the Level 0 simulator to the Level 1 simulators is
set to 1. As demonstrated above, increasing the number
of SEs would increase the WCT required to complete the
simulation runs. In this part of the performance evaluation,
we are more interested in evaluating the cost of triggering
and coordinating many instances of different simulators.

Figure 13 shows the amount of time required to complete
a sequential simulation (LP=1) in which 16000 SEs are
managed at Level 0 while an increasing number of sequen-
tial (equally spaced) L1a and L1b spawns are triggered. As
reported before, the number of SEs transferred from Level 0
to the Level 1 is set to 1. The increase of the WCT is linear
with the number of instances that are triggered. The cost
of triggering a combined Level 1a and 1b instance is quite
relevant, since the execution of these simulators is sequential
and both of them are monolithic. With LP=2, we mean a
parallel L0 simulation in which both the LPs, at given points
in time, trigger L1a and L1b spawns. This means that, the
amount of work, with respect to LP=1, is much higher but
it is (possibly) balanced by the parallelization of the Level
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0 model given by the parallel setup. In this case, the pairs
of Level 1a+1b spawns that are triggered by the LPs can be
executed in parallel and therefore the impact on the WCT
is quite limited.
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Finally, in Figure 14 the {2000, 4000, 8000, 16000} SEs
are partitioned in an increasing number of LPs. In this case,
at the same simulated time each LP triggers a single Level
1a + 1b spawn. This means that, with LP=16, a total amount
of 16 concurrent Level 1a+1b instances are executed. The
figure shows that, for LP≤16 the overhead introduced by
the many concurrent instances of Level 1 simulators is
linear. Further increasing the number of LPs causes memory
thrashing on the host running the L1b spawns. As expected,
the number of SEs that are partitioned among the LPs has
an impact on the WCT but this is limited with respect to

increasing the number of LPs. In fact, the efficiency of the
L0 simulator is better than the Level 1a + 1b spawns. In
our view, this demonstrates that the multi-level execution
of hybrid simulators is a viable approach also under the
performance viewpoint. More specifically, in the case that a
large number of Level 1b spawns needs to be concurrently
executed then multiple execution units will be needed to re-
duce the overhead introduced by this simulation component
(e.g. running in parallel the Level 1b spawns on different
hosts).

5.4. Discussion

The use of multi-level simulation allows scaling up
to higher numbers of SEs, with respect to the use of a
single fine-grained simulator, which captures all the complex
technical details of the SEs, and their interactions. A hybrid
simulation approach allows mimicking all these details only
when needed. Hence, during the rest of the simulation, the
hybrid simulator behaves as a coarse-grained simulator.

As concerns the considered simulation strategies em-
ployed in the performance evaluation, in this work we did
not assessed the behavior of the adaptive distribution and
migration capabilities of the employed agent-based Level
0 simulator [28]. Indeed, evaluating such strategies, when
combined with hybrid architectures, might result as a com-
plicated task. Since the goal of this work was to investigate
the viability of the use of a hybrid simulation architecture,
we did not considered these aspects. Nevertheless, the ben-
efits on the use of adaptive migration strategies in PADS
environments have been already shown in the literature [31].
The task of properly assessing a whole hybrid simulation
with adaptive PADS is an interesting aspect, and it is left as
a future work.

Finally, as regards to the simulated application sce-
nario, results suggest that smart dissemination strategies
are needed to effectively distribute messages in complex
networks, such as those modeling an IoT scenario. A naive
gossip strategy, in fact, is not sufficient when a high amount
of messages are generated by a large number of devices.
Indeed, the amount of received data to be relayed might
overwhelm the (in certain cases, poor) communication and
computing infrastructures of certain devices.

6. Conclusions

In this paper, we discussed some main issues to cope
with, in order to properly simulate the IoT. Scalability
and high level of details are the two main, and quite
often counterposed, goals. We overviewed some existing
techniques, reaching the conclusion that the use of hybrid
simulation is a good strategy to employ in this context.
In substance, this methodology enables the combination
of multiple modalities of simulation. This way, complex
scenarios can be decomposed into simpler ones, each one
being simulated through a specific simulation strategy. This
approach fosters the re-use of existing simulation compo-
nents, such as models and simulators, even when these



work over different platforms, architectures and operating
systems. All the employed simulation building blocks need
to be synchronized and coordinated. If we are able to do it,
then this simulation methodology is an ideal one to represent
IoT scenarios, which are usually very demanding, due to the
heterogeneity of possible scenarios arising from the massive
deployment of an enormous amount of sensors and devices.

The analysis of the use case, related to the design
of smart services for smart cities and decentralized areas,
shows that hybrid simulation techniques provide means to
simulate wide geographical areas, with a multitude of simu-
lation entities (agents). However, when needed it is possible
to trigger more detailed, fine grained simulations, so as to
consider aspects which could not be simulated otherwise.
The interesting aspect of this approach is that the detailed
(and more costly) simulation can be performed in a specific,
limited simulated area, only for the needed time interval of
the simulation.

In particular, we have shown an example of a distributed
hybrid simulation tool that is composed of three different
simulation models, namely, an adaptive agent-based PADS,
an OMNeT++ based discrete event simulator and a script-
language simulator based on MATLAB. These three sim-
ulators act in very different ways and run on different
hosts. We discussed how it is possible to orchestrate their
execution so as to build a sophisticated hybrid simulation
of the considered IoT application scenario. Results from the
conducted performance analysis confirmed the viability of
the proposed approach.

As concerns the ongoing activity on the proposed hybrid
simulator, built for the simulation of the smart shires use
case, we are investigating the use of virtualization technolo-
gies. In particular, our goal is to incapsulate each simulation
component in a different virtual machine, to further foster
component usability and independence.
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